一种自适应调整电压的方法、装置及系统的制作方法

文档序号:6293143阅读:194来源:国知局
一种自适应调整电压的方法、装置及系统的制作方法
【专利摘要】本发明公开了一种自适应调整电压的方法、装置及系统。该方法包括:获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码;按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码;将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。通过上述方式,本发明能够更好的减少功率损耗,实现更好的降耗效果。
【专利说明】—种自适应调整电压的方法、装置及系统
【技术领域】
[0001]本发明涉及通信【技术领域】,特别是涉及一种自适应调整电压的方法、装置及系统。【背景技术】
[0002]近年来,移动互联网以及电子技术飞速发展,移动终端作为载体越来越广泛地被人们所使用。但是,随着移动终端性能的日益强大,功耗也越来越大,因此,低功耗设计己经成产品设计的重要考虑因素。
[0003]当前己经有的低功耗技术主要有动态电压频率调整(DVFS,Dynamic VoltageFrequency scaling)技术、自适应电压调整(AVS, Adaptive Voltage Scaling)技术等。例如,目前的低功耗技术中,AVS能够在给定性能等级的情况下自适应地寻找一个最低的工作电压点以达到节省功耗的目的。如图1所示,是现有技术利用AVS技术调整电压方法的示意图。该方法通过对时序监控单元输出的时序码与时序参考校准码进行比较,根据比较结果控制电源管理单元的电压输出,而输出的电压又进一步影响时序码,从而形成一个闭合的环路。其中,任何影响时序的参数如工艺、电压与温度(PVT, process, voltage,temperature)都会导致时序码的变化。
[0004]但是,发明人发现:
[0005]现有技术中由于上述控制环路进行一次电压调整需要一定的时间,在这些时间内,如果参数例如电压或者温度发生剧烈变化,可能会导致逻辑的时序错误而此时控制环路还未来得及调整。同时,芯片的温度特性曲线并不是线性的,随着温度的不同,单位时间内的温度变化也不是相同的,因此利用AVS技术调整电压时需要留有一定的余量,并且这个余量要保证在所有条件下都不会导致逻辑错误,但这种处理方式会减小降耗的效果。因此,现有技术的电压调整方法也具有较大功率损耗,影响了降耗效果。

【发明内容】

[0006]为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种自适应调整电压的方法、装置及系统,能够更好的减少功率损耗,实现更好的降耗效果。
[0007]本发明的一方面是提供一种自适应调整电压的方法,包括:
[0008]获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码;
[0009]按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码;
[0010]将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
[0011]本发明的另一方面是提供一种控制装置,包括:
[0012]信息获取单元,用于获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码;[0013]选择单元,用于按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码;
[0014]处理单元,用于将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
[0015]本发明的又一方面是提供一种自适应调整电压的系统,包括:
[0016]温度传感器,用于检测系统芯片内部的当前温度,输出温度码;
[0017]时序监控单元,用于监控系统逻辑电路的路径时序并输出时序码;
[0018]控制逻辑模块,用于获取温度传感器检测到的芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码,按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码,将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
[0019]本发明的有益效果是:本发明实施例的技术方案,通过获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码,从而从配置的多个时序参考校准码中选择一个时序参考校准码;由于温度高的时候对应的时序码变化大,可以选择数值大的时序参考校准码,温度低的时候对应的时序码变化小,可以选择数值小的时序参考校准码,所以对于时序码变化不剧烈的时候可以只留很少的电压余量,在时序码变化剧烈的时候才留较大的电压余量,那么根据温度码可以选择对应的时序参考校准码,再将获取的时序码与所述选择的时序参考校准码进行比较,就可以根据比较结果确定对负载的调整电压大小。因此本发明实施例方法使得可以自适应地根据温度范围选择不同的时序参考校准码,进而可以随环境温度变化而自动调整电压,实现降低系统功耗输出。
【专利附图】

【附图说明】
[0020]图1是现有技术一种利用AVS技术调整电压方法的示意图;
[0021]图2是本发明实施例的调整电压方法流程图;
[0022]图3是本发明实施例的调整电压系统的第一示意图;
[0023]图4是发明实施例的时序码与温度的曲线变化示意图;
[0024]图5是发明实施例的电压余量与温度的曲线变化示意图;
[0025]图6是本发明实施例的调整电压系统的第二示意图;
[0026]图7是本发明实施例时序参考校准码选择逻辑中的多路复用MUX结构示意图;
[0027]图8是本发明实施例的控制装置的结构示意图;
[0028]图9是是本发明实施例的调整电压系统的结构示意图。
【具体实施方式】
[0029]本发明实施例提供一种自适应调整电压的方法,能够更好的减少功率损耗,实现更好的降耗效果。本发明主要是采用温度模型逼近的方式,解决了现有技术中AVS调节电压余量不能随真实温度模型动态调整而影响降耗效果的问题。
[0030]参阅图2,本发明实施例的调整电压方法流程图。
[0031]如图2所示,本发明实施例包括:
[0032]步骤201、获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码;
[0033]该步骤中的时序码,是时序监控单元主要对同步逻辑电路中的关键路径进行时序监控后输出的表示延迟信息的时序码。温度码,是温度传感器主要对系统芯片内部的结温进行监控后输出的温度码。
[0034]步骤202、按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码;
[0035]该步骤中的时序参考校准码,是性能预测单元根据系统负载情况进行性能预测后输出的配置参数。其中,所述时序码可以是在获取同步时钟进行调整后再输出,所述同步时钟是根据系统负载情况进行配置的。该步骤包括:根据所述获取的温度码所处的区间,从配置的多个时序参考校准码中选择一个对应的时序参考校准码。其中温度码高的区间,时序码的变化大,可以选择数值大的时序参考校准码,进而对应的对负载调整电压的预留电压余量大,温度码低的区间,时序码的变化小,可以选择数值小的时序参考校准码,进而对应的对负载调整电压的预留电压余量小。
[0036]该步骤中,可以根据所述获取的温度码所处的区间,从多路选择结构的时序参考校准码参数寄存器中选择一个对应的时序参考校准码。
[0037]步骤203、将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
[0038]该步骤中,可以根据比较结果确定对负载的调整电压大小,实现可以随环境温度变化而自动调整电压。如果所获取的时序码小于时序参考校准码,说明当前系统芯片内部的时序不满足当前负载,需要提高对负载的电压;如果所获取的时序码大于时序参考校准码,说明当前系统芯片内部的时序要好于当前负载所要求的时序,此时可降低对负载的电压以达到节省功耗的目的。
[0039]区别于现有技术,本发明实施例的技术方案,通过获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码,从而从配置的多个时序参考校准码中选择一个时序参考校准码;由于温度高的时候对应的时序码变化大,可以选择数值大的时序参考校准码,温度低的时候对应的时序码变化小,可以选择数值小的时序参考校准码,所以对于时序码变化不剧烈的时候可以只留很少的电压余量,在时序码变化剧烈的时候才留较大的电压余量,那么根据温度码可以选择对应的时序参考校准码,再将获取的时序码与所述选择的时序参考校准码进行比较,就可以根据比较结果确定输出的对负载的调整电压大小。因此本发明实施例方法使得可以自适应地根据温度范围选择不同的时序参考校准码,进而可以随环境温度变化而自动调整电压,实现降低系统功耗输出。
[0040]以下更详细介绍本发明实施例技术方案。
[0041]图3是本发明实施例的调整电压系统的第一示意图。
[0042]如图3所示,该系统中的主要部件包括:时序监控单元、温度传感器、性能预测单元、时钟复位逻辑模块、控制逻辑模块以及电源管理单元。
[0043]先简单介绍各单元的功能:
[0044]时序监控单元,主要对同步逻辑电路中的时序关键路径进行时序监控并输出表示延迟信息的时序码。温度传感器,主要对芯片内部的结温进行监控并输出温度码。性能预测单元,主要根据系统负载情况进行性能预测并输出性能需求参数和时序参考校准码,其中性能需求参数输出给时钟复位逻辑模块,时序参考校准码输出给控制逻辑模块。时钟复位逻辑模块,主要根据性能预测单元对系统负载情况的预测产生同步时钟,并向所述时序监控单元输出同步时钟,使得所述时序码获取同步时钟进行调整后输出。控制逻辑模块,主要根据温度传感器输出的温度码选择时序参考校准码,将时序监控单元输出的时序码与选择的时序参考校准码进行比较,根据比较结果输出电压控制信号给电源管理单元。如果所获取的时序码小于时序参考校准码,说明当前系统芯片内部的时序不满足当前负载,需要提高对负载的电压;如果所获取的时序码大于时序参考校准码,说明当前系统芯片内部的时序要好于当前负载所要求的时序,此时可降低对负载的电压以达到节省功耗的目的。电源管理单元,主要根据控制逻辑模块输出的电压控制信号进行电压调节。
[0045]图4是发明实施例的时序码与温度的曲线变化示意图。图5是发明实施例的电压余量与温度的曲线变化示意图。
[0046]因为芯片内部的结温在不同温度下的变化速率不同,并且时序在不同温度下的变化也是不同的,因此输出的时序码会发生变化。而整个电压调整环路进行一次电压调节需要较长时间,这样就有可能在环境变化剧烈时产生时序在瞬时错误的情况。因此,为了达到最好的降耗效果,在根据温度码选择时序参考校准码时,温度码高的区间,由于时序码的变化大,所以考虑选用数值大的时序参考校准码,这样就可以留有较大的电压余量。也即可以将时序参考校准码理解为当前温度区间内设定的标准电压。由于温度高的时候对应的时序码变化大,温度低的时候对应的时序码变化小,那么在时序码变化不剧烈的时候,输出的对负载的调整电压可以只留很少的电压余量,在时序码变化剧烈的时候才留较大的电压余量。
[0047]如图4所示,在不同的温度点下,单位温度的变化dt引起的时序码的变化是不同的。温度越高时,时序码的变化越大。如图5所示,在电压余量图中,黑色虚线表示没有经过温度模型自适应调整的电压余量。温度越高时,对应的时序码变化大,预留的对负载调整电压的电压余量越大。由图中可以看出阶梯曲线为采用温度模型自适应调整后的电压余量,两者的差值(即阴影部分)就是节省的功耗。因此,可以发现本发明实施例的技术方案可以比现有技术方法更好节省功效。
[0048]图6是本发明实施例的调整电压系统的第二示意图。
[0049]如图6所示,所述系统包括:时序传感器TS (Timing Sensor)(对应图5中时序监控单元)、温度传感器Tsensor (Temperature Sensor)、功耗管理控制器PMCTRL (PowerManager Contrl)(对应图5中的控制逻辑模块)、微控制器MClXMicroprocessor ControlUnitX对应图5中的性能预测单元)、时钟复位生成器CRG (Clock Reset Generator)(对应图5中的时钟复位逻辑模块)、电源管理单元PMU (Power Manage Unit)。
[0050]MCU判断当前系统的负载,并通过高级外设总线APB (Advanced Peripheral Bus)接口配置CRG的时钟信号。在负载高的时候,配置为高频时钟,在负载低的时候,配置为低频时钟。CRG收到配置信息后控制同步电压域的时钟工作频率,产生同步时钟输出给TS。MCU根据系统负载情况进行性能预测,将当前负载对应的时序参考校准码RCC (ReferenceCalibration Code)配置到PMCTRL中。对于预测为高负载的情况,将高负载对应时序参考校准码配置到寄存器组RCCf 5 ;对于预测为低负载的情况,将低负载对应的时序参考校准码配置到寄存器组RCC1?5。在PMCTRL内部逻辑中,包含时序参考校准码参数寄存器RCC1?5。PMCTRL在启动后根据温度码信息自动从时序参考校准码参数寄存器中切换时序参考校准码。
[0051]图7是本发明实施例时序参考校准码选择逻辑中的多路选择MUX (Multiplexer)结构示意图。本发明实施例的时序参考校准码选择逻辑为一个多路选择MUX结构。即随着温度的不同,Tsensor会输出不同的温度码,通过与门限判断,确定温度码所处的区间。PMCTRL会根据温度码区间选择RCCf5中的一个作为最终的RCC。对应不同的温度选择不同的时序参考校准码,具体可由测试得到的。高温度条件下,时序码变化剧烈,留有的电压余量就大,因此时序参考校准码就相应的选择大的。然后,PMCTRL根据TS输出的时序码与选择的最终的RCC进行比较来决定输出的调整电压,而PMU则根据PMCTRL输出的调整电压对电压进行调整。
[0052]可以发现,本发明实施例技术方案,通过采用温度模型自适应电压调整技术,采用温度传感器检测温度,自适应地根据温度范围选择不同的时序参考校准码RCC,解决了现有技术AVS电压余量不能随环境温度变化而调整的问题,进一步降低了系统功耗。
[0053]上述详细介绍了本发明实施例的自适应调整电压的方法,本发明实施例相应提供一种自适应调整电压的控制装置及系统。
[0054]图8是本发明实施例的控制装置的结构示意图,该装置包括:
[0055]信息获取单元,用于获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码;
[0056]选择单元,用于按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码;
[0057]处理单元,用于将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。如果所获取的时序码小于时序参考校准码,则提高对负载的电压,如果所获取的时序码大于时序参考校准码,则降低对负载的电压。
[0058]进一步的信息获取单元可以包括:
[0059]第一获取单元,用于获取温度传感器检测到的系统芯片内部的温度码;
[0060]第二获取单元,用于获取时序监控单元输出的系统逻辑电路的时序码;
[0061]第三获取单元,用于获取性能预测单元根据系统负载情况进行预测而配置的时序参考校准码。
[0062]进一步的所述选择单元包括:
[0063]温度区间判断单元,用于确定所述获取的温度码所处的区间;
[0064]参数选择单元,用于根据所述区间判断单元确定的温度码所处的区间,从配置的多个时序参考校准码中选择一个对应的时序参考校准码,其中温度码高的区间,时序码的变化大,可以选择数值大的时序参考校准码,进而对应的对负载调整电压的预留电压余量大,温度码低的区间,时序码的变化小,可以选择数值小的时序参考校准码,进而对应的对负载调整电压的预留电压余量小。
[0065]进一步的所述选择单元还可以包括:
[0066]时序参考校准码参数寄存器,用于存储性能预测单元根据系统负载情况进行预测而配置的时序参考校准码,其中时序参考校准码选择逻辑为一个多路选择结构;
[0067]所述参数选择单元根据所述获取的温度码所处的区间,从多路选择结构的时序参考校准码参数寄存器中选择一个对应的时序参考校准码。
[0068]图9是是本发明实施例的调整电压系统的结构示意图,该系统包括:
[0069]温度传感器,用于检测系统芯片内部的当前温度,输出温度码;
[0070]时序监控单元,用于监控系统逻辑电路的路径时序并输出时序码;
[0071]控制逻辑模块,用于获取温度传感器检测到的芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码,按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码,将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
[0072]进一步的,系统还包括:
[0073]性能预测单元,用于根据系统负载情况进行预测而配置时序参考校准码。
[0074]进一步的,系统还包括:
[0075]时钟复位逻辑模块,用于根据性能预测单元对系统负载情况的预测向所述时序监控单元输出同步时钟,所述时序监控单元获取同步时钟进行调整后输出时序码。
[0076]进一步的,系统还包括:
[0077]电源管理单元,用于根据控制逻辑模块输出的调整电压,对负载的电压进行调整。
[0078]需要说明的是,在实际应用中,以上装置、系统实施例的各个单元或器件可以是任意两个或以上一体成型,或者各个单元或器件的部分功能可以按需要划分出去与其他单元或器件结合;此外,上述的各个方法实施例可以由计算机程序来实现,这些计算机程序可以存储并固化在存储介质中,如ROM、光盘、闪存或移动硬盘等。
[0079]以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的【技术领域】,均同理包括在本发明的专利保护范围内。
【权利要求】
1.一种自适应调整电压的方法,其特征在于,包括: 获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码; 按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码; 将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括: 根据系统负载情况进行预测并配置所述多个时序参考校准码。
3.根据权利要求1所述的方法,其特征在于,所述按照获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码包括: 根据所述获取的温度码所处的区间,从配置的多个时序参考校准码中选择一个对应的时序参考校准码。
4.根据权利要求1所述的方法,其特征在于,所述获取时序监控单元输出的系统逻辑电路的时序码包括: 获取时序监控单元检测系统逻辑电路的关键路径时序后输出的时序码。
5.根据权利要求1所述的方法,其特征在于,所述将获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压的步骤包括: 将所述获取的时序码与所述选择的时序参考校准码进行比较,如果所获取的时序码小于时序参考校准码,则提高对负载的电压,如果所获取的时序码大于时序参考校准码,则降低对负载的电压。
6.一种控制装置,其特征在于,包括: 信息获取单元,用于获取温度传感器检测到的系统芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码; 选择单元,用于按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码; 处理单元,用于将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
7.根据权利要求6所述的装置,其特征在于,所述选择单元包括: 温度区间判断单元,用于确定所述获取的温度码所处的区间; 参数选择单元,用于根据所述区间判断单元确定的温度码所处的区间,从配置的多个时序参考校准码中选择一个对应的时序参考校准码。
8.根据权利要求7所述的装置,其特征在于,所述选择单元还包括: 时序参考校准码参数寄存器,用于存储性能预测单元根据系统负载情况进行预测而配置的时序参考校准码,其中时序参考校准码选择逻辑为一个多路选择结构; 所述参数选择单元根据所述获取的温度码所处的区间,从多路选择结构的时序参考校准码参数寄存器中选择一个对应的时序参考校准码。
9.一种自适应调整电压的系统,其特征在于,包括: 温度传感器,用于检测系统芯片内部的当前温度,输出温度码; 时序监控单元,用于监控系统逻辑电路的路径时序并输出时序码;控制逻辑模块,用于获取温度传感器检测到的芯片内部的温度码以及时序监控单元输出的系统逻辑电路的时序码,按照所述获取的温度码从配置的多个时序参考校准码中选择一个时序参考校准码,将所述获取的时序码与所述选择的时序参考校准码进行比较,根据比较结果确定输出的对负载的调整电压。
10.根据权利要求9所述的自适应调整电压的系统,其特征在于,还包括: 性能预测单元,用于根据系统负载情况进行预测而配置时序参考校准码。
11.根据权利要求9所述的自适应调整电压的系统,其特征在于,还包括: 电源管理单元,用于根据 控制逻辑模块输出的调整电压,对负载的电压进行调整。
【文档编号】G05F1/567GK103455077SQ201210176477
【公开日】2013年12月18日 申请日期:2012年5月31日 优先权日:2012年5月31日
【发明者】姚琮, 刘宇, 陈立前, 李翔, 宫继强 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1