用于改进的毛细管电泳-电喷雾电离-质谱系统中的错误检测的泄漏电流感测电路的制作方法

文档序号:6214501阅读:303来源:国知局
用于改进的毛细管电泳-电喷雾电离-质谱系统中的错误检测的泄漏电流感测电路的制作方法
【专利摘要】本发明的方面涉及改进的系统,所述改进的系统可执行毛细管电泳(CE),并且CE结合电喷雾电离(ESI)作为质谱系统(MS)的输入。实施例可使用在来自MS-ESI电源的高压输出处的电流感测电路结合一些附加元件来识别与泄漏电流有关的故障情况、识别CE连接的连续性并且提供改善的系统保护。
【专利说明】用于改进的毛细管电泳-电喷雾电离-质谱系统中的错误 检测的泄漏电流感测电路
[0001] 相关专利申请的交叉引用
[0002] 本专利申请要求于2012年6月4日提交的名称为"LEAKAGE CURRENT SENSE CIRCUIT FOR ERROR DETECTION IN AN IMPROVED CAPILLARY ELECTROPHORESIS-ELECTROSPRAY IONIZATION-MASS SPECTROMETRY SYSTEM(用于改进的毛 细管电泳-电喷雾电离-质谱系统中的错误检测的泄漏电流感测电路)"的美国临时专利 申请No. 61/655, 433的优先权,该文献全文以引用方式并入本文以用于所有目的。

【背景技术】
[0003] 本发明涉及电泳,而且涉及与电喷雾电离质谱结合使用的毛细管电泳。
[0004] 电泳本质上是带电粒子在所施加电场内的运动。毛细管电泳(CE)是已知的过程。 在毛细管电泳中,在毛细管的一端注入样品。检测器在与样品隔开距离的毛细管的另一端 附接于毛细管。沿着毛细管的长度施加电压。
[0005] 随着电势的施加,出现两个独立的流动效应。这些流动效应的第一者是总样品流 动效应。样品作为质量进入毛细管。这些流动效应的第二者是电泳流动。这使得具有不同 电荷的样品成分相对于毛细管内流体的主流移动。从而具有不同电荷的样品部分在毛细管 中分离。
[0006] 不同的检测器可用于在分离发生后对样品进行分析。在将毛细管电泳与电喷雾电 离(ESI)和质谱(MS)结合的系统中,毛细管的输出是电喷雾组件的输入。电喷雾电离通过 相对于质谱仪的毛细管入口在分离毛细管的出口处设置高电压电势来实现。分离毛细管也 需要在其入口和出口之间设置高电压电势。当样品的分离部分退出毛细管时,它们通过电 喷雾分散成细小的气溶胶。然后通过质谱观察气溶胶的液滴。
[0007] 将毛细管电泳与电喷雾电离和质谱结合的程序相对比较困难。毛细管必须机械地 连接于系统的其余部分并且相对于检测器设于适当位置。毛细管小且易碎,并且电喷雾电 离组件进入质谱仪的对准过程会有难度、耗时并且可能损坏毛细管。
[0008] 该系统由于多种因素(如需要冷却毛细管)而更加复杂化。冷却是必须的,因为 小的毛细管在施加电泳电势电压期间受到电阻加热。在高电压下流入毛细管的小电流产生 热量。冷却是必须的以防止损坏毛细管以及防止在分析样品期间温度的变化影响分析的结 果。多余的热量可引起样品的分离部分的扩散,所述的样品分离部分以不同的速度迁移通 过毛细管。该热量及其所致的扩散使分离程度降低,并使作为电泳用途的后续分类效果降 低。
[0009] 另外的复杂之处就是毛细管电泳系统以及ESI-MS系统被构造为必须配置在一起 以执行CE ESI-MS测量的两个独立系统。在不同类型和品牌的仪器之间的不同接口和不同 标准的连接导致一些互连问题,如果没有正确设置连接,尤其是考虑到涉及两个系统的高 电压,则所述的互连问题也会给使用者造成安全危害。
[0010] 因此,需要一些改进的CE ESI-MS系统,这些系统可改善CE和ESI-MS系统之间的 功能性和互连系统。需要包括错误检测电路的CE系统,所述CE系统适用于单独地与两种 或更多种类型的电喷雾电离-质谱仪接口。


【发明内容】

[0011] 本发明涉及改进的系统,其中毛细管电泳与电喷雾电离质谱结合使用。具体地,各 种实施例包括使CE ESI-MS系统的错误检测成为可能的电流感测电路。
[0012] 在一个可能的实施例中,与电喷雾电离质谱(ESI-MS)系统结合使用的毛细管电 泳(CE)系统包括具有输出和返回的毛细管电泳高压电源(CE高压电源);具有输出和返回 的质谱仪电喷雾电离高压电源(MS高压电源);以及具有输入和输出的电流感测电路,其中 电流感测电路的输入被耦接于MS高压电源的输出,使得MS高压电源经由电流感测电路耦 接于分离毛细管的喷雾端。在一些实施例中,此类系统包括电流感测电路,所述电流感测电 路包括耦接于绝对值放大器的感测电阻器和耦接于绝对值放大器的直流/直流(DC/DC)转 换器;该DC/DC转换器对电流感测电路供电并隔离电流感测电路,使得电流测量电路和绝 对值电路浮置在MS高压电源上。在一些实施例中,DC/DC转换器包括用于将电流感测信号 从电路的浮置侧传输到接地侧的内置电路,然而在其他一些实施例中,采用独立电路来传 输信号。
[0013] 一些此类的浮置实施例包括电压保护装置(例如至少一个气体放电管或其他类 似的装置),其在不影响电路功能的情况下将浮置在ESI高压电源(MS高压电源)之上的电 流感测电路接地连接于系统接地(例如系统底板接地)。
[0014] 另一些可选实施例包括测量在CE高压电源处的传送电流和返回电流的系统并且 包括与测量误差和偏移有关的信息。在一些实施例中,此类信息与感测电路信息一起使用, 从而通过从CE高压电源传送电流中减去返回电流、感测电流和偏移电流来确定泄漏电流。 在一些实施例中,如果泄漏电流超出预定阈值,系统发出表示出错的信号。除此之外或作为 另外一种选择,在一些实施例中,当有许多泄漏电流读数达到或超出预定阈值时,系统会启 动自动停机。
[0015] 另一些可选实施例包括毛细管电泳电喷雾电离质谱(CE-ESI-MS)系统,其包括: 具有第一输出、第一返回和第一接地的质谱(MS)高压电源;具有第二输出、第二返回和第 二接地的毛细管电泳(CE)高压电源,所述第二接地包括与MS高压电源的第一接地的连接; 连接于接地的MS电通路,所述MS电通路提供从第一输出经由质谱负载到第一接地的质谱 HV电源第一返回;CE电通路,所述CE电通路提供从第二输出经由分离毛细管到第二接地的 CE高压电源第二返回,其中分离毛细管的电阻性电通路连接于MS高压电源的第一输出,并 且其中第一输出经由分离毛细管电连接于第二返回;以及经由毛细管连接部耦接于质谱电 源输出和分离毛细管的电流感测电路。
[0016] 另一些可选实施例包括毛细管电泳系统,所述毛细管电泳系统采用单独地将CE 高压电源耦接于兼具热针型和接地针型的多个不同质谱仪的手段以及在将质谱仪高压电 源连接于CE系统的输出处感测电流的手段。热针型质谱仪的非限制性例子包括Thermo质 谱仪、AB-Sciex质谱仪和Waters质谱仪。接地针型质谱仪的非限制性例子是Bruker质谱 仪。
[0017] 一些实施例另外包括以下方法:如在质谱(MS)DC电源的输出处测量从电喷雾端 到质谱MS DC高压(HV)电源的电流以及当计算的泄漏电流超出阈值时产生故障错误。一 些实施例还包括以下方法:如在毛细管电泳(CE)电源的输出处测量传送电流、在CE电源的 返回处测量返回电流、确定与系统误差相关的偏移电流以及在MS高压电源的输出处测量 电流感测电路处的感测电流和通过从传送电流中减去返回电流、感测电流和偏移电流来确 定泄漏电流。
[0018] 另一些可选实施例包括系统、非瞬时性计算机可读存储介质、计算机存储器或它 们的组合,以上这些与使用计算机可读指令运行的处理器结合,当计算机可读指令被执行 时,所述处理器实施在质谱(MS)HV电源的输出处测量CE泄漏电流的方法并且在泄漏电流 超出阈值时产生故障错误。

【专利附图】

【附图说明】
[0019] 图IA示出了根据本文提出的发明的一个可能实施例的CE-ESI质谱系统的一个可 能具体实施的电接线图。
[0020] 图IB示出了根据本文提出的发明的一个可能实施例的CE-ESI质谱系统的一个可 能具体实施的示意图。
[0021] 图IC示出了与CE-ESI质谱系统的一个可能具体实施结合使用的泄漏检出感测电 路的一个可能具体实施。
[0022] 图2示出了根据本文提出的发明的一个可能实施例的CE-ESI质谱系统的一个可 能具体实施的电接线图。
[0023] 图3示出了使用CE分析系统的方法,所述CE分析系统包括根据CE-ESI质谱系统 的一个可能具体实施的改进的错误检测,所述CE-ESI质谱系统符合本文提出的发明。
[0024] 图4示出了计算机系统或控制器的一个可能实施例,所述计算机系统或控制器与 根据本文提出的发明的各种实施例的CE-ESI质谱系统结合使用。

【具体实施方式】
[0025] 本发明涉及将毛细管电泳(CE)和质谱(MS)整合的改进的系统和方法。在一些实 施例中,这种系统提供总体上用来通过CE分离样品并用MS表征/鉴定所分离分子的整合 结构,所述样品包含例如蛋白络合物、蛋白质、肽、多糖或药物/代谢物。本文的发明在某些 实施例中适用于任何经由电喷雾电离(ESI)耦接于质谱仪(MS)系统的毛细管电泳(CE)系 统,并且在其他实施例中被构造为具有与多个MS系统一起使用的接口的改进的CE系统。
[0026] 具体地,某些实施例示出改进的系统,所述系统包括与MS ESI电源的高压输出接 口从而用一种以前不知道的方式提供故障检测的电流感测电路。
[0027] CE ESI-MS配置电路由两个主要部分组成:CE部分和MS部分。当电路的每个部 分执行不同功能(即CE部分进行分离而ESI-MS进一步执行电喷雾功能)时,这两个部分 不仅只涉及到电气。CE电源提供分离毛细管两端的电压并且MS电源提供返回通路。由于 在电极周围结盐(作为非限制性例子),任何泄漏电流无法通过CE电源内的标准电流检测 系统来进行检测。这是因为在耦接的电气结构中,离开CE电源的电流旁路高压返回输入 (124, 224)并经由MS ESI电源通过系统接地(170, 270)返回至CE电源。传送电流和返回 电流是一样的,因为返回CE电源的电流包括通过电极的电流和来自结盐的泄漏电流,所述 泄漏电流是通过CE高压电源输送的所有电流的总和。这在下文给出更详细解释。
[0028] 因此,在某些实施例中,耦接于质谱仪电源的高压输出的电流感测电路便于将传 送电流与流过(作为MS ESI高压电源)适当返回通路的电流进行比较,然而要排除任何由 结盐和电弧(作为非限制性例子)所导致的泄漏电流。如果在传送电流和在MS ESI电源 的高侧处感测到的电流之间存在差值,那么在一些实施例中这通过控制器或计算装置被解 读为更多的电流在被递送至某个漏电通路,并且该系统可被标上错误。
[0029] 图IAUB和IC示出了根据本发明的系统的一个可能具体实施的各个方面。图IA 示出了 CE ESI-MS系统100的电接线图,其包括毛细管电泳高压电源(CE高压电源)102和 质谱仪ESI高压电源(MS高压电源)104、入口电极141、入口瓶132、分离(或样品)毛细管 142、毛细管连接部151、导电流体毛细管144、导电流体瓶134、返回电极123、质谱仪检测板 152和电流感测电路143。CE高压电源102和MS高压电源104被电连接,使得MS高压输出 126经由电流感测电路143耦接于毛细管连接部151。来自CE高压电源102的第一电压因 此被设置在从CE高压输出122到毛细管连接部151的分离毛细管142的两端,并且来自MS 高压电源(104)的第二电压被设置在从毛细管连接部151到MS检测板152的间隙的两端。
[0030] 图IB示出了 CE ESI-MS系统100的系统级框图。该系统示出了入口瓶132、导电 流体瓶134、分离毛细管142(其也被称为样品毛细管)以及导电流体毛细管144,正如图IA 中所示。图IB还示出了 CE分析系统130、质谱仪150、CE控制器110和MS控制器160。在 一些实施例中,CE分析系统130包括即连接于CE高压电源102 ;相似地,在一些实施例中, 质谱仪150包括即连接于MS高压电源104。在各种可选实施例中,电流感测电路143包括 在CE分析系统130、质谱仪150、MS入口 153中或作为耦接于图IA或IB的任何元件的独 立的盒或组件。
[0031] 所述系统的基本功能是选择样品并将其放置在入口瓶132中。CE高压电源102提 供跨越分离毛细管142的高电压,在一些实施例中,所述高电压作为非限制性例子为大约 30kV。导电流体毛细管144在位于喷雾器壳体内的毛细管连接部151处引入导电流体,所述 喷雾器壳体附接于质谱仪入口 153从而使在分离毛细管中分离的材料能够被电喷雾电离。 在一些实施例中,质谱仪150然后使用来自MS ESI高压电源104的电压来分析被分离的样 品。
[0032] 对于以独立模式操作的CE分析系统130来说,CE高压电源102可通过比较在入 口电极141处传送给分离毛细管142的电流与通过返回电极123返回的电流来检测电流泄 漏。如果有泄漏,泄漏电流将会通过底板或系统接地170, 270自行回到电源。这种"其他通 路"表现为对于高压电源的附加负载;因此,传送电流增加。因为由系统中的故障引起的新 负载平行于返回电路,所以通过返回电极的返回电流保持相同。因此,如果传送电流和返回 电流之间的差值大于在CE分析系统130的系统控制中的设定参数,则在一些实施例中有错 误被标记。
[0033] 然而,在CE ESI-MS配置中(如图IA所示的配置),质谱仪为CE电流提供流过MS 高压电源104的另一通路。虽然导电流体毛细管144为分离电流提供接地通路,但是在一 些实施例中,MS高压电源104的电阻低得多,所以大多数返回分离电流流过MS ESI高压电 源104并且通过CE分析系统130的底板接地返回。CE电流因此旁路在CE电源内部的任何 可能的返回电流检测电路。如果在MS ESI电源的高侧上测量返回CE电流,则因此要在通 过底板接地的任何返回之前测量该电流。
[0034] 在许多实施例中,使用CE、ESI-MS或两者的固定系统,使得不能更改内部结构以 将此类电流感测电路包括在正确位置中。在此类可选实施例中,电流感测电路为独立装置, 或被整合到CE或ESI-MS系统中。在一个可能的实施例中,为了避免改变质谱仪,电流感测 电路位于MS高压电源的高侧(输出),经由MS高压电源端子连接,如图IA所示。
[0035] 图IC示出了根据本文提出的发明的一个可能的具体实施的电流感测电路的一个 可能实施例。图IC包括限制电阻器184、感测电阻器182、放大器192、DC/DC转换器190、 放大器194和电压保护装置186。
[0036] 当允许放大器192隔离和浮置在MS ESI高压电源104的高压输出上时,DC/DC转 换器190用于为放大器192提供电压输出。在某些实施例中,电压保护装置从DC/DC转换 器浮置接地端子172连接于系统接地270从而在某些情况下防止损坏。在一些可选实施 例中,DC/DC转换器190额定用于大电压,使得DC/DC转换器可承受从跨越DC/DC接地端子 197设置的MS高压电源104和CE高压电源102到DC/DC转换器浮置接地端子172的整个 电压负载。
[0037] 在具有浮置感测电路的实施例中,在MS高压电源104的高侧上的电流感测电阻器 182的位置需要从浮置节点到系统接地的某种形式的隔离或连接。在一些实施例中,DC/DC 转换器190在具有浮置节点的实施例中对电流感测电路供电并隔离电流感测电路。在MS 输入处用于电喷雾的喷雾器顶端不靠近它可喷到的表面并且从MS电源拔掉电力电缆的某 些故障或错误构型中,CE电源的满幅度可跨越DC/DC转换器190出现。由于这个原因,在 某些实施例中包括电压保护装置186。在一个可能的实施例中,电压保护装置186包括气体 放电管。在另一个实施例中,气体放电管被构造成可将跨越转换器的电压钳位在小于DC/DC 转换器额定值的值上,所述DC/DC转换器的额定值可为例如IOkV并有+/-20%的公差。在 一些可选实施例中,可使用具有其他额定值和公差的装置。
[0038] 在电喷雾连接部或返回电极处有泄漏的情况下,限制电阻器184保护感测电路不 受MS ESI高压电源的影响,因为对于感测电阻器182以及来自MS电源的电缆中的任何其 他电阻器而言限制电阻器184形成电阻分压器。作为非限制性例子,在一个可能的实施例 中,限制电阻器184为10兆欧姆的电阻器。在一些实施例中,具有MS电源电缆电阻的限制 电阻器184限制电流以防在MS高压电源104打开时用户从CE分析系统130中拔出连接插 头。在具有IOkV的最大MS HV电压设置的一个可能的实施例中,具有10兆欧姆电阻的限 制电阻器184将电流限制为1mA。这是在设计为内设于质谱仪中的任何电流限制以外附加 的。
[0039] 在一些实施例中,除了处理以上所述的故障或错误情况外,必须越过隔离级发送 电流感测信号,基本上生成从浮置感测电阻器到基于信号执行故障或错误的控制器的电流 感测信号通路。在其他一些实施例中,电流感测信号通路包括诸如放大器192、放大器194、 DC/DC转换器190之类的元件和任何其他此类元件。在某些实施例中,DC/DC转换器190包 括内置隔离模拟通道,所述隔离模拟通道将电流感测信号从浮置放大器192跨越隔离经由 DC/DC转换器190传输到系统接地侧上的放大器194。在一些实施例中,这种模拟通道包括 用于向电路的隔离侧和接地侧传输信号或从电路的隔离侧和接地侧传输信号的独立的"模 拟向上"和"模拟向下"通道。在一个可能的实施例中,此类向上和向下通道容纳0-10V的 信号,所述信号在从DC到4Hz的信号上有+/-2 %的增益误差和+/-0. 05 %的线性误差。在 其他一些实施例中,诸如无线通道或光纤通道之类的可选通路用于发送感测信号。
[0040] 电压限制电阻器184充当电流限制电阻器,在失效情况下保护电流感测电路 143 (其包括放大器192)和MS高压电源104这二者。可通过感测电阻器182和放大器192 检测的此类失效的一个非限制性例子是在毛细管电泳操作期间盐桥的形成。
[0041] 在一些实施例中,与电压限制电阻器184-起,感测电阻器182和放大器192是检 测泄漏电流的电流感测电路的一部分。然而在标准的CE ESI-MS系统中,基于视觉或数据 的样品分离失效或数据中的一些其他明显的系统失效可为系统失效的第一信号,如果检测 出失效状况,则电流感测电路的使用提供反馈以自动地关闭操作。如上所述的盐桥失效是 失效的非限制性例子,所述失效可使用电流感测电路的一些实施例进行检测。
[0042] 如果发生泄漏,电压限制电阻器184两端的电压(其具有高值)可防止对于放大 器192和连接于电流感测输入端子178的(非隔离、非浮置)质谱仪ESI高压电源104的 损坏,因为大部分电压会出现在该电压限制电阻器184的两端。高值电压限制电阻器184 的一个非限制性可能例子是具有200兆欧姆的值的电阻器。DC/DC转换器190在功能上并 行于电流感测电阻器182、电压限制电阻器184和(非隔离、非浮置)MS高压电源104。在 某些实施例中,为了避免对系统的损坏,DC/DC电源转换器190被设计成可承受CE分离毛 细管和电喷雾电压的总和。
[0043] 在某些实施例中,分离电流在CE-MS模式中为大约1 μ A。在此类实施例中,返回 电流信号可为0-10V其体现为0-30 μ A的电流。具有IOV的上限,33. 2千欧姆感测电阻器 182给出了 30. 1 μ A/V的分辨率。
[0044] 如上针对电源额定值所述,电压限制电阻器184和感测电阻器182的电阻器值不 限于那些示例性用途的特定值。例如,根据本发明的一些实施例所述的电流感测电阻器包 括启用电流感测功能并允许所述系统运行的任何值。在一个实施例中,电流感测电阻器包 括具有从7千欧姆到503千欧姆额定值的电阻器。
[0045] 在各种可选实施例中,电压限制电阻器184可被选择为具有在1-200兆欧姆范围 内的电阻。在各种可选实施例中,电阻可在1-100兆欧姆范围内、1-50兆欧姆范围内或1-20 兆欧姆范围内。此类限制电阻器可经选择以优化电压限制电阻器的用电量和灵敏度,并且 可经匹配以补偿在特定系统中其他所选择的值。
[0046] 在另外的各种可选实施例中,感测电阻器182可被选择为具有在1-300千欧姆范 围内的电阻。在各种可选实施例中,电阻可在优选的1-100千欧姆的范围内、更优选的1-50 千欧姆的范围内或还更优选的1-40千欧姆的范围内。可实施各种实施例以选择用于在电 流感测电路中感测的特定灵敏度,其中通过感测电阻器的选择来调节感测电路中的电流和 /或电压值。
[0047] 在各种可选实施例中,作为CE ESI-MS系统100的一部分的电缆电阻器可被选择 为具有在1-100兆欧姆范围内的电阻。在各种可选实施例中,电阻可在优选的1-50兆欧姆 的范围内或在更优选的1-20兆欧姆的范围内。
[0048] 在另外的各种可选实施例中,电压保护装置186可被选择为具有小于IOOpA的 泄漏电流额定值,其具有IO-HkV的高压保护额定值。在各种可选实施例中,额定值可在 10-12kV的优选范围内。
[0049] 在另外的各种可选实施例中,MS高压电源104可提供O-IOkV的电压。在另外的 各种可选实施例中,CE高压电源102可提供0-60kV的电压。在各种可选实施例中,额定值 可在0-40kV范围内、0-35kV范围内或0-30kV范围内。
[0050] 另外,在各种其他可选实施例中,可选择使系统根据本文提出的发明运行的任何 值,并且以上所述的各种实施例可被选择成可针对CE高压电源两端和MS高压电源两端的 特定电压值进行优化,所述优化使用对特定系统设定的优化电流感测电路,从而实现在故 障检测电路中灵敏度、可靠性和用电量之间的权衡。因此,第一个实施例可使用更大的功率 并作为与更高灵敏度的交换而具有更高的错误率,而其他的实施例可对具有如本文所述的 故障检测的系统的其他特性划分优先级。
[0051] 另外,一些可选实施例使用可选的电流感测电路形式。电流感测电路的另外的例 子包括霍尔效应传感器和罗戈夫斯基线圈传感器。
[0052] 在一些实施例中,其中CE电源是双极性的,使得CE电流可在两个方向中流过感测 电阻器182,放大器192为绝对值放大器以适应双极性运行。在一些可选实施例中,放大器 192包括组合的多个放大器或缓冲器,如作为非限制性例子,在缓冲放大器之后有绝对值放 大器。
[0053] 放大器194包括在本发明的一些但不是全部的实施例中。放大器194为缓冲放大 器以有助于将感测信号从感测电阻器182输出到控制系统。控制系统选自CE控制器110、 MS控制器160、控制功能部件(如嵌入式微控制器)或它们的组合。
[0054] 另一些可选实施例使用模数转换器、数模转换器或光纤或用于感测信号的其他信 号通路。在一个可能的可选实施例中,压频转换器和频压转换器用于将信号转换为数字流 和从数字流转换为信号,并且光纤用于将电流感测信号从系统的隔离侧传输到电流感测电 路的接地侧,然后输出到控制系统。
[0055] 在一些实施例中,CE控制器110、MS控制器160或两者都是独立的计算装置或任 何其他的合格装置,如图4进一步所述。在一些另外的实施例中,控制器运行以管理系统中 任何组件的运行、接收和分析来自系统任何部分的数据以及监测系统部件的出错。具体地, 在一些实施例中,一个或多个控制器被配置为接收来自电流感测输出(如用于识别系统中 故障的电流感测传感器输出198)的电流感测信号。另外,在各种实施例中,CE控制器110 和MS控制器160与它们相应的分析系统结合,使得CE控制器110与CE分析系统130结 合、MS控制器与质谱仪150结合或两者都结合。另外,在某些实施例中,上述组件的任一者 与任何其他组件结合。
[0056] 某些实施例包括补偿偏移和误差的附加元件。这些实施例中的一些通过在控制 器(如CE控制器110或MS控制器160)中的计算实现偏移,或者在硬件中或使用嵌入系统 实现偏移。作为非限制性例子,在一个可能的实施例中,在DC/DC转换器的模拟通道中的 10-16mV的偏移造成0. 3到0. 48 μ A的偏移。在一些实施例中,在控制器计算或其他读数和 错误报告调整中最小化或补偿此类误差。
[0057] 另外,在一些实施例中,在MS入口 153处将MS ESI HV电压电源104连接于毛细 管连接部引起电流流过导电流体毛细管。在一些另外的一些实施例中,返回电流信号有其 自身专用的到系统板的输入,所以通过导电流体毛细管的电流独立于系统的其他元件和电 流测量。自该导电流体电流的绝大部分由MS高压电源104感应产生以后,它还通过电流感 测电路143。在本发明的实施例中,因此在系统板中测量此电流并且从电流感测电路的电流 的值中减去此感应电流的值以提供正确的泄漏电流读数。在一些可选实施例中,通过将返 回电极从系统移除并且补偿替代的电气结构而消除此感应电流。
[0058] 此外,在一些实施例中,控制系统被实施为可自动地标记误差。例如,在一个实施 例中,CE控制器110耦接于电流感测传感器输出198以接收电流感测信号。噪声或其他各 种错误可引起电流感测传感器输出198的个别读数由于通过感测电阻器182的电流中的预 期峰值而有误差。在一个可能的实施例中,CE控制器110记录高于阈值的读数并且在没有 生成错误消息的情况下标记读数。在某些实施例中,每当读数高于阈值时,就会设定另外的 标记,而每当读数在可接受阈值之内时,标记就会被移到最小的零标记。在一些实施例中, 当系统达到一定量的标记而达到错误标记数时,就会生成错误消息或实施自动停机。因此, 此类系统避免了在维持系统保护时由通过感测电阻器182或系统中任何其他地方的噪声 引起的不必要的假错误或假停机。在一个可能的实施例中,将〇. 4微安的偏移整合进系统 以适应硬件错误。在另外的可能实施例中,传送电流减去返回电流、感测电流和偏移电流得 到3微安的阈值,其中高于该阈值的读数生成标记而低于该阈值的读数移除标记。
[0059] 另外,各种实施例使用浮置控制,所述浮置控制与底板接地隔开但是维持跨越电 隔离通信链路与CE分析系统的连接。在各种实施例中,通信链路包括无线通信链路。作为 另外一种选择,在一些实施例中,通信链路包括光通信链路,诸如经由光纤的链路。光纤通 信链路提供高电阻性的有益效果并因此能够在HV CE电源的隔离实施例浮置在大电压之上 时跨越隔离运行。在一些实施例中,具有足够的隔离额定值的光耦合装置直接用于传递数 字输入和数字输出。因为电源单元(如CE电源)很多情况下要求模拟输入控制,但是光耦 合对大多数此类的控制没有直接的功能,因此在本发明的一些实施例中,首先将模拟信号 转换为数字脉冲流,将其路由通过用于任何数字信号的相同光耦合装置,然后重建回模拟 信号。
[0060] 图2示出根据本发明的另一个可选实施例的CE ESI-MS系统的可选配置。图2示 出的系统中,将MS高压电源204的高压输出施加于MS检测板252。在此类接地CE ESI-MS 系统200中以及在没有电流检测电路的实施例中,泄漏电流可能很难检测或可能只在高误 差幅度时可检测到,因为泄漏电流连同通过旁路CE高压电源中的返回电流端子而输送到 CE分离毛细管的电流一起返回CE高压电源。输送到CE "分离毛细管"的电流将不会通过 其返回端子返回CE高压电源(示出为CE HV返回);相反其通过系统接地270返回。泄漏 电流将旁路掉其他电路系统、毛细管和电源等所有这些并通过接地的连接部返回CE高压 电源。为了感测流经分离毛细管242的电流,在毛细管连接部251和系统接地270之间插 入在一些实施例中具有大约500千欧姆的值的电流感测电阻器。分离毛细管242 (也称为 样品毛细管)在一些实施例中是对无鞘ESI有用的高灵敏度的多孔喷雾毛细管(HSPS毛细 管)。
[0061] 跨越电流感测电阻器的电压然后代表通过(非隔离、非浮置)MS高压电源204输 送的电喷雾电离电流和通过CE高压电源202输送的通过分离毛细管242的电流的总和。放 大器测量该电压,并且如果电源极性反转,绝对值放大器确保信号可读。
[0062] 与图1的浮置实施例相比,因为感测电阻器或任何其他电路接地,所以无需隔离 元件(如DC/DC转换器)在本发明的一些实施例中提供隔离。在某些实施例中,CE分析系 统和电流感测电路包括处理如上所述的隔离的元件,在更多的实施例中,这些元件在适用 于非隔离实施例(如图2所示的一个实施例)的配置中额外地运行。
[0063] 因此,在某些实施例中,CE分析系统130和电流感测电路143最初耦接于第一质 谱仪150,所述第一质谱仪150具有浮置在MS高压电源104上的电流感测电路143,如图 1A-1B所示。该系统然后可被重新配置成具有CE分析系统130和电流感测电路243,所述 电流感测电路243耦接于具有第二MS高压电源204的第二质谱仪,其中电流感测电路243 在非浮置配置中耦接于MS高压电源204。该系统从而可允许单个CE系统(如Beckman PA 800plus毛细管电泳系统)与不同类型的MS系统(如在非浮置电流感测配置中的Bruker 型质谱仪和在浮置电流感测配置中的非Bruker型质谱仪)整合。非Bruker型质谱仪的非 限制性例子包括 Thermo MS、AB-Sciex MS 或 Waters MS。
[0064] 在某些实施例中,来自CE高压电源102和MS高压电源104的高电压产生大量的 热量。在各种可选实施例中,为了散热,围绕分离毛细管142和导电流体毛细管144布置冷 却剂管。在某些此类实施例中,冷却剂管将冷却剂运送至具有螺纹通过冷却剂管的毛细管 的喷雾器壳体,使得冷却剂管和通过该管运送的冷却剂包围毛细管。
[0065] 图3示出使用改进的CE系统的一个可能的方法,所述改进的CE系统具有根据本 发明的错误检测。在S302中,测量在CE高压电源例如CE高压电源102处的输出。在S304 中,测量在CE高压返回输入124处的返回电流。在S306中,测量来自电流感测电路143的 感测电流。在一些实施例中,该测量来自于从感测电阻器182到放大器192到DC/DC转换 器190到放大器194到电流感测传感器输出198到CE控制器110的电流感测信号通路,或 在各种可选实施例中通过任何其他方法进行。
[0066] 在S308中,识别与系统硬件或软件错误有关的任何偏移或误差。在一些实施例 中,这不过是存储在CE控制器110中的记录值或为测量值。在某些实施例中,这种偏移包 括由于通过如以上所述将MS高压电源连接于毛细管连接部引起的感应返回电流信号。
[0067] 在S310中,通过从CE高压电源输出122的输出传送电流中减去返回电流、感测电 流和偏移电流来计算泄漏电流。然后CE控制器110实施各种方法来根据所计算的泄漏电 流来确定错误。最后,在S314中,重新配置该系统,同时仅仅通过连接新的质谱仪取代之前 的质谱仪来维持改善的电流或泄漏检测的有益效果。这使得CE系统能够在维持与电流感 测电路相关的改进的错误检测功能的同时单独地与具有不同的结构、输入和系统值的多个 质谱仪接口。
[0068] 在各种实施例中,当连接新的MS系统时作为步骤S316的一部分自动调节或补偿 偏移值。另外,在一些实施例中,本文所述的任何系统与另外的接口功能诸如电喷雾适配器 模块和软件配置结合,从而使CE系统能够通过在MS入口 153和MS电源端子处的连接部连 接于不同质谱仪系统。
[0069] 图4提供了计算机系统400的一个实施例的示意图,所述计算机系统400在一些 实施例中与改进的CE-ESI-MS系统的方面(如本文所述)和/或功能(例如作为图1的毛 细管电泳控制器110、质谱仪控制器160、CE分析系统130、电源102或质谱仪150的各部 分)结合使用。在一些实施例中,计算机系统400被视为可用于要求控制或电子通信的任 何组件的可能实施例中。应当指出,图4仅意在给出各种组件的一般举例,视情况可使用其 中的任何或所有组件。图4因此广义地示出如何在各种实施例中以相对独立或相对更综合 的方式提供各个系统单元。
[0070] 计算机系统400被示出为包括一些硬件单元,所述硬件单元在某些实施例中经由 总线405(或可视情况以其他方式通信)电连接。在一些实施例中,硬件单元包括一个或多 个处理器410,所述处理器410包括但不限于一个或多个通用处理器和/或一个或多个专用 处理器(如数字信号处理芯片、图形加速芯片和/或此类器件);在一些实施例中的一个或 多个输入设备415,包括但不限于鼠标、键盘和/或此类器件;在一些实施例中的一个或多 个输出设备420,包括但不限于显示装置、打印机和/或此类器件。
[0071] 在一些实施例中,计算机系统400还包括一个或多个存储设备425 (和/或与一个 或多个存储设备425通信),所述存储设备425在某些实施例中包括但不限于本地和/或网 络可访问存储设备和/或在一些实施例中包括但不限于磁盘驱动器、驱动器阵列、光存储 设备、固态存储设备(如随机存取存储器("RAM")和/或只读存储器("R0M")),其在一 些另外的实施例中是可编程的、可闪存更新的和/或此类的器件。在一些实施例中,计算机 系统400还包括通信子系统430,其在另外的实施例中包括但不限于调制解调器、网卡(无 线或有线)、红外通信设备、无线通信设备和/或芯片组(如Bluetootf设备、802. 11设备、 WiFi设备、WiMax设备、蜂窝通信设施等)和/或此类器件。在某些实施例中,通信子系统 430允许数据与网络(如作为非限制性例子的下述网络)和/或本文所述的任何其他设备 交换。在许多实施例中,计算机系统400将还包括工作存储器或辅助存储器系统,所述工作 或辅助存储器系统在一些实施例中包括如上所述的RAM或ROM器件。
[0072] 存储器计算机系统400在一些实施例中还包括软件单元,所述软件单元包括本发 明的计算机程序,和/或被设计来实施本发明的方法和/或配置本发明的系统,如上所述。 仅仅作为非限制性例子,在某些实施例中,结合以上所述的方法描述的一个或多个程序实 施为通过计算机(和/或计算机内的处理器)执行的代码和/或指令。在一些实施例中, 一组这些指令和/或代码存储在非瞬时计算机可读存储介质,如上述存储设备上。在一些 实施例中,存储介质被结合在计算机系统内。在其他一些实施例中,存储介质与计算机系统 (即可移动介质,如光盘等)分离和/或在安装包中提供,使得存储介质被用来对其上存储 有指令/代码的通用计算机编程。在一些实施例中,这些指令表现为可通过计算机系统执 行的可执行代码的形式和/或表现为源代码和/或可安装代码的形式,所述可安装代码在 编译和/或安装在计算机系统(如使用多种常用编译器、安装程序、压缩/解压工具等的任 何一种)上后表现为可执行代码的形式。
[0073] 对本领域内的技术人员来说显而易见的是,可根据特定要求进行实际改型。例如, 在一些实施例中,也使用定制的硬件和/或在硬件、软件(包括便携式软件,如小应用程序 等)或两者中实现特定的单元。在更多的实施例中,使用对于其他计算设备(如网络输入 /输出设备)的连接。
[0074] 如本文所用的术语"机器可读介质"和"计算机可读介质"是指任何参与提供使机 器以特定方式运行的数据的介质。在使用计算机系统400实施的一些实施例中,各种机器 可读介质涉及提供指令/代码到处理器410以供执行和/或用来存储和/或传递此类指令 /代码(例如作为信号)。在许多具体实施中,计算机可读介质是物理的和/或有形的存储 介质。此类介质可表现为许多形式,包括但不限于非易失性介质、易失性介质和传输介质。 非易失性介质包括作为非限制性例子的光盘或磁盘,如存储设备425。易失性介质包括但不 限于动态存储器,如工作存储器。传输介质包括同轴电缆、铜线和光纤、天线,其包括构成总 线405的电线以及通信子系统430的各种组件(和/或所述通信子系统430通过其与其他 设备通信的介质)。从而,在一些实施例中,传输介质也采用波(包括但不限于无线电波、声 波和/或光波,如在无线电波和红外数据通信期间生成的那些)的形式。
[0075] 在某些实施例中,机器可读介质的各种形式涉及将一个或多个指令的一个或多个 序列传递到处理器410以供执行。仅仅作为非限制性例子,指令在一些实施例中最初装载 于远程计算机的磁盘和/或光盘上。在一些实施例中,远程计算机将指令加载到其动态存 储器中并将指令作为信号经过传输介质发送以被计算机系统400接收和/或执行。根据本 发明的各种实施例,这些信号(在一些实施例中为电磁信号、声信号、光信号和/或诸如此 类的形式)全都是指令被编码在其上的载波例的信号。
[0076] 通信子系统430 (和/或它们的组件)一般会接收信号,然后在一些实施例中总线 405传送这些信号(和/或由这些信号承载的数据、指令等,处理器405执行所述指令)。
[0077] 如本文所述的毛细管电泳本质上为低流速分离技术,并且包括但不限于毛细管区 带电泳(CZE ;又名自由溶液CE [FSCE])、毛细管凝胶电泳(CGE)、毛细管等电聚焦(CIEF)、等 速电泳(ITP)、电动色谱法(EKC)、胶束电动毛细管色谱法(MECC或MEKC)、微乳电动色谱法 (MEEKC)、非水毛细管电泳(NACE)、毛细管电色谱(CEC)。
[0078] 本文的发明的使用包括但不限于表征治疗性蛋白质;鉴定组成特定蛋白质组的蛋 白质;表征翻译后修饰;研究与特定条件相关的代谢指纹;以及量化药物和其在微小的或 复杂的样品基质中的代谢物。
[0079] 虽然本发明已经结合示例性实施例展开描述,但是本领域技术人员要认识到许多 修改形式也是可行的。例如,可使用硬件组件、软件组件和/或它们的任何组合来实施本文 所述的方法和过程。另外,虽然为了便于描述本文所述的各种方法和过程结合特定结构性 和/或功能性组件进行描述,但是本发明的方法不限于任何特定结构性和/或功能性架构, 而是相反地在一些实施例中在任何合适的构型上实施。相似地,虽然把各种功能归因于某 些系统组件,但是除非上下文另有规定,否则在一些实施例中,该功能根据本发明的不同实 施例分配在各种其他系统组件中。
[0080] 如上所述,潜在应用包括使用CE分析蛋白复合物、蛋白质、肽、多糖或药物/代谢 物;以及使用MS表征/鉴定分离的分子。另外,本文的发明在一些实施例与以下方法结合 使用:分子分析、蛋白质分析、碳水化合物分析、糖蛋白分析、小分子分析、手性分析、离子 分析、药物分析和遗传分析、DNA测序、基因分型、单核苷酸多态性(SNP)分析、短串联重复 (STR)分析、DNA指纹分析、核酸分析、基因型分析、寡核苷酸纯度分析、质粒分析、单链构象 多态性(SSCP)分析和通过直接杂交分析的量化。另外,该列表并非穷举性的并且不是限制 性的,因为本领域的普通技术人员可认识到根据本文所述的发明的各种实施例的另外的潜 在用途。
[0081] 此外,虽然为了便于描述包括在本文所述的方法和过程中的程序以特定次序进行 描述,但是除非上下文另有规定,否则各种程序可根据本发明的各种实施例而被重新排序、 添加和/或省略。此外,在一些实施例中相对于一种方法或过程描述的程序可被结合到其 他所述方法或过程内;同样,在一些实施例中根据特定的结构性架构和/或相对于一个系 统描述的系统组件,以可选的结构性架构被组织和/或结合到其他所描述系统内。从而,虽 然为了便于描述和示出示例性特征,用或不用某些特征来描述各种实施例,但是除非上下 文另有规定,否则相对于具体实施例,本文所述的各种组件和/或特征在被替换、添加和/ 或从其他所述的实施例中扣除的某些实施例中。因此,尽管本发明已相对于示例性实施例 进行了描述,但是应当理解本发明旨在覆盖在以下权利要求书的范围内的所有修改形式和 等价形式。
【权利要求】
1. 一种与电喷雾电离质谱系统结合使用的毛细管电泳系统,包括: 具有输出和输入的毛细管电泳(CE)高压电源; 连接于电流感测电路的高压输入的质谱(MS)电源;以及 连接于MS电源端子的电流感测电路,使得所述MS电源端子经由所述电流感测电路、导 电流体毛细管和返回电极电连接于所述CE高压电源的输入,并且其中所述MS电源端子还 经由所述电流感测电路、分离毛细管和入口电极电连接于所述CE高压电源的输出。
2. 根据权利要求1所述的系统,其中所述电流感测电路包括耦接于绝对值放大器的感 测电阻器和缓冲放大器。
3. 根据权利要求2所述的系统,其中所述电流感测电路还包括耦接于所述绝对值放大 器并且给所述缓冲放大器和绝对值放大器供电的DC/DC转换器; 其中所述电流感测电路的隔离侧浮置。
4. 根据权利要求3所述的系统,还包括从系统接地耦接于所述电流感测电路的浮置接 地的电压保护装置。
5. 根据权利要求4所述的系统,其中所述电压保护装置包括气体放电管。
6. 根据权利要求2所述的系统,还包括从所述感测电阻器到控制器的电流感测信号通 路。
7. 根据权利要求6所述的系统,其中所述控制器为CE分析系统的微处理器。
8. 根据权利要求6所述的系统,其中所述电流感测信号通路包括耦接于所述缓冲放大 器的所述感测电阻器、所述绝对值放大器、隔离通信通路和电流感测输出。
9. 根据权利要求8所述的系统,其中所述隔离通信通路是通过DC/DC转换器的模拟通 道,所述模拟通道向所述DC/DC转换器的隔离侧和接地侧传输模拟信号并且从所述DC/DC 转换器的隔离侧和接地侧传输模拟信号。
10. 根据权利要求8所述的系统,其中所述隔离通信通路包括无线信号。
11. 根据权利要求8所述的系统,还包括经由毛细管连接部耦接于所述电流感测电路 并且耦接于所述返回电极的导电流体电流传感器,其中导电流体电流信号与电流感测信号 偏移而产生泄漏信号。
12. 根据权利要求11所述的系统,其中所述CE高压电源还包括在所述CE高压电源的 输入处的CE返回电流检测器,并且其中所述CE输入电流检测器产生返回电流信号。
13. 根据权利要求12所述的系统,其中所述CE高压电源还包括在所述CE高压电源的 输出处的CE输出电流检测器,其中所述CE输出电流检测器产生传送电流信号。
14. 根据权利要求13所述的系统,其中所述控制器包括与系统误差有关的偏移电流信 号。
15. 根据权利要求14所述的系统,其中所述控制器通过从所述传送电流信号中减去所 述返回电流信号、所述电流感测信号和所述偏移电流信号而计算出泄漏电流。
16. 根据权利要求15所述的系统,其中如果所述泄漏电流超出预定阈值,则所述控制 器产生错误信号。
17. 根据权利要求16所述的系统,其中当高于所述预定阈值的泄漏电流读数的数量超 出低于所述预定阈值的泄漏电流读数的数量达到错误标记数的读数数量时,所述控制器启 动自动系统停机。
18. 根据权利要求13所述的系统,其中所述电流感测电路包括霍尔效应传感器、罗戈 夫斯基线圈传感器或它们的组合。
19. 根据权利要求1所述的系统,其中电流感测输入端子直接连接于系统接地。
20. 根据权利要求1所述的系统,其中所述电流感测电路还包括从感测电阻器连接到 电喷雾端子或毛细管连接部的限制电阻器。
21. 根据权利要求20所述的系统,其中所述限制电阻器包括选自以下的值:从1兆欧 姆到200兆欧姆(包括1兆欧姆和200兆欧姆)的电阻值、从1兆欧姆到100兆欧姆(包 括1兆欧姆和100兆欧姆)的电阻值、从1兆欧姆到50兆欧姆(包括1兆欧姆和50兆欧 姆)的电阻值、和从1兆欧姆到20兆欧姆(包括1兆欧姆和20兆欧姆)的电阻值。
22. 毛细管电泳电喷雾电离质谱(CE-ESI-MS)系统包括: 具有第一输出、第一返回和第一接地的质谱(MS)高压电源; 具有第二输出、第二返回和第二接地的毛细管电泳(CE)高压电源,所述第二接地包括 与所述第一接地的连接; MS电通路,其提供从所述第一输出经由MS负载到所述第一接地的所述MS高压电源第 一返回; CE电通路,其提供从所述第二输出经由分离毛细管到所述第二接地的所述CE高压电 源第二返回,其中所述分离毛细管的电阻性电通路连接于所述第一输入,并且其中所述第 一输出经由所述分离毛细管电连接于所述第二返回;以及 经由毛细管连接部耦接于所述第一输出和所述分离毛细管的电流感测电路。
23. -种运行毛细管电泳电喷雾电离质谱系统的方法,包括: 在所述MS DC高压电源的输出处测量从电喷雾端子到质谱(MS) DC高压电源的电流;和 当计算出的泄漏电流超出阈值时产生故障错误。
24. -种方法,包括: 测量在毛细管电泳(CE)电源的输出处的传送电流、测量在所述CE电源的返回处的返 回电流、识别与系统误差有关的偏移电流,以及测量在MS高压电源的输出处的电流感测电 路处的感测电流;以及 通过从所述传送电流中减去所述返回电流、所述感测电流和所述偏移电流来确定泄漏 电流。
【文档编号】G01R31/02GK104335322SQ201380028845
【公开日】2015年2月4日 申请日期:2013年6月4日 优先权日:2012年6月4日
【发明者】彼得·S·高图斯基, 苏尼尔·S·黛利瓦拉, 斯蒂芬·A·弗赖伊 申请人:贝克曼考尔特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1