用于检测天然气内水蒸汽的方法和装置的制作方法

文档序号:6093329阅读:180来源:国知局
专利名称:用于检测天然气内水蒸汽的方法和装置的制作方法
技术领域
本发明涉及用于检测天然气中湿度的系统和方法。更具体地说,本发明涉及用于确定工业天然气管道中出现的水蒸汽浓度的技术。
背景技术
由于天然气的低成本和广泛可用性,天然气已经长期被用作能量源。在天然气被开采之后,其通过几个连续的处理被纯化,并且通过地下管道网络分送,地下管道网络一般以每平方英寸数百磅(psi)的管道压力传输气体。天然气作为能源产品卖给消费者,而能量含量一般是以英国热量单位(BTU)表示的。气体产物被泵送给顾客的速率是以标准的百万立方英尺(SMCF)来衡量的,标准的百万立方英尺是基于标准压力和温度(典型是1大气压/14.73psi和70)下的气体体积。
天然气中的杂质比如水,减少了天然气的BTU容量,因此导致效率较低的能量产品。杂质也随着时间而腐蚀输送管道,可能引起严重的安全事故,同时也必须耗费巨大地替换管道段(管道的停工时间可能耗费高达每秒几千美元)。因此,从事天然气的开采、提纯和输送的公司在生产和输送的各个阶段持续监视天然气的质量,以防止这样的情况发生。特别重要的一种杂质是水蒸汽(H2O)。除了它是管道腐蚀的主要原因之外,水蒸汽也稀释了天然气,因此减少了它的BTU容量(从而使天然气成为效率较低的能量源)。
天然气的经销商一般对天然气生产和分送的各个阶段,设置一个天然气内最大的可允许水蒸汽浓度。被输送给顾客(通常是大型消费者供应商比如Southern California Gas或Pacific Gas and Electric公司)的最终产品被称为“干线天然气”。干线天然气中典型的最大可允许水蒸汽浓度是每实测百万标准立方英尺CH4(MMscf)7磅H2O,1磅/MMscf大约是每百万体积比(million by volume,ppmv)21.1份。此浓度被称为“费率(tariff)”。当H2O浓度超过费率浓度时,工厂操作便可能被中止,从而导致巨大的利润损失和相关联的顾客诉讼。
测量天然气中水蒸汽的传统技术主要依赖于使用化学传感器。这些传感器通过监测传感器元件(由组合物如五氧化磷(P2O5)和氧化铝制成)的电容或介电常数来工作,传感器元件由来自干线天然气的样本决定。传感器的电属性作为样本天然气中水蒸汽量的函数,而以可测量的量化方式变化,并且这种变化被转换成水含量测量值。在这种化学传感器中,管道天然气的低压样本通过调节(减压)系统被传送给传感器元件。通过管道测量的天然气样本处于比管道本身低得多的压强下(通常是10-30psi,相比之下管道中是800psi)。这种传感器通常位于采样遮蔽装置中,采样遮蔽装置也容纳相关调节系统。
由于化学传感器中的感应元件必须暴露给天然气样本,所以气流中的杂质如乙二醇、胺和油直接接触传感器。虽然化学传感器可在校准之后短时期内提供可靠的测量值,但是暴露于杂质(特别是乙二醇和胺)下会污染传感器,因此导致校准漂移。这种情况导致错误读数,并且如果污染累积堵塞,能够引起最终的故障。已经利用了各种过滤器(结合(coalescing)过滤器、吸附剂过滤器和粒子过滤器)来使得乙二醇和胺的污染效应最小,但是历史地看,这些过滤方案仅仅是临时解决方案,因为过滤器易于被杂质饱和,或者它们发生泄漏并且要求以不定期的间隔进行更换。
因此应理解,仍然需要一种可靠耐用的系统和方法,用以检测天然气中的水蒸汽浓度。

发明内容
本发明利用吸收光谱学,这是一种已经长期被用于测量空气中的水蒸汽含量的技术,并且是在各种实验室环境中。利用这种光谱学技术,光源穿过气体样本,并且受到与光源相对的检测器检测。该光源可以是传统的热灯丝、辉光棒(glow bar)、激光器或者在感兴趣的波长范围中的任何合适的发射器。通过监测样本在指定的波长吸收的光量,能够准确地确定目标气体的含量。
吸收光谱学的一个常见问题是被测量的气体样本中的成分之间的干扰。当感兴趣的气体(在这里是H2O)在与样本中的另一气体相同或者几乎相同的波长处吸收光时,发生这种干扰。天然气是由超过95%的CH4组成的,其具有的水蒸汽一般体积不到1%。传统的光谱方法(也就是基于非激光的)不适合测量CH4背景中的H2O,因为CH4吸收的量大得多,使得H2O在可见光和红外范围内的所有波长的更弱得多的吸收完全模糊。
本发明在具有最小CH4吸收量的波长范围内工作,且最好将激光光源用于吸收光谱,以此因激光(窄线宽度)极高的光谱纯度而使得干扰效果最小。在一些实施例中,目前的系统整合了激光器作为其光源,比如那些在自动化、无人管理的野外仪器中使用的光源,它们在1.6到2.7微米(μm)之间的波长工作。在这种变化情况下,优选激光器是可调谐二极管激光器(TDL),其在美国专利5257256中有详细描述,该专利文件在此通过引用全部并入。作为选择,可利用工作于1-3μm范围的色心激光器,但是由于其相对大的物理尺寸、高功率消耗、高维护要求(它们必须被低温冷却)以及成本,这种激光器不总是适合用作商用的野外仪器。此外,还可使用其他类型光源,比如VCSEL、量子级联激光器和一些色心激光器,其发光的工作波长为基本单一的波长,在此单一波长比如大约920nm至960nm、1.877至1.901μm或者2.711至2.786μm,水吸收的水平远大于天然气。可利用其他吸收线,其中水以比天然气足够更高的水平吸收光,并且可用光源具有充分小的线宽,以在单个吸收线处或者单个吸收线附近发光。
空气中水蒸汽的基于激光的测量方案利用了可商业获得的TDL,其在1.38μm附近波长工作,水蒸汽在此波长范围具有强吸收带。但是,该波长不适合测量CH4背景下的H2O,因为在1.38微米区域中的CH4吸收非常强,并且完全遮蔽了H2O吸收(见图2所示1-2μm区域200中的CH4光谱)。
本发明在其他吸收带测量水蒸汽,例如在1.88μm吸收带,在此CH4的吸收弱得多(见图3,该图说明了CH4325和H2O 350在波数(波数=1/μm×10000)5260-5330之间的透射光谱300(透射率=1-吸收率))。有几条H2O吸收线可被用于监测天然气背景中的H2O,但是它处于CH4吸收光谱中的特定波长范围内,即920nm-960nm、1.877-1.901μm或者2.711-2.786μm范围内,在这些范围中有较强的H2O吸收线,因此能够测量纯CH4背景中的水蒸汽(见图4,该图说明光普400,显示了在波数5322-5336之间的CH4425吸收线和H2O 450吸收线的相对位置)。图6说明光谱600,显示了在波长2700nm到2800nm之间的CH4625吸收线和H2O 650吸收线的相对位置,其中示例性吸收线位于2771.15nm、2724.17nm、2740.17nm、2755.07nm、2770.69nm和2786.51nm处。图7说明光谱700,显示了在波长920nm到980nm之间的CH4625吸收线和H2O 650吸收线的相对位置。
为了提高检测灵敏度,目前的系统结合其TDL光源利用一种被称为谐波光谱学的技术。从20世纪50年代起,谐波光谱学就已经被用在核磁共振光谱计、斯塔克光谱计和其他各种实验室仪器中。在目前系统的一些实施例中使用的谐波光谱学包括在高频(kHz-MHz)条件下调制TDL激光波长以及检测多个调制频率的信号。如果对调制执行第二次检测,那么使用术语第二谐波光谱学。这一技术的优点包括1/f噪声的最小化和除去在TDL光谱上出现的倾斜基线(起因是激光输出功率随着激光注入电流的增加而增加,而且如何调谐激光改变着激光注入电流)。
在一个实施例中,本发明适用于一种检测天然气中水蒸汽的系统,该系统包括一光源,其以一个波长发射光,在该波长处水分子以比天然气分子实质高的水平吸收光;一检测器,其被配置检测从所述光源发射的光的强度;以及电子装置(或者电子计算单元),其耦合到所述检测器,用于确定天然气中水蒸汽浓度。所述光源可以是任何这样的光源其发射大约在一个或多个波长范围内的光,所述波长范围包括920到960nm、1.8-1.9μm、1.877-1.901μm、2.7-2.8μm和2.711-2.786μm。可使用的样本光源包括可调谐二极管激光器、垂直共振腔表面放射激光器(VCSEL)、色心激光器和量子级联激光器。在一些变化方案中,所述检测器是InGaAs检测器,而且所述系统进一步包括一校准单元,其耦合到所述电子装置,用于相对于已知的天然气中水蒸汽含量校准所述系统。例如,使用者可提供已知含量的样本到所述系统中,而且给所述校准单元提供该已知含量——随后可由所述电子装置用该校准单元来调节结果输出。
本发明也能够以一种方法的形式来具体实施,该方法用于确定天然气中水的浓度。这种方法包括以下步骤以一个波长产生光,在该波长处,水分子以比天然气分子实质高的水平吸收光;使所产生的光通过天然气样本;检测通过天然气的光;并且根据被检测光的强度,确定天然气中水的浓度。在一些实施例中,所述光是以处于大约以下其中一个范围内的波长而被发射的920到960nm、1.8-1.9μm、1.877-1.901μm、2.7-2.8μm和2.711-2.786μm。样本光源包括可调谐二极管激光器、VCSEL、色心激光器和量子级联激光器,以及任何在这样一个波长工作的其他光源在此波长,水分子以比天然气内典型发现的分子实质高的水平吸收光。
在另一变化方案中,本发明能够以一种检测管道内的天然气中水蒸汽的系统的形式来具体实施,该系统包括一采样遮蔽装置;至少一光学气体传感器,其被容纳于该采样遮蔽装置内;以及一供应线,其耦合到所述管道和所述光学气体传感器,用于给所述光学气体传感器提供天然气。在这种配置下,所述光学气体传感器包括一赫里奥特腔(Herriott cell),其具有两个相对的反射镜;一光源,其以一个波长发射光,在此波长处,水分子以比通过所述赫里奥特腔的天然气分子实质高的水平吸收光,且光被配置成反射离开所述反射镜,从而至少两次通过天然气;一检测器,其被配置成在光反射离开所述反射镜至少两次之后,检测光源所发射的光的强度,以及电子装置(或一计算单元),其耦合到所述检测器,用于确定天然气中的水蒸汽浓度。
虽然目前的系统是结合从主管道做的天然气采样描述的,但是可理解的是目前的系统和方法可应用于希望测量天然气或者甲烷中的水分含量的任何情形,比如天然气提纯过程。


图1是传统的采样遮蔽装置的方框图,其采用化学传感器来检测天然气内的杂质; 图2是甲烷光谱,波长范围为从1.0到2.0μm; 图3是重叠在水光谱上的甲烷光谱,波数范围为从5260到5330; 图4是重叠在水光谱上的甲烷光谱,波数范围为从5322到5336; 图5是一个例子的横截面图,其有助于理解目前的本发明; 图6是重叠在水光谱上的甲烷光谱,波长范围为从2700到2800nm; 图7是重叠在水光谱上的甲烷光谱,波长范围为从930到980nm。
具体实施例方式目前的系统和方法涉及根据在特定波长的光吸收来测量天然气中的水分含量,在所述波长处水分子强吸收光。一般这种技术被称为吸收光谱学,且其适用于各种各样的气体、液体和固体测量。
如图1所示,天然气管道3被连接到天然气管线7,管线7包括调节器11以降低该天然气管线内的气体压力。从所述调节器,天然气管线进入采样遮蔽装置15,该装置容纳了多个传感器19(其中至少一个是光学气体传感器,因为可并行地利用本发明以及上述的化学传感器)。如果利用多个传感器,那么它们被并联连接到天然气管线,所以气流可被同时导向所有的传感器。这种传输是通过在接合点23,天然气管线将气体转入多个输送管线31内,从而进入采样遮蔽装置之后完成的。每条输送管线依次耦合到一传感器,且被阀门27控制,以进一步限制天然气流。天然气管线和输送管线优选是由不锈钢制成的,并具有0.25英寸的外径。
如图5所示,气体传感器500被并入采样遮蔽装置15中,包括入口503、出口507和光室511,所有这些通过一连串的支承凸缘517被附加在光学气体传感器外壳515(没有示出)中。所述外壳被构造用于容纳光源519;检测器523,如InGaAs检测器,其与光源相邻;一窗口,其将激光光源和检测器耦合到光室;反射镜527,其与激光光源相对;以及处理电子装置531。反射镜的定位方式最好使得其能够反射从所述光源发射的、通过所述光室和窗口到所述传感器上的光。在一个实施例中,所述光源被定位成离水平面5度,且反射镜离光源40厘米。优选地,所述光源是可调谐二极管激光器(如DFB激光器),或VCSEL激光器,该VCSEL激光器被配置成发射在1.877-1.901μm波长范围的光,或者920nm-960nm或2.711-2.786μm范围内的光。可选择地,所述光源可以是色心激光器、量子级联激光器,或者以适当束宽工作于所需波长范围内的任何其他光源。在一实施例中,所述处理电子装置包括16位Motorola微控制器,用以将检测器所接收的信号转换成磅/每实测百万立方英尺的甲烷(1磅水/mmscf=21ppm)。
在工作时,天然气被馈送到传感器500的入口503以继续通过光室,直到它在出口507离开气体传感器。之后,所述处理电子装置531的配置可使用公知技术,如在Dr.Randy D.May等人论文“Processing and Calibration Unit for Tunable Diode Laser HarmonicSpectrometers”,J.Quant.Spectrosc.Radiat.Transfer 49,335-437,1993(该文章在此通过引用并入)中所描述的那些技术,将天然气样本所吸收的光量转换成水含量。在将所述气体传感器耦合到所述主天然气管线7之前,最好使具有已知水含量的天然气控制样本流过该气体传感器,用于校准目的。
本领域的普通技术人员可理解的是,可利用标准技术比如并入赫里奥特腔以取代上述单发射镜配置,从而增加有效光学路径(这可导致增加灵敏度)。例如,赫里奥特腔可包括两个相对的派热克斯玻璃(Pyrex)镀金反射镜,最好每个反射镜的曲率半径是150mm而直径是25.4mm。在此实施例中,光源被置于赫里奥特腔内,从而使所发射的光在每个反射镜反射至少15次。这种结构导致有效传播路径为两个反射镜之间长度的30倍,有效距离是4米。然后光被检测器检测,检测器被耦合到电子装置以将所接收的信号转换成水含量测量值。应认识到,可根据用途调整赫里奥特腔中的反射次数。例如,如果水蒸汽浓度在5-100磅/mmscf的范围内,可利用上述单反射系统。如果含量水平在0-5磅/mmscf的范围内,则应利用赫里奥特腔。
当然,可以理解的是,对优选实施例的修改对于本领域技术人员是明显的。例如不同的技术可用于提供光源和检测器之间的气体样本,并将检测器所接收的信号转换成含量测量值。因此,本发明的范围不是由前面讨论的特定实施例限制的,而是由所附权利要求及其等效方案限定的。
权利要求
1.一种用于检测天然气中水蒸汽的系统,其包括一光源,其以一个波长发射光,在该波长处水分子以比天然气分子实质高的水平吸收光;一检测器,其被配置用于检测从所述光源发射的光的强度;和电子装置,其耦合到所述检测器,用于确定所述天然气中水蒸汽浓度和所述天然气中水蒸汽浓度。
2.一种用于检测管道内天然气中水蒸汽的系统,其包括一采样遮蔽装置;至少一光学气体传感器,其位于该采样遮蔽装置中;一供应线,其耦合到所述管道和所述光学气体传感器,用于给所述光学气体传感器提供天然气;且其中所述光学气体传感器包括一赫里奥特腔,其具有两个相对的反射镜;一光源,其以一个波长发射光,在这个波长处水分子以比通过所述赫里奥特腔的天然气分子实质高的水平吸收光,且光被配置成反射离开所述反射镜,至少两次通过所述天然气;一检测器,其被配置成在光反射离开所述反射镜至少两次之后,检测从所述光源发射的光的强度;和电子装置,其耦合到所述检测器,用于确定所述天然气中水蒸汽浓度。
3.根据前面任一权利要求所述的系统,其中所述光源选自以下一组器件可调谐二极管激光器、VCSEL、色心激光器和量子级联激光器。
4.根据前面任一权利要求所述的系统,其中所述检测器是InGaAs检测器。
5.根据前面任一权利要求所述的系统,进一步包括校准装置,用于相对于已知的所述天然气中水蒸汽的含量,来校准所述传感器。
6.根据前面任一权利要求所述的系统,其中所述激光器以一个波长工作,该波长大约处于选自以下一组的波长范围内920-960nm、1.8-1.9μm、1.877-1.901μm、2.7-2.8μm以及2.711-2.786μm。
7.一种用于确定天然气中水的浓度的系统,其包括以下步骤以一个波长产生光,在该波长处水分子以比天然气分子实质高的水平吸收光;使所产生的光通过天然气样本;检测通过所述天然气的光;以及根据被检测光的强度,确定所述天然气中水的浓度。
8.根据权利要求7所述的方法,其中所述光是由一光源产生的,该光源选自以下一组可调谐二极管激光器、VCSEL、色心激光器和量子级联激光器。
9.根据权利要求7或8所述的方法,其中所产生的光的波长范围处于以下一组范围其中之一920-960nm、1.8-1.9μm、1.877-1.901μm、2.7-2.8μm和2.711-2.786μm。
10.一种用于检测天然气中水蒸汽的系统,其包括光学装置,其以一个波长发射光,在该波长处水分子以比天然气分子实质高的水平吸收光;检测装置,用于检测从所述光源发射的光的强度;和确定单元,其耦合到所述检测器,用于确定所述天然气中水蒸汽浓度和所述天然气中水蒸汽浓度。
全文摘要
公开了一种用于检测天然气中水蒸汽的技术。所述系统包括光源(519),其发射的光的波长范围大约在诸如920-960nm、1.877-1.901μm或者2.711-2.786μm。光源所发射的光穿过天然气的样本,由检测器(523)检测。在一个实施例中,所述光源是可调谐二极管激光器,而且湿度水平是由谐波光谱确定的。在其他实施例中,利用VCSEL(垂直腔表面发射激光器)、色心激光器或量子级联激光器。
文档编号G01N21/39GK1867820SQ200480030414
公开日2006年11月22日 申请日期2004年2月11日 优先权日2003年10月16日
发明者R·梅 申请人:光学传感公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1