半导体材料测量装置及原位测量界面缺陷分布的方法

文档序号:6025506阅读:228来源:国知局
专利名称:半导体材料测量装置及原位测量界面缺陷分布的方法
技术领域
本发明涉及半导体测量领域,尤其涉及一种逐层解剖样品并原位测量界面缺陷分布的方法。
背景技术
电子束诱导感生电流(Electron Beam Induced Current, EBIC)装置作为电子显微镜的附件,在测量界面如PN结等的结区位置、宽度以及界面缺陷方面得到了一定的应用。其测量的原理是高能电子束在注入PN结界面时,由于电子束的离化激发会在界面处产生大量的电子空穴对,在内建电场的作用下,这些电子、空穴会分别流向N区和P区,在结区位置产生较强的电流信号,从而可以测得PN结的位置和宽度,如果在结区存在缺陷,那么在缺陷位置处的电流信号就会减弱,从而可以测知缺陷的存在,为工艺的优化提供依据。如 C. L. Progl等人利用EBIC测量技术发现在LED中量子阱的V型缺陷区域存在明显的电流信号下降(C. L. Progl etc, "Analysis of V defects in GaN-based light emitting diodes by scanning transmission electron microscopy and electron beam induced current", App 1. Phys. Lett. , 92,242103^008))。聚焦离子束(Focus Ion Beam,FIB)在集成电路(IC)和IXD的横截面加工和分析;TEM样品的制备;功能性纳米结构、三维纳米图形等的加工制作上均有着重要的应用, 特别是目前的FIB显微镜系统,已有双束(Dual Beam)(离子束和电子束),在以离子束切割时,用电子束观察影像,除了可避免离子束继续破坏现场外,又可有效的提高影像分辨率。FIB系统结合了离子束加工和电子束高精度观察的双重优势,因而在电子束观察的指引下,具有在某一特定区域进行微细加工的能力,目前FIB的加工精度可达10 nm。目前太阳能电池、LED等半导体器件均具有异质结多层结构,对于这些器件异质界面的微观结构和缺陷等的分析是提高器件性能的重要方法。目前有用FIB显微镜系统切割加工样品露出异质界面,然后将样品取出,用EBIC等测量手段进行探测其微观结构的方法。但还没有见到用FIB显微镜系统加工样品后,用EBIC等测量手段原位测量异质结构界面微结构和缺陷的方法。而这无疑是一种很有效的方法,特别是当样品具有多层异质结构的时候,可以利用FIB显微镜系统进行逐层剥离,等一个界面露出时,再原位沉积电极,然后用EBIC进行测量,测量完毕后再加工露出下一个界面,然后再原位沉积电极、再用EBIC 进行测量,如此循环往复,直到最后一个界面测完为止。

发明内容
本发明所要解决的技术问题是,提供半导体测量装置及原位测量界面缺陷分布的方法。为了解决上述问题,本发明提供一种半导体材料的测量装置,用于测量界面缺陷分布,该半导体材料测量装置包括一反应腔室、一聚焦离子束显微镜系统与一电子束诱导感生电流测量装置,聚焦离子束显微镜系统和电子束诱导感生电流测量装置位于反应腔室内;其中,聚焦离子束显微镜系统包括气体注入系统,用于沉积电极,聚焦离子显微镜系统还包括离子束产生装置;离子束产生装置产生的离子束用于剥离半导体材料。该半导体材料的测量装置中离子束是镓离子束或氦离子束。该半导体材料的测量装置中聚焦离子束显微镜系统还包括电子束产生装置,用于产生电子束。为了解决上述问题,本发明又提供一种利用上述半导体材料的测量装置进行原位测量界面缺陷分布的方法,包括步骤
a)将一具有多层结构的半导体样品置于样品台上;
b)采用聚焦离子束显微镜系统剥离掉多层结构的半导体样品的第一层的一区域,至显露出第二层的表面;
c)利用气体注入系统,分别在第一层的裸露表面和第二层的裸露表面沉积各自形成一电极;
d)利用电子束诱导感生电流测量装置测量所述第一层与第二层的交界面的缺陷。上述原位测量界面缺陷分布的方法中,电极为金属或碳材料电极,且金属电极的材料是金、银、钼、铝、铜、镍、钨中的一种或任意几种的组合。所述步骤a与步骤b之间进一步包括步骤采用电子束产生装置产生的电子束对半导体样品第一层的裸露表面进行扫描成像,选择需要进行刻蚀的区域。本发明的优点在于,一、结合了聚焦离子束显微镜系统高精度加工样品和沉积电极的优势,同时在电子束精确定位的引导下,可以将EBIC探针精确的和电极进行连接,避免了在通常测量过程中暴露大气所带来的污染和氧化的问题,从而可测得器件的原有特性;二、由于加工和测量均在原位进行,因此可以做到逐层解剖,逐层测量,极大的提高了工作效率。


图1是本发明提供的半导体材料测量装置的第一实施例;
图2是本发明提供的原位测量界面缺陷分布的方法的第二实施例流程图; 图3 6是本发明提供的原位测量界面缺陷分布的方法第二实施例步骤图; 图7是本发明提供的原位测量界面缺陷分布的方法第三实施例太阳能电池片的结构示意图。
具体实施例方式下面结合附图对本发明提供的逐层解剖样品并原位测量界面缺陷分布方法的具体实施方式
做详细说明。图1所示为本发明提供的半导体材料测量装置的第一实施例。本实施例提供一个半导体材料的测试装置,包括一个反应腔室500 ;—个样品台503,用于放置半导体样品; 一个聚焦离子束显微镜系统;一个电子束诱导感生电流测量装置504,用于检测半导体样品的界面缺陷。样品台503、聚焦离子束显微镜系统和电子束诱导感生电流测量装置504置于反应腔室500内。一个聚焦离子束显微镜系统,包括离子束产生装置50fe、电子束产生装置505b和气体注入系统(Gas Injection System, GIS) 505c ;离子束产生装置50 产生离子束,该离子束用于剥离半导体材料;电子束产生装置50 产生电子束,该电子束用于定位半导体材料的表面位置;气体注入系统505c用于在半导体样品的表面沉积电极。电子束诱导感生电流测量装置504,包括两个探针50 和502b。探针50 和502b用于接触半导体样品。本实施例中所述离子束为镓离子束或氦离子束。图2所示为本发明提供的原位测量界面缺陷分布的方法的第二实施例流程图,包括
步骤301,将一具有多层结构的半导体样品置于样品台上;
步骤302,采用聚焦离子束显微镜系统剥离掉多层结构的半导体样品的第一层的一区域,至显露出第二层的表面;
步骤303,利用气体注入系统分别在第一层的裸露表面和第二层的裸露表面沉积各自形成一电极;
步骤304,利用电子束诱导感生电流测量装置测量第一层与第二层的交界面的缺陷。图3所示为本发明提供的第二实施例步骤301的示意图。将一具有多层结构的半导体样品120置于样品台上。本实施例中半导体样品120具有异质三层结构,包括第一层 101,第二层102和第三层103。步骤301与步骤302之间进一步包括步骤采用FIB显微镜系统100的电子束产生装置产生的电子束对该半导体样品120的第一层101的裸露表面进行扫描成像,选择需要进行刻蚀的区域。图4所示为本发明提供的第二实施例步骤302的示意图。采用FIB显微镜系统 100的离子束产生装置产生的离子束对步骤301所选区域进行刻蚀,将所选区域内第一层 101的一区域剥离掉,直至露出第二层102。图5所示为本发明提供的第二实施例步骤303的示意图。采用FIB显微镜系统 100的气体注入系统,在第一层101裸露的表面和第二层102裸露的表面分别沉积形成第一电极106、第二电极107。本实施例中第一电极106、第二电极107采用金属电极。而金属电极的材料可选择金、银、钼、铝、铜、镍金属中的一种或任意几种的组合。本发明中的电极并不局限于金属电极,还可采用碳材料电极,如石墨电极等。图6所示为本发明提供的第二实施例步骤304的示意图。在FIB显微镜系统100 的电子束产生装置产生的电子束的引导下,将EBIC测量装置的探针108a和108b准确定位于两个电极106和107上,形成良好接触。然后进行测量,从而得到第一层101与第二层102 的交界面缺陷测量结果,第一层101与第二层102的交界面层指第二层102的裸露表面,以及第二层102层与第一层101的交界面中未裸露部分的界面。如需获得更多的界面信息,可以重复上述步骤302 304,即可测得第二层102与第三层103的交界面缺陷。图7所示为本发明提供的第三实施例太阳能电池片的结构示意图。该太阳能电池片具有异质多层结构,包括Ti/Au层201,P型AUnP窗口(window)层202,P型feJnP发射区(emitter)层 203,N型GahP 基区(base)层 204,N型AUnP背面电场(BSF,Back Surface Field)层 205,P 型 GaAs/P 型 GaAs 隧穿结(Tunneling Junction) 206,P 型 AlGaAs 窗口 (window)层 207,P 型 GaAs 发射区(emitter)层 208,N 型 GaAs 基区(base)层 209,N 型GaAs 背面电场层 210,N 型 GaAs 缓冲层(buffer) 211,N 型 Ge 基区(base)层 212,AuGeNi/ Au 背接触(Back Contact)层 213,MF2/ZnS 抗反射涂(ARC,Anti Reflective Coating)层 214,P型GaAs盖帽(cap)层215。为测量该太阳能电池片的各异质界面的缺陷,本实施例采用如下步骤
1)用FIB显微镜系统对该异质多层结构进行加工,其中,FIB显微镜系统的工作电压为 30 KVdfPSGaAs盖帽层215,P型AUnP窗口层202完全剥离掉,显露出P型feJnP发射区层203的表面;
2)继续用FIB显微镜系统进行加工,将P型GaInP发射区层203剥离一区域,显露出N 型GaInP基区层204 ;
3)用FIB显微镜系统的气体注入系统分别在P型GaInP发射区层203的裸露表面和N 型fe^nP基区层204的裸露表面分别沉积一电极;
4)然后将EBIC的探针定位在上述两个电极处,进行测量,可以测得P型fe^nP发射区层203与N型feilnP基区层204的交界面的缺陷;
5)重复步骤2) 4),直至测得N型GaAs缓冲层211与N型Ge基区层212的交界面的缺陷。 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
权利要求
1.一种半导体材料的测量装置,用于测量界面缺陷分布,其特征在于,所述半导体材料测量装置包括一反应腔室、一样品台、一聚焦离子束显微镜系统与一电子束诱导感生电流测量装置,所述聚焦离子束显微镜系统和电子束诱导感生电流测量装置位于所述反应腔室内;所述聚焦离子束显微镜系统包括气体注入系统,用于沉积电极,所述聚焦离子显微镜系统还包括离子束产生装置;所述离子束产生装置产生的离子束用于剥离半导体材料。
2.根据权利要求1所述的半导体材料的测量装置,其特征在于,所述离子束是镓离子束或氦离子束。
3.根据权利要求1所述的半导体材料的测量装置,其特征在于,所述聚焦离子束显微镜系统还包括电子束产生装置,用于产生电子束。
4.一种利用如权利要求1所述半导体材料的测量装置原位测量界面缺陷分布的方法, 其特征在于,包括步骤a)将一具有多层结构的半导体样品置于样品台上;b)采用聚焦离子束显微镜系统剥离掉所述多层结构的半导体样品的第一层的一区域, 至显露出第二层的表面;c)利用气体注入系统,分别在所述第一层的裸露表面和第二层的裸露表面沉积各自形成一电极;d)利用电子束诱导感生电流测量装置测量所述第一层与第二层的交界面的缺陷。
5.根据权利要求4所述的原位测量界面缺陷分布的方法,其特征在于,所述电极为金属电极或碳材料电极,且所述金属电极的材料是金、银、钼、铝、铜、镍、钨中的一种或任意几种的组合。
6.根据权利要求4所述的原位测量界面缺陷分布的方法,其特征在于,所述步骤a与步骤b之间进一步包括步骤采用电子束产生装置产生的电子束对半导体样品第一层的裸露表面进行扫描成像,选择需要进行刻蚀的区域。
全文摘要
本发明提供半导体材料测量装置及原位测量界面缺陷分布的方法,属于半导体测试领域,该半导体材料测量装置包括一反应腔室、一样品平台、一聚焦离子束显微镜系统与一电子束诱导感生电流测量装置;并且在该方法中,对多层异质结构的半导体样品,可以利用该半导体材料测量装置的聚焦离子显微镜系统剥离部分表面,接着在原位沉积电极,然后用电子束诱导感生电流测量装置进行测量;本发明解决了现有技术中测量多层异质界面缺陷时采用单层测量的问题,本发明做到逐层解剖,逐层测量,极大的提高了工作效率。
文档编号G01N23/225GK102495089SQ20111041622
公开日2012年6月13日 申请日期2011年12月14日 优先权日2011年12月14日
发明者刘争晖, 周桃飞, 徐科, 徐耿钊, 曾雄辉, 樊英民, 王建峰, 邱永鑫, 钟海舰, 黄凯 申请人:中国科学院苏州纳米技术与纳米仿生研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1