一种割缝套管力学强度的测试方法与流程

文档序号:14653016发布日期:2018-06-08 22:15阅读:123来源:国知局
一种割缝套管力学强度的测试方法与流程

本发明涉及海洋工程技术领域,尤其涉及一种割缝套管力学强度的试验测试方法。



背景技术:

水力喷砂割缝套管可以改善油气井近井地带的渗流条件,提高油气井产量,适用于油气井解堵、增产增注。当完整套管割缝之后,在井下作业过程中会受到套管自身重量、井口转动、地层蠕动等的影响,产生附加应力,造成割缝套管弹性变形,随着附加应力的不断累积,当超过套管的最小屈服强度时,割缝套管就会由弹性变形转为塑性变形,这种屈曲剧变可直接导致套管屈服以及井下安全事故。



技术实现要素:

本申请提供一种割缝套管力学强度的试验测试方法,解决了现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题。

为解决上述技术问题,本发明提供了一种割缝套管力学强度的测试方法,所述方法包括:获得特定材质割缝套管物理力学特征参数;制备不同长度割缝套管试件;对所述不同长度割缝套管中的每种割缝套管试件,采用不同的拉、压和扭转荷载,对所述割缝套管轴向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线;对所述不同长度割缝套管中的每种割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线;根据所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线,建立对应的力学强度-变形理论模型、力学强度-荷载理论模型;通过建立所述每种割缝套管试件的在不同荷载作用力下的力学强度-变形理论模型、力学强度-荷载理论模型,根据割缝套管弹性变形力学特性,对整管长度割缝套管的不同荷载作用力下力学强度特性进行分析,获得割缝套管力学强度特性结果。

优选的,所述割缝套管物理力学特征参数包括拉伸弹性模量E、剪切弹性模量G、屈服强度δ0.2,压缩屈服强度δ-0.2,应力σ,应变ε,位移F。

优选的,所述割缝套管试件的弹性模量E,其中,E=σ/ε,所述σ为应力大小,ε为应变大小。

优选的,所述不同长度的割缝套管试件,在所述受力荷载情况下,在弹性变形阶段,其对应的弹性模量E为2.06×105

优选的,所述不同长度的割缝套管试件,在所述受力荷载情况下,在弹性变形阶段,割缝套管试件力学特性与整管长度割缝套管力学特性一致。

优选的,所述对所述不同长度割缝套管中的每种割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线,具体为:对所述不同长度割缝套管,最小屈服强度758MPa,对所述割缝套管试件分别施加第一预定次数的径向压荷载,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。

优选的,所述第一预定次数至少为20次。

优选的,所述对所述不同长度割缝套管中的每种割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线,具体为:对所述不同长度割缝套管,最小屈服强度758MPa,对所述割缝套管试件分别施加第二预定次数的轴向拉、压和扭转荷载,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。

优选的,所述第二预定次数至少为20次。

通过本发明的一个或者多个技术方案,本发明具有以下有益效果或者优点:

上述方法通过获取割缝套管,制备不同长度割缝套管试件,对所述割缝套管中的每种不同长度割缝套管试件,采用不同的拉、压和扭转荷载,对所述割缝套管轴向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;另外还对所述不同长度割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;根据所述荷载时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线,基于所述每种割缝套管试件的在不同荷载作用力下的力学强度-变形理论模型、力学强度-荷载理论模型,根据割缝套管弹性变形力学特性,对整管长度割缝套管的不同荷载作用力下力学强度特性进行分析,获得割缝套管力学强度特性结果,为割缝套管设计和安全评估提供基础理论方法,解决了现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题。

附图说明

图1为本申请较佳实施方式一种割缝套管力学强度的试验测试方法的流程图;

图2为12米长的整根割缝套管示意图;

图3为1米长割缝套管试件正视图;

图4为1米长割缝套管试件剖面图;

图5为1米长割缝套管轴向压缩;

图6为1米上割缝套管轴向拉伸;

图7为1米上割缝套管轴向扭转;

图8为1米上割缝套管径向压缩。

其中:1-割缝套管轴向;2-割缝套管内壁;3-割缝套管外壁;4-割缝;5-套管壁;6-套管扣;7-割缝边缘;8-套管头;9-割缝套管径向。

具体实施方式

为了使本申请所属技术领域中的技术人员更清楚地理解本申请,下面结合附图,通过具体实施例对本申请技术方案作详细描述。

本申请实施例通过提供一种割缝套管力学强度的试验测试方法,解决了现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题。

本申请实施例中的技术方案为解决上述技术问题,总体思路如下:

通过获取割缝套管,制备不同长度割缝套管试件,对所述割缝套管中的每种不同长度割缝套管试件,采用不同的拉、压和扭转荷载,对所述割缝套管轴向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;再对所述不同长度割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;根据所述荷载时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线,建立割缝套管力学强度-变形以及力学强度-荷载理论模型,基于所述每种割缝套管试件的在不同荷载作用力下的力学强度-变形理论模型、力学强度-荷载理论模型,根据割缝套管弹性变形力学特性,对整管长度割缝套管的不同荷载作用力下力学强度特性进行分析,获得割缝套管力学强度特性结果,为割缝套管设计和安全评估提供基础理论方法,解决了现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题。

为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。

为了解决现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题,本申请提供一种割缝套管力学强度的试验测试方法。如图1所示,所述方法包括以下步骤:

步骤S110:获得特定材质割缝套管物理力学特征参数。

所述物理参数包括套管拉伸弹性模量E、剪切弹性模量G、屈服强度δ0.2,压缩屈服强度δ-0.2,应力σ,应变ε,位移F。

步骤S120:制备不同长度割缝套管试件。

所述试件是指将12米长的整管长度割缝套管切割成1米长的割缝套管试件,所述方法制成的割缝位于试件中部,试件两端平整无变形,确保套管测试过程中受力状态与整管一致。

步骤S130:对所述不同长度割缝套管中的每种割缝套管试件,采用不同的拉、压和扭转荷载,对所述割缝套管轴向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线。

在具体的实施过程中,对所述不同长度割缝套管,最小屈服强度758MPa,对所述割缝套管试件分别施加第一预定次数的径向压荷载,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。其中,所述第一预定次数至少为20次。

所述不同荷载包括对割缝套管试件施加的轴向拉力、压力和扭转,具体可通过微机控制电液伺服万能试验机对所述拉力、压力和扭转加载时间、大小、次数分别加以控制。

其中,12米长整管长度割缝套管如图2所示;1米长割缝套管试件正视图如图3所示;1米长割缝套管试件剖面图如图4所示;割缝套管试件轴向拉伸应力加载方式如图5所示;割缝套管试件轴向压缩应力加载方式如图6所示;割缝套管试件轴向扭转应力加载方式如图7所示;割缝套管试件径向压缩应力加载方式如图8所示。

对所述1米长割缝套管试件分别施加轴向拉、压和扭转荷载以及径向压荷载,各进行20组试验,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。

步骤S140:对所述不同长度割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得所述每种割缝套管试件的荷载-时间的变化规律曲线、所述每种割缝套管试件的应力-应变的变化规律曲线、所述每种割缝套管试件的荷载-位移的变化规律曲线。

在具体的实施过程中,对所述不同长度割缝套管,最小屈服强度758MPa,对所述割缝套管试件分别施加第二预定次数的轴向拉、压和扭转荷载,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。其中,所述第二预定次数至少为20次。

所述不同荷载包括对割缝套管试件施加的径向压力,具体可通过微机控制电液伺服万能试验机对所述压力加载时间、大小、次数分别加以控制。

其中,割缝套管试件径向压缩应力加载方式如图8所示。

对所述1米长割缝套管试件施加第二预定次数(例如进行20组试验)的径向压荷载,并通过控制荷载加载大小、加载时间和加载次数,以获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线。

步骤S150:根据所述割缝套管试件轴向和径向的荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线,建立割缝套管试件力学强度-变形理论模型以及力学强度-荷载理论模型。

步骤S160:基于所述每种割缝套管试件的在不同荷载作用力下的力学强度-变形理论模型、力学强度-荷载理论模型,根据割缝套管弹性变形力学特性,对整管长度割缝套管的不同荷载作用力下力学强度特性进行分析,获得割缝套管力学强度特性结果。

为了更好的理解上述技术方案,下面给出三个具体试验测试实施实例进行说明。

实施例1

深水水力喷砂割缝套管型号为9-5/8",管长12m,测试试件长1m,通径216.5mm,外径244.5mm,内径220.5mm,壁厚11.99mm,共6条割缝,钢级P110,弹性模量E=210GPa,泊松比μ=0.3,屈服强度758MPa~965MPa,抗拉强度大于862MPa。根据上述割缝套管力学强度试验测试方法,对试件进行轴向压缩载荷下试验测试。套管力学强度试验测试结果显示,当荷载达到4996KN时,达到最小屈服强度;超过5300KN荷载时,套管进入塑性变形阶段。由于该套管作业时的压缩荷载已知且小于4996KN,因此该工况下割缝套管作业安全,无套管屈服及井下安全风险。

实施例2

深水水力喷砂割缝套管型号为9-5/8",管长12m,测试试件长1m,通径216.5mm,外径244.5mm,内径220.5mm,壁厚11.99mm,共6条割缝,钢级P110,弹性模量E=210GPa,泊松比μ=0.3,屈服强度758MPa~965MPa,抗拉强度大于862MPa。根据上述割缝套管力学强度试验测试方法,对试件进行轴向拉伸载荷下试验测试。套管力学强度试验测试结果显示,当荷载达到5004KN时,达到最小屈服强度;超过5350KN荷载时,套管进入塑性变形阶段。由于该套管作业时的拉伸荷载已知且小于5004KN,因此该工况下割缝套管作业安全,无套管屈服及井下安全风险。

实施例3

深水水力喷砂割缝套管型号为9-5/8",管长12m,测试试件长1m,通径216.5mm,外径244.5mm,内径220.5mm,壁厚11.99mm,共6条割缝,钢级P110,弹性模量E=210GPa,泊松比μ=0.3,屈服强度758MPa~965MPa,抗拉强度大于862MPa。根据上述割缝套管力学强度试验测试方法,对试件进行轴向扭转载荷下试验测试。套管力学强度试验测试结果显示,当荷载达到143KN时,达到最小屈服强度;超过144KN荷载时,套管进入塑性变形阶段。由于该套管作业时的扭转荷载已知且小于143KN,因此该工况下割缝套管作业安全,无套管屈服及井下安全风险。

上述方法通过获取割缝套管,制备不同长度割缝套管试件,对所述割缝套管中的每种不同长度割缝套管试件,采用不同的拉、压和扭转荷载,对所述割缝套管轴向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;对所述不同长度割缝套管试件,采用不同压荷载,对所述割缝套管试件径向施加不同的荷载,并控制所述荷载的加载大小、加载时间和加载次数,获得荷载-时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线;根据所述荷载时间的变化规律曲线、应力-应变的变化规律曲线、荷载-位移的变化规律曲线,建立割缝套管力学强度-变形以及力学强度-荷载理论模型,基于所述每种割缝套管试件的在不同荷载作用力下的力学强度-变形理论模型、力学强度-荷载理论模型,根据割缝套管弹性变形力学特性,对整管长度割缝套管的不同荷载作用力下力学强度特性进行分析,获得割缝套管力学强度特性结果,为割缝套管设计和安全评估提供基础理论方法,解决了现有技术中当外界荷载超过套管屈服强度时,套管就会发生塑性变形,导致套管屈服以及井下安全事故的技术问题。

尽管已描述了本申请的优选实施例,但本领域内的普通技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1