使用多变量主动传动系减振的冲击管理的制作方法

文档序号:5628284阅读:276来源:国知局
专利名称:使用多变量主动传动系减振的冲击管理的制作方法
技术领域
本发明一般地涉及混合动力系控制系统,并且更具体地涉及通过控制多个转矩输入来控制传动系冲击管理。
背景技术
已知各种混合动力系结构用于管理混合动力车辆中的各种原动机的输入和输出转矩,最常见的原动机是内燃机和电机。串联混合动力结构的特征通常在于,内燃机驱动发电机,该发电机继而将电力提供给电动力传动系并提供给电池组。串联混合动力中的内燃机不直接机械地联接到动力传动系。发电机也可在电动模式下操作,以为内燃机提供起动功能,并且电动力传动系可通过在发电机模式下操作回收车辆制动能量,以给电池组充电。并联混合动力结构的特征通常在于,内燃机和电机都直接机械地联接到动力传动系。动力传动系传统地包括换档变速器,以提供用于宽范围操作的优选的传动比。
一种混合动力系结构包括双模式、混合分动、机电(electro-mechanical)变速器,该变速器使用用于从原动机动力源接收动力的输入件和用于从变速器输出动力的输出件。第一和第二电动/发电机可操作地连接到用于在能量存储设备与第一和第二电动/发电机之间交换电力的能量存储设备。设置有控制单元用于管理在能量存储设备与第一和第二电动/发电机之间的电力交换。该控制单元还管理第一与第二电动/发电机之间的电力交换。
工程师要面临这样的挑战,即,管理混合动力系统的操作状态过渡,以使由整个齿轮系中的传动系间隙或游隙造成的对车辆驾驶性的影响最小。由于从传动系消除了空程并且传动系部件相互撞击,传动系转矩从零转矩到正或负转矩、或从正转矩到负转矩过渡的动作会导致齿轮间隙和冲击。过多的齿轮间隙、冲击和其它相关事件会导致操作者不满,并会负面地影响动力系和变速器的可靠性和耐久性。
齿轮间隙和冲击可能在这样的车辆操作期间出现,包括当操作者改变变速器档位时,例如从空档/驻车档到驱动档或倒档;或当操作者踩下油门时。例如,间隙动作如下发生动力系的转矩产生设备将正转矩施加到变速器输入齿轮上,以通过传动系驱动车辆。在随后的减速期间,到动力系和传动系的转矩输入减小,并且变速器和传动系中的齿轮分离。在经过零转矩点后,在电机制动、发电和其它形式中,齿轮重新连接以传递转矩。齿轮重新连接以传递转矩导致了齿轮撞击,并导致冲击。
诸如示例性的双模式混合分动机电变速器的混合动力系统具有多个转矩产生设备。需要转矩产生设备的协调控制以减小传动系齿轮间隙和冲击。另外,示例性的混合动力系统包括管理传动系过渡的挑战,所述过渡当电动/发电机中的一个从电动模式操作过渡到发电模式操作时出现。
因此,需要用于诸如示例性的双模式混合分动机电变速器的混合动力系统的控制方案,该混合动力系统具有多个转矩产生设备,所述控制方案解决关于传动系齿轮间隙和冲击的上述问题。这包括对传动系转矩过渡认知的方案,该传动系转矩过渡会在电动/发电机中的一个从电动模式操作过渡到发电模式操作时出现。还需要开发一种混合动力系控制系统,该混合动力系控制系统可以以有效使用车载计算资源的方式协调并管理来自转矩产生设备的动力。

发明内容
本发明提供一种多变量反馈控制方法,以主动减振混合动力系统和使用多个转矩控制设备的其它动力系统中的冲击的大小。
为了管理冲击,当发生转矩反向时,限制希望的车轴转矩TA_DES的大小。当车辆操作者或系统执行要求系统从正转矩变为负转矩时,希望的车轴转矩在反向期间被限制到低水平,直到间隙估计已因此改变,即,从正到负,或从负到正。在该过渡期间,主动减振控制传动系组件速度的响应,以便使间隙消除(take-up)的影响最小。在发生间隙消除后,车轴转矩可继续而不限制操作者或系统的命令。
因此,本发明的一方面包括控制到混合动力系统的传动系的驱动转矩的方法和装置。该混合动力系统包括多个转矩产生设备,该转矩产生设备可操作地连接到变速器,该变速器可操作以将转矩传递到传动系的轴。转矩产生设备优选地包括电机或电动/发电机。所述方法包括确定希望的车轴转矩、变速器的输出速度和传动系的驱动轮的输出速度。基于希望的车轴转矩的时间变化率控制转矩产生设备中的一个。当驱动轮的输出速度小于预定值时,如在车辆从零或接近零的车速起步期间,控制转矩产生设备中的每个。
本发明的一个方面包括通过检测到加速踏板和到制动踏板的操作者的输入确定希望的车轴转矩。
本发明的另一个方面包括当转矩产生设备包括电机时,控制转矩产生模式与发电模式之间的切换,以避免传动系冲击。
本发明的另一个方面包括在车辆起步期间和在动力系的变速器的固定速比变化期间控制传动系转矩。
当阅读并理解以下对实施例的详细说明时,本发明的这些和其它方面对本领域的技术人员将变得明显。


本发明将在某些部件和部件的布置中采用物理形式,将结合在此形成本发明一部分的附图详细描述并说明本发明的优选实施例,在附图中图1是根据本发明的示例性动力系的示意图;图2是根据本发明的示例性控制结构和动力系的示意图;图3、4和5是根据本发明的信息流示意图;以及图6是根据本发明的有代表性的数据曲线图。
具体实施例方式
现在参照附图,其中附图是仅用于说明本发明的目的,而不是用于限制本发明的目的,图1和图2示出根据本发明的实施例构造的系统,该系统包括发动机14、变速器10、控制系统和传动系。
在公开于2005年6月23日的名为“具有四个固定速比的双模式混合分动混合动力机电变速器”的共同转让的美国专利申请公开No.U.S.2005/0137042 A1中详细公开了示例性变速器10的机械方面,该专利申请通过参考包含于此。体现了本发明的概念的示例性双模式混合分动机电混合动力变速器示于图1,并且总体由附图标记10表示。混合动力变速器10具有轴的性质的输入件12,该输入件可由发动机14直接驱动。在发动机14的输出轴18与混合动力变速器10的输入件12之间包括有瞬态转矩减振器20。该瞬态转矩减振器20优选地包括转矩传递设备77,该转矩传递设备具有分别如78和79所示的阻尼机构和弹簧的特征。瞬态转矩减振器20使发动机14可与混合动力变速器10选择性接合,但应理解,转矩传递设备77并不用于改变或控制混合动力变速器10操作的模式。转矩传递设备77优选地包括液压操作的摩擦离合器,也称为离合器C5。
发动机14可以是多种形式的内燃机中的任何一种,如火花点火发动机或压缩点火发动机,所述多种形式的内燃机可容易地适于在处于或接近600转每分钟(RPM)的怠速到超过6000RPM的操作速度范围内将动力输出提供给变速器10。不管发动机14通过何种方式连接到变速器10的输入件12,输入件12都连接到变速器10中的行星齿轮组24。
现在特定地参照图1,混合动力变速器10使用三个行星齿轮组24、26和28。第一行星齿轮组24具有外齿轮件30,该外齿轮件可一般地指定为齿圈并且围绕一般地指定为太阳轮的内齿轮件32。在行星轮架36上可转动地安装有多个行星齿轮件34,以便使每个行星齿轮件34既与外齿轮件30啮合,又与内齿轮件32啮合。
第二行星齿轮组26也具有一般地指定为齿圈的外齿轮件38,该外齿轮件圈围绕一般地指定为太阳轮的内齿轮件40。在行星轮架44上可转动地安装有多个行星齿轮件42,以便使每个行星齿轮42既与外齿轮件38啮合,又与内齿轮件40啮合。
第三行星齿轮组28也具有一般地指定为齿圈的外齿轮件46,该外齿轮件圈围绕一般地指定为太阳轮的内齿轮件48。在行星轮架52上可转动地安装有多个行星齿轮件50,以便使每个行星齿轮50既与外齿轮件46啮合,又与内齿轮件48啮合。
在齿圈/太阳轮上的齿数的比典型地基于本领域的技术人员所知的设计考虑,并且在本发明的范围之外。通过示例,在一个实施例中,行星齿轮组24的齿圈/太阳轮齿数比是65/33;行星齿轮组26的齿圈/太阳轮齿数比是65/33;并且行星齿轮组28的齿圈/太阳轮齿数比是94/34。
三个行星齿轮组24、26和28每个都包括简单行星齿轮组。而且,第一和第二行星齿轮组24和26组合成使第一行星齿轮组24的内齿轮件32通过毂衬齿轮54连接到第二行星齿轮组26的外齿轮件38。相互连接的第一行星齿轮组24的内齿轮件32和第二行星齿轮组26的外齿轮件38连续地连接到也称为“电机A”的第一电动/发电机56。
行星齿轮组24和26还组合成使第一行星齿轮组24的行星轮架36通过轴60连接到第二行星齿轮组的行星轮架44。这样,第一和第二行星齿轮组24和26各自的行星轮架36和44相互连接。轴60还通过转矩传递设备62选择性地连接到第三行星齿轮组28的行星轮架52,这将在下文较详细地说明,采用该转矩传递设备62以辅助混合动力变速器10的操作模式的选择。第三行星齿轮组28的行星轮架52直接连接到变速器输出件64。
在所述实施例中,其中混合动力变速器10用在陆地车辆中,输出件64可操作地连接到传动系,该传动系包括将转矩输出提供给一个或多个车桥92或半轴(未示出)的齿轮箱90或其它转矩传递设备。车桥92继而终止于驱动件96。驱动件96可以是采用车轮的车辆的前轮或后轮,或者也可以是履带车辆的驱动齿轮。驱动件96可具有与其相联的某种形式的车轮制动器94。驱动件每个都具有速度参数NWHL,该速度参数包括典型地可用轮速传感器测量的每个车轮96的转速。
第二行星齿轮组26的内齿轮件40通过围绕轴60的套轴66连接到第三行星齿轮组28的内齿轮件48。第三行星齿轮组28的外齿轮件46通过转矩传递设备70选择性地连接到由变速器外壳68代表的地。也在下文说明的转矩传递设备70也用于辅助混合动力变速器10的操作模式的选择。套轴66还连续地连接到也称为“电机B”的第二电动/发电机72。
所有行星齿轮组24、26和28以及两个电动/发电机56和72都绕轴向地布置的轴60同轴地定向。电动/发电机56和72都是环状构造,该环状构造使它们可围绕三个行星齿轮组24、26和28,以便使行星齿轮组24、26和28布置在电动/发电机56和72的径向内部。该构造保证了变速器10的总体包封,即圆周尺寸,最小。
转矩传递设备73选择性地将太阳轮40与地,即与变速器外壳68连接。转矩传递设备75作为锁止离合器操作,通过选择性地将太阳轮40与行星轮架44连接,锁定行星齿轮组24、26、电机56、72和输入,以作为一个组转动。转矩传递设备62、70、73、75都是摩擦离合器,也分别称为离合器C1 70、离合器C2 62、离合器C3 73和离合器C4 75。每个离合器都优选地是液压致动的,从泵接收加压的液压流体。使用已知的液压流体回路实现液压致动,在此不详细说明。
作为来自燃料或存储在电能存储设备(ESD)74中的电势的能量转换的结果,混合动力变速器10从包括发动机14和电动/发电机56和72的多个转矩产生设备接收输入驱动转矩。ESD 74典型地包括一个或多个蓄电池。可使用具有存储电能并分配电能的能力的其它电能和电化学能存储设备代替蓄电池,而不改变本发明的概念。优选地基于包括再生要求、关于典型道路坡度和温度的应用问题和诸如排放、动力辅助和电动里程的驱动要求在内的因素设计ESD 74的尺寸。ESD 74经由DC线路或传输导体27高压DC联接到变速器电力逆变器模块(TPIM)19。该TPIM 19是以下参照图2说明的控制系统的元件。TPIM19通过传输导体29与第一电动/发电机56连通,并且TPIM 19类似地通过传输导体31与第二电动/发电机72连通。电流可根据ESD 74正在充电或放电而传递到ESD 74或从ESD 74传递。TPIM 19包括一对电力逆变器和相应的电机控制器,所述电机控制器构造成接收电机控制命令并由此控制逆变器状态,用于提供电机驱动或再生功能。
在电动控制中,相应逆变器从DC线路接收电流,并在传输导体29和31上将AC电流提供给相应电机。在再生控制中,相应逆变器在传输导体29和31上从电机接收AC电流,并将电流提供给DC线路27。提供给逆变器或从逆变器提供的净DC电流确定电能存储设备74的充电或放电操作模式。优选地,电机A 56和电机B 72是三相交流电机,并且逆变器包括互补的三相电力电子设备。
再次参照图1,可从输入件12设有驱动齿轮80。如图所示,驱动齿轮80固定地将输入件12连接到第一行星齿轮组24的外齿轮件30,并且驱动齿轮80因此从发动机14和/或通过行星齿轮组24和/或26从电动/发电机56和/或72接收动力。驱动齿轮80与惰轮82啮合,该惰轮继而与固定在轴86的一端上的传动齿轮84啮合。轴86的另一端可固定到单独地或共同地以88表示并包括附件负载的液压/变速器流体泵和/或动力分出(“PTO”)单元。
现在参照图2,示出包括分布式控制器结构的控制系统的示意方块图。在此所述的元件包括整个车辆控制结构的子集,并且可操作以提供在此所述的动力系统的协调系统控制。控制系统可操作以综合相关信息和输入,并执行算法控制各种致动器以实现控制目标,该控制目标包括诸如燃料经济性、排放、性能、驾驶性和硬件的保护在内的参数,该硬件包括ESD 74的蓄电池和电机56、72。分布式控制器结构包括发动机控制模块(“ECM”)23、变速器控制模块(“TCM”)17、电池组控制模块(“BPCM”)21和变速器电力逆变器模块(“TPIM”)19。混合动力控制模块(“HCP”)5提供上层(overarching)控制和上述控制器的协调。设有用户界面(“UI”)13可操作地连接到多个设备,车辆操作者典型地通过所述多个设备控制或指挥包括变速器10的动力系的操作。到UI 13的示例性的车辆操作者输入包括加速踏板、制动踏板、变速器档位选择器和车速巡航控制。上述控制器每个都经由局域网(“LAN”)总线6与其它控制器、传感器和致动器通讯。LAN总线6使各种控制器之间的控制参数和命令可结构化通讯。使用的特定通讯协议是专用的。通过示例,一个通讯协议是汽车工程师协会标准J1939。LAN总线和适当的协议在上述控制器以及提供诸如放抱死制动、牵引力控制和车辆稳定性控制的功能的其它控制器之间提供强大的通信(robust messaging)和多控制器接口连接。
HCP 5提供混合动力系统的上层控制,用于协调ECM 23、TCM 17、TPIM 19和BPCM 21的操作。基于来自UI 13和动力系的各种输入信号,HCP 5产生各种命令,包括发动机转矩命令TE_CMD;用于混合动力变速器10的各离合器C1、C2、C3、C4的离合器转矩命令TCL_N_CMD;以及分别用于电机A和B的电机转矩命令TA_CMD和TB_CMD。
ECM 23可操作地连接到发动机14,并且用以通过共同示为总线路35的多个分离线路分别从发动机14的各种传感器获得数据并控制发动机14的各种致动器。ECM 23从HCP 5接收发动机转矩命令TE_CMD,并产生希望的车轴转矩TAXLE_DES和通讯到HCP 5的实际发动机转矩TE_ACT的指示信号。为了简单,将ECM 23示出为一般地具有经由总线路35与发动机14的双向接口。可由ECM 23检测的各种其它参数包括发动机冷却液温度、到通向变速器的轴的发动机输入速度(NE)、歧管压力、环境空气温度和环境压力。可由ECM 23控制的各种致动器包括燃料喷射器、点火模块和节气门控制模块。
TCM 17可操作地连接到变速器10并且用于从各种传感器获得数据并将命令信号提供给变速器。从TCM 17到HCP 5的输入包括用于离合器C1、C2、C3和C4中的每个的估计的离合器转矩TCL_N_EST和输出轴64的转速NO。可使用其它致动器和传感器提供从TCM到HCP用于控制目的的额外信息。
BPCM 21信号地连接一个或多个传感器,所述传感器可操作以监测ESD 74的电流或电压参数,以将关于蓄电池状态的信息提供给HCP5。这种信息包括蓄电池荷电状态Bat_SOC和蓄电池的其它状态,包括电压VBAT和可用功率PBAT_MIN和PBAT_MAX。
变速器电力逆变器模块(TPIM)19包括一对电力逆变器和电机控制器,所述电机控制器构造成接收电机控制命令并由此控制逆变器状态,以提供电机驱动或再生功能。TPIM 19可操作以基于来自HCP 5的输入产生用于电机A和B的转矩命令TA_CMD和TB_CMD,HCP 5由通过UI13的操作者输入和系统操作参数驱动。用电机阻尼转矩TA_DAMP和TB_DAMP调整用于电机A和B的预定转矩命令TA_CMD和TB_CMD以确定电机转矩TA和TB,它们由包括TPIM 19的控制系统执行,以控制电机A和B。分别用于电机A和电机B的单独电机速度信号NA和NB由TPIM 19从电机相位信息或传统转动传感器导出。TPIM 19确定电机速度NA和NB,并将其通讯到HCP 5。电能存储设备74经由直流线路27高压直流联接到TPIM 19。电流可根据ESD 74是正在充电还是放电而输送到TPIM19或从TPIM 19输送。
上述控制器每个都优选为通用数字计算机,该通用数字计算机通常包括微处理器或中央处理单元、只读存储器(ROM)、随机存取存储器(RAM)、电可编程只读存储器(EPROM)、高速时钟、模拟到数字(A/D)和数字到模拟(D/A)电路、输入/输出电路和设备(I/O)以及适当的信号处理和减振电路。每个控制器都包括一套控制算法,包括存储在ROM中并执行以提供每个计算机的各功能的常驻程序命令和校准。优选地使用上述LAN 6实现各种计算机之间的信息传递。
典型地在预设循环期间执行用于每个控制器中的控制和状态估计的算法,以便使每个算法在每个循环中至少执行一次。存储在非易失性存储器设备中的算法由中央处理单元中的一个执行,并且可操作以检测来自检测设备的输入并执行控制和诊断例程,以使用预设校准控制各设备的操作。典型地以定期间隔执行循环,例如在发动机运行并且车辆操作期间每3、6.25、15、25和100毫秒。或者,可响应于事件的发生执行算法。
响应于由UI 13捕获的操作者的动作,监管的HCP控制器5和其它控制器中的一个或多个确定所需的变速器输出转矩TO。混合动力变速器10的被选择性地操作的组件被适当地控制和操纵以响应于操作者命令。例如,在图1和图2所示的示例性实施例中,当操作者选择向前驱动范围并操纵加速踏板或制动踏板中的任意一个时,HCP 5确定用于变速器的输出转矩,该输出转矩影响车辆如何以及何时加速或减速。最终车辆加速度受到包括例如道路负载、道路坡度和车辆质量的其它因素的影响。HCP 5监测转矩产生设备的参数状态,并且确定达到希望的转矩输出所需的变速器的输出。在HCP 5的指导下,变速器10在从低到高的输出速度范围上操作,以便满足操作者命令。
双模式混合分动机电混合动力变速器包括通过变速器10内的两个不同的齿轮系接收输出动力的输出件64,并且在数种变速器操作模式下操作,现在参照图1和下表1说明所述变速器操作模式。
表1

表中所述的各种变速器操作模式说明了对于每个操作模式哪个特定离合器C1、C2、C3、C4被接合或致动。另外,在各种变速器操作模式中,电机A 56或电机B 72可每个都作为分别指示为MA、MB的电动机操作,或者电机A 56作为指示为GA的发电机操作。当转矩传递设备70被致动以便使第三行星齿轮组28的外齿轮件46“接地”时,选择第一模式或齿轮系。当转矩传递设备70被释放并且转矩传递设备62同时被致动以将轴60连接到第三行星齿轮组28的行星轮架52时,选择第二模式或齿轮系。本发明的范围之外的其它因素影响电机56、72何时作为电动机和发电机操作,并且在此不讨论。
主要在图2中示出的控制系统可操作以在每个操作模式中提供轴64从较慢到较快的变速器输出速度NO的范围。具有每个模式中的从慢到快的输出速度范围的两个模式的组合使变速器10可以从静止状态到高速推进车辆,并且满足上述各种其它要求。另外,控制系统协调变速器10的操作,以便在模式之间可同步切换。
操作的第一和第二模式是指这样的情况,即,其中变速器功能由离合器C1 62或C2 70中的任意一个离合器以及电动/发电机56和72的受控速度和转矩控制。以下说明操作的某些范围,其中通过应用额外的离合器实现固定速比。该额外的离合器可以是如上表所示的离合器C3 73或C4 75。
当应用额外的离合器时,实现了变速器的输入到输出的速度的固定的速比,即NI/NO。电动/发电机56、72的转动取决于由离合动作限定的机构的内部转动,并且与在轴12处确定或测量的输入速度NI成比例。电动/发电机用作电动机或发电机。它们完全独立于发动机以输出动力流,由此使两个都能作为电动机、都能作为发电机或电动机与发电机的任意组合。这允许例如在固定速比1的操作期间,在轴64处从变速器输出的驱动力由来自发动机的动力和通过接收来自能量存储设备74电力而通过行星齿轮组28来自电机A和B的动力所提供。
通过在模式I或模式II操作期间起动或停用一个额外的离合器在固定速比操作与模式操作之间切换变速器操作模式。在固定速比或模式控制中的操作的确定通过由控制系统执行的算法确定,并且在本发明的范围之外。
操作的模式可重叠操作的速比,并且选择又取决于驾驶员的输入和车辆对该输入的响应。当离合器C1 70和C4 75接合时,范围1主要落在模式I操作内。当离合器C2 62和C1 70接合时,范围2落在模式I和模式II内。当离合器C2 62和C4 75接合时,第三固定速比范围主要在模式II期间可用,并且当离合器C2 62和C3 73接合时,第四固定速比范围在模式II期间可用。应注意,用于模式I和模式II的操作范围典型地显著重叠。
上述示例性动力系统的输出由于机械的和系统的限制而受到约束。由于在轴18处测量的发动机输出速度NE和在轴12处测量的变速器输入速度NI的限制以及表示为+/-NA、+/-NB的电机A和B的速度限制,因此在轴64处测量的变速器的输出速度NO受到限制。由于发动机输入转矩TE和在瞬态转矩减振器20之后的轴12处测量的输入转矩TI的限制以及电机A 56和B 72的转矩限制(TA_MAX,TA_MIN,TB_MAX,TB_MIN),因此变速器64的输出转矩TO同样受到限制。
现在参照图3,示出控制方案,该控制方案包括优选地作为参照图2的上述控制系统的控制器中的算法执行的多变量反馈控制系统,以控制参照图1所述的系统的操作。以下说明的控制方案包括整个车辆控制结构的子集。控制方案包括用于多变量主动传动系减振的方法和装置。在共同转让并且共同待审的名为“用于多变量主动传动系减振的方法和装置”的美国序列号10/xxx,xxx中说明了一种用于多变量主动传动系减振的示例性的方法和装置,其律师案号为GP-307477。上述方法和装置通过参考包含于此,以便不需要详细说明多变量主动传动系减振。该示例性的多变量反馈控制方法和系统包括用于控制从转矩产生设备14、56、72通过变速器10到传动系的转矩输出的基本元件。这包括以下所有元件确定用于动力系统和传动系的希望的操作状态参数的控制元件,操作参数包括到希望的动力学段210的输入。希望的动力学段210的输出包括车轴转矩的基准值TAXLE_REF、阻尼转矩的基准值TDAMP_REF,以及各种速度的基准值NA_REF、NB_REF、NO_REF、NE_REF和NWHL_REF。从传动系的输出计算的基准值和多个操作状态误差包括到电机阻尼转矩控制方案220的输入。执行电机阻尼转矩控制方案220以确定到转矩产生设备——在该实施例中是到电机A和B——的阻尼转矩TA_DAMP和TB_DAMP。如230所示的传动系动力学特性控制包括基于操作状态误差和基准状态控制到每个转矩产生设备和在变速器和传动系中的其它转矩设备的输入。
现在参照图4,示出用于估计用于多变量传动系的状态参数、具有传动系动力学特性估计器240的方法和装置。在共同转让并且共同待审的名为“参数状态估计”的美国序列号10/xxx,xxx中说明了一种用于多变量主动传动系减振的示例性的方法和装置,其律师标案为GP-307478。在所有操作中,传动系动力学特性估计器240是数学模型,包括作为控制器中的一个内的算法执行的多个线性方程。使用算法执行包括校准值的数学模型方程,以对参照图1和图2所述的示例性传动系的操作的表示建模,考虑了依应用特定的质量、惯性、摩擦系数和影响各种操作状态的传动系的其它特征和参数。估计用于上述动力系统的状态参数的方法包括监测在这种情况下为电机A 56、电机B 72和发动机14的每个转矩产生设备的操作转速。在轴18处测量发动机输出速度NE,并且在轴12处测量变速器输入速度NI。测量在轴64处的变速器10的输出转速NO。确定从控制系统到转矩产生设备的转矩命令,并称为TA、TB和TE。还确定多个传动系转矩负载,并将其用作输入。上述数学模型方程在控制器中的一个中执行,以估计包括TDAMP、TAXLE、NA、NB、NO、NE和NWHL的每个状态参数,用作输入每个转矩产生设备的操作速度、变速器设备的输出速度、到转矩产生设备的转矩命令和转矩负载。参照图2所述的分布式控制器结构和此处所述的算法结构以这种方式执行以便使上述状态参数的估计实时实现,即,在控制器的单个时钟周期期间进行每个估计的状态的计算,因此在确定各种状态中仅有有限的延迟时间或没有延迟时间,从而消除系统失控的可能或使其最小化。到传动系动力学特性估计器240的输入参数包括电机转矩值TA和TB、发动机转矩TE、离合器C1、C2、C3、C4的离合器转矩TCL_N、制动转矩TBRAKE、附件负载TACC、路面负载TRL和变速器操作模式。数学模型公式应用到上述输入以基于输入参数动态地计算传动系的估计的输出状态,包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL。从包括从传动系动态控制230输出的测量速度NA、NB、NO、NE和NWHL的第二速度矩阵减去包括估计的速度NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST的第一速度矩阵。结果矩阵输入到估计器232,其中该结果矩阵乘以多个增益矩阵中的一个,以确定估计的状态校正的矩阵。增益矩阵中的每个都包括标量增益系数的矩阵,优选地确定用于每个变速器操作模式,即,如上文参照表1所述的特定操作模式和齿轮配置。在该实施例中,增益矩阵被离线确定,并且作为校准值存储在车载控制器中的一个中。优选地有至少两组增益矩阵,所述增益矩阵作为估计器反馈增益232动作的一部分获得并执行,其中一组在传动系处于空档间隙状态下时使用,并且一组在传动系处于驱动状态下时使用。
估计的状态校正的矩阵被传动系动力学特性估计器240在基于输入参数确定传动系的动态计算的估计输出状态中用作反馈,所述估计输出状态包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST。当包括估计的速度的第一速度矩阵等于包括测量的速度的第二速度矩阵时,确定包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST的估计器的输出是传动系的实际操作状态的准确测量值。
现在参照图5和图6,详细说明用于在可导致传动系冲击的过渡期间控制从参照图1和图2所述的动力系统传递的转矩的方法。受控转矩TAXLE传递到传动系的车轴92。此处所述方法和系统作为图2所示的分布式控制器结构中的一个或多个算法被执行,并且使用参照图3所述的多变量反馈控制方案,包括参照图4所述的参数状态估计,每个都通过参考包含于此,如上文所述那样。
用于控制在动力系统中产生的传动系转矩的方法包括确定希望的车轴转矩TAXLE_DES和确定动力系输出速度NO和传动系的驱动轮速度NWHL,所述动力系统具有转矩产生设备14、56、72,所述转矩产生设备可操作以将驱动转矩传递到变速器。基于希望的车轴转矩的时间变化率TAXLE_DES-dot,使用上述和引用的多变量控制系统控制每个转矩产生设备14、56、72。当典型地从零速度起步的驱动轮的输出速度NWHL小于预定值时,基于希望的车轴转矩的时间变化率TAXLE_DES-dot驱动并限制转矩产生设备的操作。基于希望的车轴转矩的时间变化率可进一步控制时间变化率,所述希望的车轴转矩的时间变化率包括电动/发电机中的一个在转矩产生模式与发电模式之间的过渡。这包括在车辆起步期间控制传动系转矩TAXLE_DES和在变速器的传动比变化期间控制传动系转矩TAXLE_DES。
确定以下参数传递到传动系的动力系转矩TAXLE、到传动系的变速器输出速度NO和驱动轮速度NWHL。确定间隙状态,并基于间隙状态控制动力系的每个转矩产生设备。在该实施例中,使用估计器250确定间隙状态,该估计器优选地包括在所述控制器中的一个中的算法。到间隙状态估计器250的输入包括每个都从传动系动力学特性估计器240输出的估计的车轴转矩TAXLE_EST、估计的变速器的输出速度NO_EST和估计的驱动轮速度NWHL_EST。间隙状态估计器250可操作以比较估计的车轴转矩TAXLE_EST和估计的输出速度NO_EST,以确定间隙状态是正状态、负状态或中立状态中的一个。当估计的车轴转矩TAXLE_EST、估计的输出速度NO_EST和估计的驱动轮速度NWHL_EST表现出转矩从变速器通过传动系沿向前方向传递时,即,当在向前运动中驱动车辆时,指示正状态。当估计的车轴转矩TAXLE_EST、估计的输出速度NO_EST和估计的驱动轮速度NWHL_EST表现出转矩从变速器通过传动系沿负方向传递时,即当在反向运动中驱动车辆时,或者当有动力系制动和再生模式时,指示负状态。当没有转矩从变速器通过传动系传递到驱动轮时,指示中间状态。
当间隙状态估计器的输出指示正间隙状态或负间隙状态时,在控制系统中没有出现基于间隙的作用。
当间隙状态估计器的输出指示中立状态时,包括第一估计的速度矩阵(包括NA_EST、NB_EST、NO_EST、NE_EST、NWHL_EST)与第二测量的速度矩阵(包括NA、NB、NO、NE、NWHL)的上述差的结果矩阵乘以多个间隙增益矩阵中的一个,以确定用于间隙操作的估计的状态校正的矩阵。当在传动系动力学特性估计器240中使用用于间隙操作的估计的状态校正的矩阵时,估计器240的结果输出作为反馈提供给多变量电机阻尼控制220,所述结果输出包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST。在监测到中立间隙状态的时间周期中,多变量电机阻尼控制220使用估计器输出以减振实际车轴转矩输出TAXLE。因而,当间隙状态为中立时,传递到传动系的转矩TAXLE小于操作者命令的转矩TAXLE_DES。当间隙状态随后变为正或负时,间隙增益矩阵的使用被中断,并且如以上参照图4所述地选择增益矩阵。
现在参照图6,示出在可能发生传动系冲击的时间段期间管理车轴转矩的示例性结果。传动系冲击定义为由于诸如操作者到UI 13的输入导致的希望车轴转矩的阶跃变化引起的车轴转矩的变化速率。这种变化典型地出现在车辆起步期间和加速的其它点。传动系冲击也可能由于电动/发电机56、72中的一个的操作模式例如在转矩产生模式与发电模式之间的过渡而出现。由操作者期望所驱使的冲击的大小的典型约束包括小于1.6G/sec的峰值冲击,或加速度。在这种情况下,希望的车轴转矩TAXLE_DES基于操作者的输入而确定,并且用在希望的动力学方案210中执行的滤波常数进行调整。转矩限制优选地通过控制参考上文引用并说明的多变量电机阻尼转矩控制220计算的电机A和B的阻尼转矩值TA_DAMP和TB_DAMP而实现。多变量电机阻尼控制220使用估计器输出,以减振实际车轴转矩输出TAXLE。因而,当对希望的车轴转矩进行冲击限制时,传递到传动系的转矩TAXLE小于操作者命令的转矩TAXLE_DES。这样,多变量反馈控制方案可用于管理并抑制传动系撞击(clunks)或冲击的大小和发生。
到传动系动力学特性估计器240的输入参数包括电机转矩值TA和TB、发动机转矩TE、到离合器C1、C2、C3、C4的离合器转矩TCL_N、制动转矩TBRAKE、附件负载TACC、路面负载TRL和变速器操作模式。数学模型方程应用到上述输入,以基于输入参数动态地计算传动系的估计的输出状态,包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST。如上所述,从包括测量的速度的第二矩速度阵减去包括估计的速度的第一速度矩阵。结果矩阵乘以多个增益矩阵中的一个,以确定估计的状态校正的矩阵。多个增益矩阵中的每个都包括标量增益系数的矩阵,优选地确定用于每个变速器操作模式,即,如上文参照表1所述的特定操作模式和齿轮配置。在该实施例中,增益系数被离线确定,并且作为校准值存储在车载控制器中的一个中。优选地有至少两组增益矩阵,所述增益矩阵作为估计器反馈增益232动作的一部分获得并执行,其中一组在传动系处于中立间隙状态下时使用,并且一组在传动系处于驱动状态下时使用。
估计的状态校正的矩阵被传动系动力学特性估计器240在基于输入参数确定传动系的动态计算的估计输出状态中用作反馈,所述估计的输出状态包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST。当包括估计的速度的第一速度矩阵等于包括测量的速度的矩阵时,确定包括TDAMP_EST、TAXLE_EST、NA_EST、NB_EST、NO_EST、NE_EST和NWHL_EST的估计器的输出是传动系的实际操作状态的准确测量值。
虽然作为控制电机的输出说明了本发明,但应理解,本发明的替换实施例可包括可操作以控制内燃机和电机的转矩输出的控制方案。还应理解,转矩和速度的估计值中的某些或所有可用传感器和检测方案直接监测而代替。
已专门参照优选实施例及其变型说明了本发明。其它人在阅读并理解说明书时会做出其它变型和修改。意在将所有这种变型和修改都包括在本发明的范围内。
权利要求
1.一种用于控制到系统的传动系的驱动转矩的方法,所述系统包括多个转矩产生设备,所述转矩产生设备可操作地连接到变速器,该变速器可操作以将驱动转矩传递到所述传动系的车轴,所述方法包括确定希望的车轴转矩;确定所述变速器的输出速度和所述传动系的驱动轮的输出速度;以及基于所述希望的车轴转矩的时间变化率控制所述转矩产生设备中的一个。
2.根据权利要求1所述的方法,其特征在于,该方法还包括当所述驱动轮的输出速度小于预定值时,基于希望的车轴转矩的时间变化率控制所述转矩产生设备中的每个。
3.根据权利要求1所述的方法,其特征在于,所述希望的车轴转矩的确定包括监测到加速踏板的操作者输入。
4.根据权利要求3所述的方法,其特征在于,所述希望的车轴转矩的确定还包括监测到制动踏板的操作者输入。
5.根据权利要求4所述的方法,其特征在于,所述方法还包括在车辆起步期间控制传动系转矩。
6.根据权利要求1所述的方法,其特征在于,当所述转矩产生设备包括电机时,基于希望的车轴转矩的时间变化率控制每个转矩产生设备包括控制在转矩产生模式与发电模式之间的过渡。
7.根据权利要求1所述的方法,其特征在于,所述方法还包括在动力系的变速器的固定速比变化期间控制传动系转矩。
8.一种制品,包括存储介质,该存储介质具有在其中编码的计算机程序,该计算机程序用于实现一种控制动力系统中的传动系转矩的方法,该动力系统具有可操作以将驱动转矩传递到所述传动系的多个转矩产生设备,所述程序包括用于确定动力系和所述传动系的驱动轮的输出速度的代码;用于确定希望的车轴转矩的代码;以及用于基于所述希望的车轴转矩的时间变化率控制所述转矩产生设备中的每个的代码。
9.根据权利要求8所述的装置,其特征在于,所述装置还包括用于当所述驱动轮的输出速度小于预定值时基于希望的车轴转矩的时间变化率控制所述转矩产生设备中的每个的代码。
10.根据权利要求8所述的装置,其特征在于,用于基于希望的车轴转矩的时间变化率控制所述转矩产生设备中的每个的代码还包括用于当所述转矩产生设备作为电机操作时控制来自每个转矩产生设备的转矩输出的代码。
11.根据权利要求8所述的装置,其特征在于,所述转矩产生设备包括第一电机。
12.根据权利要求11所述的装置,其特征在于,所述转矩产生设备包括第二电机。
13.根据权利要求12所述的装置,其特征在于,用于基于希望的车轴转矩的时间变化率控制每个转矩产生设备的代码包括用于控制所述第一和第二电机的转矩输出的代码。
14.根据权利要求13所述的装置,其特征在于,所述转矩产生设备还包括内燃机。
15.根据权利要求8所述的装置,其特征在于,用于确定希望的车轴转矩的代码包括用于基于操作者输入估计希望的车轴转矩的代码。
16.根据权利要求8所述的装置,其特征在于,用于确定所述动力系和所述传动系驱动轮的输出速度的代码包括用检测设备测量所述动力系和所述传动系驱动轮的输出速度的代码。
17.根据权利要求8所述的装置,其特征在于,用于确定所述动力系和所述传动系驱动轮的输出速度的代码包括用于基于来自检测设备的输入估计所述动力系和所述传动系驱动轮的输出速度的代码。
18.根据权利要求17所述的装置,其特征在于,所述用于基于来自检测设备的输入估计所述动力系和所述传动系驱动轮的输出速度的代码还包括用于执行估计输出速度的多变量方法的代码。
全文摘要
本发明提供了一种多变量反馈控制方法,用于使用多个转矩控制设备主动减振动力系统中的冲击的大小。为了管理冲击,当发生转矩反向时,限制希望的车轴转矩的大小。当车辆操作者或系统执行要求转矩的方向改变的命令时,希望的车轴转矩被限制到低水平,直到间隙估计已相应地改变。在该过渡期间,主动减振控制传动系组件速度,以便使间隙消除的影响最小。在发生间隙消除后,不再限制期间的车轴转矩。本发明包括确定希望的车轴转矩、变速器的输出速度和传动系的驱动轮的输出速度。基于希望的车轴转矩的时间变化率控制所述设备中的一个。
文档编号F16H61/00GK101042184SQ20071008875
公开日2007年9月26日 申请日期2007年3月22日 优先权日2006年3月22日
发明者R·L·莫里斯 申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1