一种无芯脆性纤维横向拉伸强度预测方法与流程

文档序号:22750596发布日期:2020-10-31 09:44阅读:236来源:国知局
一种无芯脆性纤维横向拉伸强度预测方法与流程

本发明涉及一种无芯脆性纤维横向拉伸强度预测的方法,尤其涉及一种使用纳米压痕仪进行纤维压缩试验进而预测无芯脆性纤维横向拉伸强度的方法。



背景技术:

纤维增强复合材料具有(1)比强度高、比模量大(2)材料性能具有可设计性(3)抗腐蚀性和耐久性能好(4)热膨胀系数小等优点,在航空航天、汽车、体育等行业领域被广泛使用。碳化硅纤维、碳纤维、硼纤维等脆性纤维具有高硬度、高比模量的优点,被广泛应用于复合材料的增强相。

当复合材料受到横向压缩时,因为纤维的横向刚度通常比基体大,故而纤维在横向承受比基体更大的应力。纤维束相互挤压也会使纤维处于压缩横向载荷状态,若纤维受到横向压缩载荷较大则可能会发生破坏。因此,有必要表征单碳纤维的横向性能以了解纤维增强复合材料的横向机械性能以及强度性能。研究纤维横向机械性能最直接的方法就是进行单纤维横向压缩试验。

脆性材料的抗压强度远大于抗拉强度,依据《某些脆性材料的抗压强度与抗拉强度之间的一个近似关系式》预测,脆性纤维的抗压强度是抗拉强度五倍以上,纤维压缩试验的纤维破坏形式应为垂直径向面拉伸破坏。jeffreyi.eldridge对c芯sic纤维的纤维破坏过程进行试验观测,观测到sic纤维沿着垂直径向面破裂,这也意味着纤维是因为垂直径向面的拉应力作用破坏。kimiyoshinaito等人对无内芯c纤维进行了纤维压缩试验,观察到c纤维沿周向破裂,图2为试验结果。这也验证了脆性纤维压缩试验中纤维的破坏模式为周向力拉伸破坏。

现有技术中jeffreyi.eldridge提出一种测试有芯纤维横向拉伸强度的方法,该方法没有考虑载荷接触面局部压力对纤维内部应力分布的影响。目前尚未在现有技术中发现考虑载荷接触面局部压力的求解横向拉伸强度的方法。

因此,有必要对纤维压缩试验进行破坏理论研究并在此基础上提出一种无芯脆性高硬度纤维横向拉伸强度测试方法来预测纤维增强复合材料的横向强度。



技术实现要素:

本发明为克服现有技术不足,提供一种通过纤维压缩试验测试无芯脆性高硬度纤维横向拉伸强度测试方法。

本发明技术解决方案:一种无芯脆性高硬度纤维横向拉伸强度测试方法,包括以下步骤:

步骤1:制备长度为200μm试验纤维样本;

步骤2:使用纳米压痕仪进行纤维压缩试验,获取破坏载荷数据;

步骤3:建立纤维压缩模型,计算载荷接触角和纤维垂直径向面应力分布;

步骤4:计算纤维最大抗拉强度。

步骤1的具体步骤如下:

(1)制备长度为50mm的纤维20根(或纤维束),使用裁切刀将纤维切成长度10mm的纤维束。

(2)迅速将纤维束浸入速溶氰基丙烯酸酯树脂,待到速溶氰基丙烯酸酯树脂凝固,将速溶氰基丙烯酸酯树脂覆盖并凝固的纤维束放在小圆筒塑料模具中,冷镶嵌使用环氧树脂制模,冷镶嵌过程:1准备小圆筒塑料模具,2把样品放在模量中,3倒入环氧树脂粉和液体,搅拌4等到凝固。

(3)等到树脂固化后,使用金刚石圆锯将树脂切成厚度约250μm的薄片,并抛光至200μm。抛光后,将片置于丙酮中,直到树脂溶解。使用微滤器过滤丙酮,收集到大量长度小于200μm的单纤维试样。

步骤2的具体步骤如下:

(1)准备用于纤维压缩试验的基底氧化铝(al2o3)盘。将氧化铝盘的表面抛光处理,然后将测试纤维的侧面放在氧化铝盘的抛光表面上。

(2)使用光学显微镜观测试样纤维的位置,使用x-y平移台移动氧化铝盘位置,直到压头对准测试纤维。再次通过从光学显微镜的电视图像观察,验证纤维试样和压头的对准情况。

(3)放置光学显微镜观察纤维末端,同时对投影到电脑屏幕的图像进行视频录制。控制纳米压痕仪以0.2μm/s的速度对试样纤维进行压缩。通过计算机记录工程载荷(f)和位移(x)的函数,并记录下函数图中破坏载荷fcr。

步骤3的具体步骤如下:

首先对纤维压缩试验进行有限元分析,确定破坏面,即周向拉应力最大的面为垂直径向面。然后建立纤维压缩力学模型,并对模型进行求解分析:

假设纤维横截面变形较小,对径向面应力分布影响不大。载荷在接触面以均布压力的方式施加在纤维上,纤维受到压头工程载荷为f,接触角为α,接触面上压力为q。

纤维内部应力分布计算方法如下:

工程载荷f与压力q的相互转换关系可以表示为:

其中r代表纤维半径,t代表长度,θ代表积分位置与纤维圆心连线与垂直径向面夹角,q0代表平均压力,lf代表纤维长度。

对于弹性力学平面问题,由平衡方程可引入应力函数φ(x,y),φ满足双调和方程由于φ是双调和方程,所以可以借助复变函数理论将φ用两个解析函数和θ1(z)表示出来:

式中z为复变量z=x+iy,re代表复数的实部,代表复变量z的共轭复数,和θ1(z)是复变函数理论中能表示f的两个解析函数。

通过对φ求导,得到:

通过上式得到x和y方向应力分量σx和σy的两个组合表达式:

将载荷和解析函数分别展开成级数形式,由应力和位移边界条件来确定级数系数,最后解得:

其中σr代表以圆心为原点极坐标系下径向应力,σθ代表以圆心为原点极坐标系下周向应力。

选取三个不同接触角,通过matlab软件计算垂直径向面的应力大小和分布。垂直径向面拉应力越接近圆心越大,直到圆心达到最大值。接触角α会影响最大拉应力值,α越小则圆心处最大拉应力越接近理论值:

对于接触角度径向面最大拉应力分别为

步骤4的具体步骤如下:

(1)计算纤维发生径向破裂时载荷接触角α。

纤维接触面角α计算方法如下:

其中b代表接触面宽度,et代表纤维横向弹性模量,el代表纤维拉纵向弹性模量,vlt代表泊松比。

(2)计算接触角度α下纤维径向最大拉应力值,获得纤维横向抗拉强度σcrt

有益效果:本发明与现有技术相比,具有以下优点:

(1)本发明计算精度高,考虑压缩接触面大小对纤维内部应力分布的影响,计算结果与有限元分析结果对比符合度较高。考虑接触面积的破坏面拉伸应力略小于理想值当接触面积无限小时结果等于理想值

(2)本发明计算流程高效便捷,只需要修改接触面角度、破坏载荷就能计算纤维横向拉伸强度。避免了有限元法建立模型、在曲面划分一定角度的载荷区域、施加约束载荷、划分网格等一系列复杂操作。

(3)本发明使用范围广,适用于碳化硅纤维、硼纤维、碳纤维等高强度脆性材料纤维。

附图说明

图1为试验方法流程图;

图2为纤维压缩试验后c纤维沿周向破坏;

图3无芯sic纤维示意图;

图4为纤维压缩试验示意图;

图5为典型纤维压缩f-x函数图;

图6为纤维压缩周向力分布;

图7为纤维压缩力学模型;

图8为垂直径向面拉应力分布图;

图9为本文方法与有限元方法对比图。

具体实施方式

下面结合测试一种无内芯碳化硅纤维横向拉伸强度实例及附图对本发明作进一步说明,但测试对象不仅限于碳化硅纤维。

本发明公开的一种无芯脆性纤维横向拉伸强度测试方法。研究者首先对拟试验的脆性纤维制备长度约为200μm的单纤维试样,对试样进行单纤维压缩试验获取纤维出现径向拉伸破坏的破坏载荷fcr。再通过fcr和纤维属性计算出纤维的横向拉伸强度。

步骤1:

测试一种直径为28μm的无内芯sic纤维,如图3所示。纤维纵向弹性模量为420gpa,横向弹性模量为240gpa,泊松比为0.15。将20根长度为50mm的无内芯sic纤维整理成束,使用裁切刀切成长度为10mm的纤维束。将纤维束迅速浸入速溶氰基丙烯酸酯树脂,待到速溶树脂胶凝固将纤维放入圆柱模具中制模。待到树脂凝固后,使用金刚石圆锯将树脂切成厚度约250μm的薄片,并使用微型打磨机抛光到200μm厚度。将抛光后的镶有纤维的树脂薄片浸入丙酮中,等到环氧树脂和速溶氰基丙烯酸酯树脂完全溶解,使用1μm细孔微滤器过滤丙酮,并使用丙酮冲洗干净。等到丙酮挥发后,获得大量长度约为200μm的单纤维试样。

步骤2:

将直径为250mm的氧化铝(al2o3)盘的表面抛光处理,然后将测试纤维的侧面放在氧化铝盘的抛光表面上。使用光学显微镜观测试样纤维的位置,使用x-y平移台移动氧化铝盘位置,直到直径为350μm的压头对准测试纤维,如图4所示。再次通过从光学显微镜的电视图像观察,验证纤维试样和压头的对准情况。放置光学显微镜观察纤维末端,同时对投影到电脑屏幕的图像进行视频录制。控制纳米压痕仪以0.2μm/s的速度对试样纤维进行压缩,通过计算机记录工程载荷(f)和位移(x)的函数。根据函数图像确定径向面发生破坏的临界载荷fcr,如图5所示。

步骤3:

首先对纤维压缩试验进行有限元分析,确定周向拉应力最大的面为垂直径向面,即θ=0的破坏面,如图6所示。

建立纤维压缩力学模型,如图7所示。并对模型进行求解分析:

使用matlab软件对推导结果进行编程。首先将应力提取公约数将q和f进行换算,得到等价表达式:

以上公式中σr代表以圆心为原点极坐标系下径向应力,σθ代表以圆心为原点极坐标系下周向应力,q代表接触面均布压力,α代表接触角,r代表距离圆心距离,r代表圆半径,θ代表计算径向面与垂直径向面夹角,f代表工程载荷,df代表纤维直径,lf代表纤维长度。

使用弧度制将径向面与垂直径向面夹角赋予θ,纤维长度值赋予lf,纤维半径值赋予r,并使用symsum对公式中级数项进行求解后再使用eval函数计算级数的具体值。最后公式只需要带入工程载荷f和接触角α就能计算纤维内任意一点应力状态,当θ=0时为垂直径向面内应力状态。

步骤4:

获得发生破坏的临界载荷fcr,假设fcr=8n,带入公式:

(1)计算接触角度

计算得到接触角

(1)计算垂直径向面最大拉应力:

利用公式:

带入θ=0,得到此时垂直径向面应力分布,如图8所示。最大拉应力位于圆心处将f=fcr=8n,lf=0.2mm,df=0.028mm带入,得到σcrt=907.66mpa。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1