用于读取无源矩阵可寻址器件的方法和用于执行该方法的器件的制作方法

文档序号:6750314阅读:109来源:国知局
专利名称:用于读取无源矩阵可寻址器件的方法和用于执行该方法的器件的制作方法
技术领域
本发明涉及一种用于读取无源矩阵可寻址器件、尤其是一种具有用于存储由单元中设置的电荷值给定的逻辑值的各个可寻址单元的存储器器件或传感器器件的方法,其中该器件包括呈现磁滞现象的电可极化材料、尤其是铁电材料,其中该器件包括由在该器件中分别形成字线和位线的平行电极设置的第一和第二电极,其中相互垂直地设置该字线电极和该位线电极并在它们的相对表面处接触该可极化材料,以致该器件的各单元包括在字线和位线之间的交点中或交点处以可极化材料的体积限定出的电容器式结构,其中通过在寻址单元的字线和位线之间施加一个大于该可极化材料的娇顽电压Vc的电压Vs、该器件中的该单元就能够设置为两种极化状态之一或在这些极化状态之间进行切换,其中每个位线与检测装置连接,其中该方法包括具有读周期的电压脉冲协议,其中在该读周期期间,每个检测装置检测在它的相关位线和与该位线相连接的各单元之间流动的电荷;以及本发明涉及一种器件,该器件用于执行读取无源矩阵可寻址器件、尤其是一种具有用于存储由单元中设置的电荷值给定的逻辑值的各个可寻址单元的存储器器件或传感器器件,其中该器件包括呈现磁滞现象的电可极化材料、尤其是铁电材料,其中该器件包括由在该器件中分别形成字线和位线的平行电极设置的第一和第二电极,其中相互垂直地设置该字线电极和该位线电极并在它们的相对表面处接触该可极化材料,以致该器件的各单元包括在字线和位线之间的交点中或交点处以可极化材料的体积限定出的电容器式结构,其中通过在寻址单元的字线和位线之间施加一个大于该可极化材料的娇顽电压Vc的电压Vs、该器件中的该单元就能够设置为两种极化状态之一或在这些极化状态之间进行切换,其中每个位线与检测装置连接,其中该方法包括具有读周期的电压脉冲协议,其中在该读周期期间,每个检测装置检测在它的相关位线和与该位线相连接的各单元之间流动的电荷。
如上所述,本发明特别涉及一种用于读取在选择的字线和平行相交的位线之间连接的所有单元、即所谓全行读取的方法。这从其它美国专利No.6157578之中已知,该美国专利涉及一种用于在一个单独操作、换句话说并行访问半导体存储器器件中的数据行的方法和器件。
背景技术
作为涉及有源矩阵可寻址器件的技术状态的一个实例,将参考2000年5月的IEEE学报、笫88卷、第5部分、第667-689页由A.Sheikholeslami和P.Glenn Gulak的“Survey of CircuitInnovations in Ferroelectric Random-Acess Memories”,该论文披露了有源存储器器件和它们的寻址方法,并特别披露了一类有源铁电存储器器件,其中每个单元建立为与所谓的存取晶体管串联连接的电容器式结构,该存取晶体管控制对电容器的访问。在电容器式结构中的材料是能够被极化并呈现磁滞现象的铁电材料。这种与晶体管连接的有源存储器单元称作1T-1C型单元,但是,这种有源存储器器件还可以包括两个晶体管和两个电容器,等等。还可以是更多数量的n个电容器与单个晶体管连接,以致该有源存储器单元表示为1T-nC型单元。当后者不进行寻址时,期望不连接存储器单元的电容器,由此不受矩阵寄生电容的影响,当寻址矩阵的其它单元时该矩阵寄生电容会引起电压扰动和潜行电流。
因此,具有有源单元的矩阵可寻址器件就具有明显的优点,但也有缺点。存取晶体管或开关晶体管的使用相应增加功耗并导致较低的集成密度,其它例如降低存储器器件中的存储密度。
在无源矩阵可寻址存储器器件中,所有单元、例如存储器矩阵的存储器单元将总是连接在由电极、通常称作矩阵的字线和位线形成的网络中,每个单元都设置在字线或相交的位线处或它们之间,并由此形成电容器结构。通过在所述字线和/或位线上施加一个电压来寻址这种单一无源单元,以致在这些电极之间的存储器单元之上获得电位差。根据电位差值,就能够影响该单元的极化状态,例如通过在该单元中设置永久的正极化或在该单元中设置永久的负极化。通过施加对应于电压差Vs足够大的电位差,其必须大于该铁电材料的娇顽电压Vc,就能够从一种极化状态转变为另一种极化状态。
在这种单元中的数据的写入包括将初始单元即未极化单元极化为两种永久极化状态之一、或通过将它从永久正性极化状态切换为永久负性极化状态或反转在该单元中已经设置的极化特性或者反之亦然。在读取中,按照相应的方式检测该单元的极化状态,例如通过将字线设置为电压电平Vs,同时将对应的位线保持在零电位。根据极化状态,无论是维持或切换该单元的极化特性,在位线上都会产生低充电电流或高充电电流。将该充电电流检测为电流值,例如可以将该单元的逻辑状态分别读为逻辑0或逻辑1。从当将单元的极化状态切换为相反极性的极化状态时破坏了在该单元中存储的初始数据内容来看,这种实际上已经表示处唯一可行的读出方法是破坏性的。上面提供了一种逻辑值的可靠检测,但是这还意味着必须通过执行如上所述的写操作将此状态下的初始逻辑值重写到该单元。
在写入单元和从单元中读取中,都需要相对大的电位差,并且在无源矩阵中,这种对各个单元进行寻址操作会在单元的无源网络中产生干扰电压和潜行电流,因此就会影响它们的极化状态。如果并行地对几个单元例如与特定字线连接的所有单元进行寻址,那么在无源矩阵可寻址网络中因干扰就会使该问题更严重并且对于大的矩阵例如具有几百万个单元的矩阵就会进一步加剧这种问题。

发明内容
因此,本发明的目的在于避免由无源矩阵可寻址器件中的各单元的非破坏性读出产生的问题,特别地,本发明的目的在于消除在读操作期间影响无源矩阵可寻址器件中的未寻址单元的干扰电压和潜行电流。进一步地,本发明的目的还在于并行地执行几个单元的读取,具体地执行所谓的全行读取,因此就能够并行读取连接到字线的所有单元,而使在无源矩阵可寻址器件中的剩余的未寻址单元具有最小的干扰。
最后,本发明的目的在于避免与写入到无源矩阵可寻址网络中的这种单元相关、尤其是接着在读操作之后重写以便读取各单元的相应问题,以致于在这些单元的读取之前恢复初始极化状态或将所存储的逻辑值或数据值复位到它们的初始值。
根据本发明利用一种的方法就获得了上述目的和其它特征及优点,该方法的特征在于根据电压脉冲协议以时间调整的方式来控制所有字线和位线上的电位,所说电压脉冲协议包括在所有字线和位线上的电位的时钟序列,由此至少在读周期的一部分期间,通过施加的电位来激活字线,该施加的电位相对所有相交的位线的电位至少对应于电压Vs,并且在与激活字线连接的各个单元中存储的逻辑值通过在该检测装置中检测电荷值来确定。
在根据本发明的方法中,认为使用读出放大器作为检测装置是有利的。
在根据本发明的方法中,还认为在电位的控制中使用四个不同的电压值并优选采用0、Vs/3、2Vs/3和Vs相应的电压值时有利的。
根据本发明利用一种器件,还获得了上述目的和进一步的特征和优点,该器件的特征在于字线与位线与控制装置相连,该控制装置以时间调整的方式来控制所有字线和位线上的电位并执行电压脉冲协议,该电压脉冲协议包括在所有字线和位线上的电位的时钟序列,所说的控制装置适合于在至少部分读周期期间激活字线,以致将一个电位施加到该字线,该电位相对所有相交的位线的电位至少对应于电压Vs。
在根据本发明的器件中,认为可极化材料是铁电聚合物是有利的。
还认为优点在于,根据本发明的器件中的检测装置是读出放大器。


现在,将通过论述常规的用于实现无源矩阵可寻址器件的背景技术以及根据本发明如何寻址、并结合实例性实施例的讨论来详细解释本发明,所有说明都参照附图,其中图1示出了在铁电存储器材料情况下的可极化材料的磁滞回线,图2是无源矩阵可寻址器件的示意图,图3是用于全行读取的具有连续重写/刷新周期的电压脉冲协议的第一实施例,以及图4是用于全行读取的具有连续重写/刷新周期的电压脉冲协议的第二实施例。
具体实施例方式
图1示出了可极化材料的磁滞回线。通常,铁电材料和电介体都具有这种类型的磁滞回线。在磁滞回线中,-Pr和+Pr分别表示正剩余极化和负剩余极化,同时y轴上示出的Ps是所谓的饱和极化。X轴上的-Vc和+Vc分别表示正娇顽电压和负娇顽电压,同时Vs表示选择的大于娇顽电压Vc的切换电压,并且根据本发明1/3 Vs的值表示将在以下进一步讨论的作为所用的电压脉冲协议一部分的分压电平。如果假设可极化材料最初未极化,那么它就通过施加一个例如基本上大于Vc并优选与Vs相对应的电压来极化。然后,极化就从0移动直到它到达磁滞回线上的点Pcs。此点表示该材料的铁电饱和极化Ps或电介体饱和极化Ps,然后增加的电压不再起作用。当去除施加的电压时,即现在可极化材料之上为0电位时,极化P将沿磁滞回线返回到磁滞回线与y轴相交的剩余极化或永久极化Pr。相应地,可以施加用于极化该材料的大的负电压Vs以将材料极化到剩余极化状态-Pr。通过施加电压-Vs,极化状态就可以从+Pr变换为-Pr,并且通过施加相应的大的正电压+Vs,极化状态-Pr就相应地变换为+Pr。这就符合在无源矩阵可寻址器件中的写入和读取的协议,该无源矩阵可寻址器件包括这种类型的可极化材料,并且为了实现上述读写协议,显然在该单元即电容器式结构上的电位差必须对应于施加的电压电平+Vs或-Vs,通过将字线设置为该电压并保持一个或多个位线为0电位,就能够获得想得到的(something)。如果与激活字线相连的各单元中只有一个单元将被写入或被读出,那么就必须注意接触未寻址单元的剩余位线的电位保持与激活字线相同的电压,使这些单元上的电位差就由此变为等于0。
图2示出了无源矩阵可寻址器件的示意性实施例。第一电极组由矩阵中形成字线的平行电极WL构成。例如,第一电极组可以是m个这种字线WL。第二电极组由与字线WL垂直交叉的平行电极BL构成。前者是矩阵的位线BL并以数目n设置,因此就获得了mn矩阵。在各个平行平面中设置每个电极组,并且将可极化材料设置为夹在电极组之间的整体层,如果按照在交点中具有彼此绝缘的中间层的桥式排列方式设置字线WL和位线BL,就能够在电极组之上设置可极化材料。因此,就获得了矩阵式可寻址器件,其中目前以位于字线WL和位线BL之间的交叉处或交叉点中的激活材料来限定出每个单一单元。因此,这种无源可寻址矩阵就成为具有mn可寻址单元(当然该矩阵可以是正方形以致m=n)的一个矩阵。字线和位线都连接到公共检测装置以及用于选择和寻址的驱动和控制电路。这些未示出,但本领域普通技术人员已知它们已在有源和无源矩阵可寻址器件中使用,因此在图2中将它们省略。此外,与每条位线相连的检测装置实际上都可以有利地实施为读出放大器SA。
在寻址中,选择一条字线并在其上施加一个确定的电压。该字线显示为图2中的激活字线AWL,而所有的剩余字线WL表示为未激活字线(IWL)。如果目前在激活字线AWL和与该字线交叉的位线BL之间存在电位差,那么就对存储器单元执行寻址操作,该存储器单元处于字线AWL和位线BL之间的交叉点。在所谓的整体行寻址(全行读取)中,在连接到激活字线AWL的所有单元之上将出现相同的电位差,因此,对于读取来说,通过各个检测装置或读出放大器SA检测在位线中流动的电荷。
在根据本发明的用于执行该方法的器件的优选实施例中,可极化材料是铁电聚合物材料。可以采用各种铁电聚合物材料,包括但不限于聚偏氟乙烯(PVDF)。作为进一步的实例,可以涉及聚酰胺(奇尼龙)、氰基聚合物、二氟乙烯(VDF)的共聚物和三氟乙烯(TrFE)、聚脲类、聚硫脲(polytiureas)、生物高分子例如多肽和氰乙基纤维素。可以利用公知的方法例如旋涂来淀积铁电聚合物薄膜,例如从适合的溶剂如二甲基甲酰胺(DMF)、环己酮或甲基乙基酮(MEK)来淀积VDF-TrFE(75/25)共聚物。
现在,将讨论根据本发明的方法的不同实施例。通过图3的曲线图来说明第一实施例,图3示出了具有0和Vs之间的电压电平的电压脉冲协议和用于时间点并如图所示的上边缘处的从0到6记数点的时间标记。根据图3中的电压脉冲协议,当不产生寻址操作时,即当矩阵中没有单元被读或写入时,该器件的所有字线WL和位线BL都保持在等于0的静态电压。在读周期期间,时间标记1和2之间的电压Vs就施加到激活字线AWL,同时未激活字线IWL就保持在0电位。在一个处于剩余极化状态+Pr的单元中,施加大的正电压+Vs不会引起该单元的极化状态的任何本质的改变,并且换句话说在位线BL中没有电荷流动,也许会只有一个表示在如图1中所示的饱和极化Ps和剩余极化+Pr之间的差值的小的电荷。相反地,如果单元处于剩余极化状态-Pr,那么根据协议的目前的极化状态就切换为+Pr,并且在位线BL上就获得了一个大的充电电流并将一个高的输出信号输出到检测装置。如果正极化状态+Pr例如代表逻辑0,它就不必有任何刷新或重写,但是,在处于负剩余极化状态-Pr的单元中,读出就会导致切换到正剩余极化状态+Pr,并且单元的逻辑值就必须通过对存储器单元的重写来恢复。这是通过使激活字线保持在0电位并使所指示的给单元施加电压的电位上的位线设置为等于-Vs来实现。在写周期期间,所有未激活字线IWL保持在2Vs/3并且未激活位线保持在Vs/3。因此,只有激活位线AWL和为了刷新而激活的位线BL之间的电位差等于Vs,而所有未激活字线IWL保持在相同电位例如2Vs/3并且所有未激活位线对应于电位Vs/3。因此,未激活字线和激活位线之间的电位差基本上小于Vs,并且在重写的寻址操作期间,这就有利于降低矩阵中的干扰电压或电容耦合等。
应当看出,在图3的电压脉冲协议中采用四个电压电平,即0、Vs/3、2Vs/3和Vs。电压Vs的分压电平即Vs/3和2Vs/3是根据所谓的电压选择定律或电压选择模式得出的,为了降低干扰电压和潜行电流以及会以有害方式影响存储单元极化状态的其它情况,所谓的电压选择定律或模式用于修正具有在0和Vs/3之间的选择电压值的脉冲协议。在当前情况下,使用的选择定律是所谓的1/3选择。能够显示出Vs/3是在寻址操作期间在矩阵中的所有字线和位线上能够存在的最小的平均电压电平。
考虑到使用电压脉冲协议和电压选择规则的理论背景,可以参考正在申请的挪威专利No.312699,该专利建立了一种电压脉冲协议和使用它们的理论,其不依赖于是否对单独的单元或几个单元并行地进行寻址,该单元位于具有铁电存储器材料或电介体存储器材料的大的无源矩阵可寻址存储器器件中。
图4示出了根据本发明并具有时间点的相应标识的另一种电压脉冲协议。这同样使用从0-Vs的四个电压电平和所谓的1/3选择规则,但不同于图3中的协议,当没有读取或写入矩阵中的单元时,当前的所有字线和位线都保持在静态电压Vs/3。这就会具有下列优点,在用于读取或写入的寻址操作期间,在任何情况下都必须施加到例如激活字线AWL或者激活位线BL的电压电平基本上小于Vs,例如最多到2Vs/3的量,并且还导致关于网络中的干扰电压和潜行电流的明显优点,同时降低了存取时间。因此,在协议的读周期中激活字线就在标识2处从Vs/3切换到Vs,并且位线就从Vs/3切换到0电压。同时,未激活字线IWL也设置为0电压,使得在未激活字线IWL和未激活位线BL之间就不存在电位差。在并行执行读周期之后,通过将所有字线和位线返回设置到静态电压Vs/3就会产生刷新,并且在用于重写或刷新的周期中,将0电压施加到激活字线AWL,而将激活位线BL设置为电位Vs,该激活位线BL寻址将被复位或刷新的存储器单元,为了产生真实的复位,该电位Vs毫无疑问具有适合的极性。未激活位线、即接触将不产生刷新的单元的那些未激活位线保持在Vs/3,而未激活字线IWL设置为2Vs/3。因此,在未激活字线和未激活位线之间的电位差将为Vs/3,并且在未激活字线和激活位线之间的电位差同样为Vs/3,而在激活字线和激活位线之间的用于改写的电位差显然目前就变为等于Vs(可能为-Vs)。激活字线AWL和不再发生改写的未激活位线之间的电位差为Vs/3。
在图3中所示的实施例中的电压脉冲协议提供一种矩阵可寻址器件的非常简单的读取,并且这就意味着未示出的用于字线和位线WL;BL的驱动电路就会制造得相对简单,而在图4的实施例中示出的稍加复杂的电压脉冲协议就需要根据协议来改变所有字线和位线上的电位,但同时该器件对于干扰电压和潜行电流的抗扰性得到很大程度的改善。应当理解,在写周期期间,根据应当改写的逻辑值和在破坏性读出操作之后的各单元的初始状态,在激活位线上的实际电位可以为正和负。还应当注意,附图中显示的用于时钟序列的时间标识可以相对地自由选择,并且例如它可以是例如图4中的时间间隔2-1和4-3可以为0或负的情况,同样时间值将取决于可极化材料的动态特性、例如所选择材料的磁滞回线的时间常数。还应当理解,可以任意选择出根据脉冲协议的电压电平的绝对值和电压电平的数目本身,只要获得了用于执行所谓的全行读取的条件、即在激活字线的每个单元之上的电位Vs和在未激活字线IWL上的未寻址单元之上的0电压。为了激活各单元,还可以提供基本上大于Vs的电压,否则会影响存储器材料的剩余极化状态。在上下文中还应当注意,例如疲劳即存储器单元的剩余极化值的逐渐减少的现象会加重并产生各单元的读取问题。而且,所谓的“印记”将是明显的,即已经长时间处于特定极化状态下的单元将处于维持这种极化状态的情况,由此当执行可能的寻址操作时就需要高压或较长的电压脉冲。
因此,当在相同读周期期间使用适合的电压脉冲协议读取无源矩阵中的所有位线BL时,执行全行读取。在所有n位线被激活的相同时间周期期间,只有m字线之一被激活。为了获得此结构,在矩阵中的每个位线就必须与读出放大器连接。当由于某些原因将矩阵划分为多个子矩阵时,可以采用全行读取。因此全行读取的概念意味着包括其中在相同读周期期间读取在子矩阵中的整个字线上的所有单元的情况。全行读取提供与部分行读取或单个单元读出相比的更多的优点,即a)在读周期期间,所有未寻址单元施加0电位,这样就会减少会产生数据内容(逻辑值)的丢失的干扰信号的数量,而且在读操作期间消除会产生背景电流的所有干扰。
b)数据转换速率将是矩阵或子矩阵中的位线数量所允许的最大速率;c)可以选择比娇顽电压更高的读出电压Vs而不会引起在未寻址单元上的局部切换,这意味着切换速度将是对于各单元的极化材料来说最高的可切换速度;以及d)读出模式与大矩阵和矩阵组兼容。
为了读出数据,激活字线AWL和位线BL之间的电位差设置为电位Vs,其就会产生从各单元并到达接触位线的流动电荷。电荷值(或电流)取决于每个单元的极化状态并通过读出放大器进行检测,每条位线都具有一个读出放大器。通过使用适合的测量电路,由此就能够确定出每个单元的逻辑状态。
如上所述,在本申请的介绍中,无源矩阵可寻址器件可以是存储器器件并可以应用于数据的存储,使得每个单元中的极化状态或者表示逻辑1或者表示逻辑0。还可以采用相应的器件作为传感器器件,因此在每个单元中存储的逻辑值分配为传感器器件的每一个传感器元件的值。然而,在本申请或其它申请中,用于读取和刷新在单元中存储的数据方面,它们原则上没有差别。
权利要求
1.一种用于读取无源矩阵可寻址器件的方法,该无源矩阵可寻址器件尤其是一种具有用于存储由一个单元中设置的电荷值给定的逻辑值的各个可寻址单元的存储器器件或传感器器件,其中该器件包括呈现磁滞现象的电可极化材料、尤其是铁电材料,其中该器件包括由在该器件中分别形成字线和位线的平行电极而设置的第一和第二电极,其中相互垂直地设置该字线电极(WL)和该位线电极(BL)并在它们的相对表面处接触该可极化材料,以致该器件的各单元包括在字线和位线之间的交点中或在字线和位线之间的交点处以可极化材料的体积限定出的电容器式结构,其中通过在寻址单元的字线(WL)和位线(BL)之间施加一个大于该可极化材料的娇顽电压Vc的电压Vs、该器件中的单元就能够被设置为两种极化状态之一或在这些极化状态之间进行切换,其中每个位线(BL)与检测装置连接,其中该方法包括具有读周期的电压脉冲协议,以便在该读周期期间、每个检测装置检测在它的相关位线(BL)和与该位线相连接的各单元之间流动的电荷,并且其中该方法的特征在于根据电压脉冲协议以时间调整的方式来控制所有字线和位线上的电位,所说电压脉冲协议包括在所有字线和位线上的电位的时钟序列,因此至少在读周期的一部分期间,通过施加的电位来激活字线,该施加的电位相对所有相交的位线的电位至少对应于电压Vs,并且通过在该检测装置中检测该电荷值来确定与激活字线连接的各个单元中存储的逻辑值。
2.根据权利要求1的方法,其特征在于,使用读出放大器作为检测装置。
3.根据权利要求1的方法,其特征在于,在电位的控制中使用四个不同的电压值。
4.根据权利要求3的方法,其特征在于,使用的电压值分别为0、Vs/3、2Vs/3和Vs。
5.一种器件,用于执行读取无源矩阵可寻址器件尤其是一种具有用于存储由在单元中设置的电荷值给定的逻辑值的各个可寻址单元的存储器器件或传感器器件的方法,其中该器件包括呈现磁滞现象的电可极化材料、尤其是铁电材料,其中该器件包括由在该器件中分别形成字线和位线的平行电极而设置的第一和第二电极,其中相互垂直地设置该字线电极(WL)和该位线电极(BL)并在它们的相对表面处接触该可极化材料,以致该器件的各单元包括由在字线和位线之间的交点中或在字线和位线之间的交点处以可极化材料的体积限定出的电容器结构,其中通过在寻址单元的字线(WL)和位线(BL)之间施加一个大于该可极化材料的娇顽电压Vc的电压Vs、该器件中的单元就能够设置为两种极化状态之一或在这些极化状态之间进行切换,其中每个位线(BL)与检测装置连接,其中该方法包括具有读周期的电压脉冲协议,以便在该读周期期间、每个检测装置检测在它的相关位线(BL)和与该位线相连接的各单元之间流动的电荷,其特征在于字线和位线(WL;BL)与控制装置连接,该控制装置以时间调整的方式来控制所有字线和位线上的电位并执行电压脉冲协议,该电压脉冲协议包括在所有字线和位线上的电位的时钟序列,所说控制装置适合于在至少部分读周期期间激活字线(WL),以致将相对于所有相交的位线的电位至少对应于电压Vs的电位施加到该字线(AWL)。
6.根据权利要求5的器件,其特征在于,可极化材料是铁电聚合物。
7.根据权利要求3的器件,其特征在于,检测装置(SA)是读出放大器。
全文摘要
在一种用于读取无源矩阵可寻址器件、尤其是一种具有可极化材料的各个可寻址单元的存储器器件或传感器器件的方法中,每个单元中的各单元以两种极化状态+P
文档编号G11C11/22GK1701386SQ02823792
公开日2005年11月23日 申请日期2002年10月29日 优先权日2001年11月30日
发明者P·布罗姆斯, C·卡尔松 申请人:薄膜电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1