盘驱动器装置和倾斜补偿方法

文档序号:6755403阅读:148来源:国知局
专利名称:盘驱动器装置和倾斜补偿方法
技术领域
本发明一般涉及一种用于将信息写到光学存储盘中/从光学存储盘读取信息的盘驱动器装置,其中盘是旋转的,写/读头相对于该旋转盘径向移动。本发明可应用于光盘系统以及磁光盘系统,在下文中,将使用用语“光盘驱动器”,但是应该理解,该用语还意在覆盖磁光盘系统。
背景技术
众所周知,光学存储盘包括能够以数据类型的形式存储信息的存储空间的至少一个轨道,所述轨道呈连续螺旋形或多个同心圆形。光盘可以是只读类型,在其制造过程中记录信息,用户只能读取信息。光学存储盘也可以是可写类型,用户可以存储信息,尽管本发明也可以应用于只读类型的光盘,但是本发明是特别针对可写光盘来设计的。因此,在下文中,特别针对可写盘的情况解释本发明,但无意将本发明的范围限制为该例子。
更特别的是,尽管本发明可应用于不同类型的可写盘,例如CD-RW,但是本发明是特别针对可记录的DVD来设计的。因此,在下文中,特别针对可记录的DVD的情况解释本发明,但无意将本发明的范围限制为该例子。
为了将信息写到光学存储盘的存储空间中,或者为了从该盘读取信息,光盘驱动器一方面包括用于接纳和旋转光盘的旋转装置,另一方面包括用于产生光束特别是激光束并利用所述激光束扫描存储轨道的光学装置,由于一般的光盘、在光盘中存储信息的方法和从光盘读取光学数据的方法的技术是公知的,因此本文不需要详细地描述这种技术。
为了旋转光盘,光盘驱动器通常包括电动机,该电动机驱动与光盘中心部分相接合的盘芯(hub)。通常,电动机以主轴电动机来实现,电动机驱动的盘芯可直接设置在电动机的主轴上。
为了光学地扫描该旋转盘,光盘驱动器包括光束发生器设备(通常是激光二极管)、用于将光束聚焦为盘上焦斑的物镜,和用于接收从该盘反射的反射光并用于产生电检测器输出端信号的光学检测器。
在工作过程中,光束应该保持聚焦在盘上。为此,将物镜设置为可轴向移动,光盘驱动器包括用于控制物镜轴向位置的焦点致动器装置。此外,该焦斑应该保持与轨道对准,或者应该能够相对于新轨道定位。为此,至少将物镜安装为可径向移动,光盘驱动器包括用于控制物镜径向位置的径向致动器装置。
光盘可能因任何原因而出现倾斜。光盘的倾斜可定义为光盘表面没有精确垂直于旋转轴的情况。倾斜可由光盘整体相对于激光束倾斜而引起(例如因为电动机轴相对于机架倾斜;这表示为静态倾斜),但是倾斜通常是由光盘翘曲引起的,因此倾斜量取决于在盘上的位置,特别是具有相对较大数值孔径(NA)的DVD系统,对盘倾斜敏感。因此,已开发了倾斜补偿机构,通常,在具有倾斜补偿的盘驱动器装置中,至少物镜被安装为可枢转的,并且光盘驱动器包括用于控制物镜位置的倾斜致动器装置,作为选择,可以校正盘自身的定位。其他类型的可控倾斜校正机构也是可以的,为了能够进行倾斜补偿,现有技术的光盘驱动器具有用于检测倾斜角并产生表示该倾斜角的倾斜测量信号的倾斜检测器,以及从倾斜检测器接收倾斜测量信号并按照减小倾斜角甚至使其为零的方式控制倾斜致动器装置的倾斜控制器,在这种特殊类型的现有技术的光盘驱动器中,倾斜检测器基于对光学检测器的电输出端信号进行的处理,例如,US-6.157.600公开了一种倾斜控制方法,该方法基于对表示为径向推挽信号的径向误差信号进行的处理。该公开文本显示当倾斜角为0°时,推挽跟踪误差信号TE的振幅K最大,并且该振幅随倾斜角的增大而减小。振幅K和倾斜角之间的关系以根据模拟获得的图表给出,在实践中,对振幅K进行测量,并将其用作倾斜角的测量值,该现有技术系统的缺点在于其只能在光盘具有在轨道中形成的凹坑的情况下,特别是第一移位凹坑移动到轨道的第一侧且第二移位凹坑移动到轨道的第二侧的情况下使用,至少是可靠地使用。在空白盘或仅仅部分写入的DVD可记录盘的情况下,不存在这种凹坑,导致糟糕的信噪比,这样就使得所述现有技术的方法不能产生可靠的结果。
发明概述本发明的主要目的是克服该缺陷。
本发明的重要目的是提供一种新的用于光盘驱动器装置的倾斜补偿方法。
特别是,本发明旨在提供一种用于光盘驱动器装置的倾斜补偿方法,该方法能够补偿在写过的盘、空白盘和部分写过且部分空白的盘的情况下出现的倾斜,本发明的另一个目的是能够驱动倾斜致动器到达最佳位置,而不必测量实际的倾斜,现有技术的方法基于首先测量实际倾斜,然后采取措施减小该倾斜。本发明采取根本不同的方法。与现有技术的系统形成对比,本发明主要是改变倾斜致动器,并将该倾斜致动器设置到最适合光学读取/写入的位置,特别是着眼于最小化光学像差,而不需要知道倾斜的绝对值,要注意,一种可能的光学像差是“慧差”;光学像差的这种非常主要的类型除其它因素外,尤其是因倾斜引起的,根据本发明的第一方面,选择倾斜相关参数,已知当倾斜致动器具有就最小光学像差而论的最佳位置或者充分接近该最佳位置时,该参数具有极值(最大值或最小值/零)。通过优选的但不是限制性的例子,该倾斜相关参数可以是推挽跟踪误差信号的振幅,所述推挽跟踪误差信号例如来自误差通道的三斑点推挽信号,或者来自摆动通道的一斑点推挽信号。
根据本发明的第二方面,将该倾斜致动器设置到所述倾斜相关参数具有极值的位置。
根据本发明的第三方面,改变该倾斜致动器的设置,针对倾斜致动器的几个不同设置,测量所述倾斜相关参数的值。对测量结果进行分析,并计算倾斜致动器的最佳设置。这种分析和计算可包括测量结果的插值和/或将测量结果拟合到适当的公式,根据本发明的第四方面,当倾斜致动器设置到计算所得的最佳设置时,操作该盘驱动器装置,附图简述通过下面参照附图的描述将进一步解释本发明的这些和其他方面、特点和优点,在附图中,相同的附图标记表示相同或相似的部件,其中


图1A示意性地示出光盘驱动器;图1B是示意性说明与信号处理器相连的光学检测器的方框图;图2是示意性说明净倾斜与跟踪误差信号的振幅之间的关系的曲线图;图3是说明对作为光学透镜枢转角的函数的跟踪误差信号的振幅的测量结果的曲线图;图4是说明根据本发明的测量方法的各个步骤的流程图;图5是用于说明振幅测量结果结合透镜摆动的曲线图。
发明详述图1A示意性地说明适合于将信息存储在光盘2上或者从光盘2读取信息的光盘驱动器装置1,所述光盘通常是DVD。为了旋转盘2,盘驱动器装置1包括固定到机架(为了简洁而未示出)的电动机4,该电动机4定义了旋转轴5。为了接纳和保持盘2,盘驱动器装置1可以包括转台或夹紧盘芯6,在有主轴电动机4的情况下,该转台或夹紧盘芯6安装在电动机4的主轴7上,盘驱动器装置1进一步包括光学系统30,用于通过光束扫描盘2的轨道(未示出)。更特别的是,光学系统30包括光束产生装置31,该光束产生装置通常是激光器,如激光二极管,用于产生穿过分束器33和物镜34的光束32a,物镜34将光束32b聚焦为盘2上的焦斑F。光束32b从盘2反射(反射光束32c),并穿过物镜34和分束器33(光束32d)到达光学检测器35,与装置1相关联的是在下面将使用的直角坐标系XYZ,其中旋转轴5作为Z轴。径向方向作为X轴,即垂直于Z轴,这样就使焦斑F位于XZ平面内。切向方向作为Y轴,即垂直于X轴和Z轴。与盘2相关联的是将使用的极坐标系r,。
盘驱动器装置1进一步包括致动器系统40,其包括用于相对于盘2径向地(X方向)移动物镜34的径向致动器41。由于径向致动器本身是已知的,同时本发明不涉及这种径向致动器的设计和功能,因此本文不需要非常详细地讨论径向致动器的设计和功能。
为了保持光束32b恰好在盘2的希望的位置上正确的聚焦,所述物镜34被安装成可轴向(Z方向)移动,此外,盘驱动器装置1的致动器系统40还包括焦点致动器42,其用于相对于盘2轴向地移动物镜34。由于轴向致动器本身是已知的,此外这种轴向致动器的设计和操作不是本发明的主题,因此,本文不需要非常详细地讨论这种焦点致动器的设计和操作。
为了倾斜补偿,所述物镜被安装成可绕枢轴枢转,该枢轴方向平行于Y轴,因此物镜34的光轴36总是位于XZ平面内。优选的是,所述枢轴与物镜34的光学中心重合。枢转角(ψ)定义为Z轴与物镜34的光轴36之间的夹角。此外,盘驱动器装置1的致动器系统40还包括枢转致动器43,其也表示为倾斜致动器,用于使物镜34相对于盘2枢转。
要注意,用于相对于装置机架支撑物镜的装置,以及用于轴向和径向移动物镜的装置本身一般都是已知的。由于这种支撑和移动装置的设计和操作不是本发明的主题,因此本文不需要非常详细地讨论其设计和操作。这同样适用于使物镜枢转的装置,此外要注意,径向致动器41、焦点致动器42和枢转致动器43能以集成的3D致动器来实现。
盘驱动器装置1进一步包括控制电路90,其具有与电动机4的控制输入端相连的第一输出端92、与径向致动器41的控制输入端耦合的第二输出端93、与焦点致动器42的控制输入端耦合的第三输出端94,以及与枢转致动器43的控制输入端耦合的第四输出端95。控制电路90被设计成在其第一输出端92产生用于控制电动机4的控制信号SCM,在其第二控制输出端93产生用于控制径向致动器41的控制信号SCR,在其第三输出端94产生用于控制焦点致动器42的控制信号SCF,在其第四输出端95产生用于控制枢转致动器43的控制信号SCT。
控制电路90进一步具有用于从光学检测器35接收读信号SR的读信号输入端91。
图1B说明了包括多个检测器部分的光学检测器35,在本例中为四个检测器部分35a、35b、35c、35d,这四个检测器部分能够分别提供单独的检测器信号A、B、C、D,这四个检测器信号分别表示入射在每个检测器象限上的光的量。根据Y方向(跟踪方向)定位中心线37,该中心线将第一和第四部分35a和35d与第二和第三部分35b和35c分隔开。由于这种四象限检测器本身是公知的,因此本文不需要更详细地描述其设计和功能,
图1B还说明了控制电路90的读信号输入端91,该控制电路90实际上包括四个输入端91a、91b、91c、91d,用于分别接收所述的各个检测器信号A、B、C、D,控制电路90被设计成对所述各个检测器信号A、B、C、D进行处理,以便从中获得数据和控制信息,如本领域的技术人员很清楚的那样。例如,可以根据下面的公式(1),通过将所有各个检测器信号A、B、C、D求和来获得数据信号SDSD=A+B+C+D (1)此外,可以根据下面的公式(2),通过将中心线37一侧的所有各个检测器部分35a和35d的信号A和D求和,将中心线37另一侧的所有各个检测器部分35b和35c求和,然后将这两个和相减来获得一斑点推挽跟踪误差信号STESTE=(A+D)-(B+C)在图1A中,显示出盘2上的点P,该点具有极坐标r和。在理想情况下,盘表面在点P(r,)处的法线恰好平行于Z轴,但是在如图所示盘2具有翘曲表面的情况下,点P(r,)处的法线与Z轴成θ(r,)角。该角θ(r,)表示为点P(r,)处的倾斜。该倾斜可随着盘的表面变化,换句话说,倾斜θ(r,)可以是径向坐标r和角坐标的函数,由于盘倾斜,焦斑F不再是圆形的,像差(“慧差”)可能导致串话干扰,这可能产生写误差和读误差,此外,伺服信号对倾斜敏感,摆动信号也对倾斜敏感,为了避免这些问题,希望入射在盘2上的光束32b基本上垂直于盘表面,这可以通过向物镜34提供一个枢转位置使透镜的枢转角ψ等于盘的倾斜θ来获得,于是,盘2相对于光束32b的净倾斜为零,在下文中,净倾斜NT应该规定为NT=θ-ψ。
本发明利用倾斜相关参数,该参数的值依赖于净倾斜NT,因此当净倾斜NT等于零时,所述参数的值具有最佳值。有几个倾斜相关参数适合于这一目的,尽管不是必需的,但是优选的是,这种倾斜相关参数可从检测器35的输出端信号SR获得,已经证明跟踪误差信号STE的振幅ATE非常适合于上述目的,因此,通过非限制性的例子,将针对使用该参数的情况进一步解释本发明。
图2是说明跟踪误差信号振幅ATE(垂直轴,任意单位)和净倾斜NT(水平轴,单位为°)之间的关系的曲线图。对于小的NT值来说,所述关系可以被认为是在NT=0°处具有最大值的抛物线关系,原则上,倾斜可依赖于径向坐标r和角坐标,就对径向坐标r和对角坐标这两方面的依赖性来说,本发明适合于补偿倾斜。但是,半径r处的平均倾斜(在=0-2π上求平均值)通常是比对角度的依赖性更主要的因素。此外,如果也要考虑对角度的依赖性,那么在使透镜保持固定在一个轨道上的情况下,透镜可能必须以相对较高的频率“摆动”。优选的是,在透镜保持固定在一个轨道上的情况下,透镜仍然保持静止。因此,优选的是,仅仅考虑径向依赖性,而忽略对角度的依赖性,或者使其达到平均数。图3和4说明根据本发明的这种优选倾斜补偿方法的基本步骤,在第一步中,控制电路90产生其枢转控制信号SCT,因此枢转致动器43将物镜34带到第一枢转位置[102],该第一枢转位置用第一枢转角ψ(1)来表征,要注意,原则上,可以自由地选择第一枢转角ψ(1)的确切值。在这一位置,控制电路90在完整的盘旋转过程中测量跟踪误差信号振幅ATE(1)[103],并计算平均值<ATE(1)>。将第一枢转角ψ(1)和对应的平均跟踪误差信号振幅<ATE(1)>的组合存储在与控制电路90相关联的存储器96中[104]。
然后,控制电路90产生其枢转控制信号SCT,使枢转致动器43将物镜34带到第二枢转位置,该第二枢转位置由第二枢转角ψ(2)来表征。此外,在完整的盘旋转过程中,测量跟踪误差信号振幅ATE(2),并求其平均值,并将第二枢转角ψ(2)和对应的平均跟踪误差信号振幅<ATE(2)>的组合存储在所述存储器96中。
对多个枢转角ψ重复上述步骤[105;106];每一次都产生枢转角ψ(i)和对应的平均跟踪误差信号振幅<ATE(i)>的组合,在一定次数的测量之后,例如在7个不同的枢转角做7次测量之后,控制电路90从所述存储器96取回测量结果(ψ(i),<ATE(i)>)[107],并计算使平均跟踪误差信号振幅<ATE>具有极值的枢转角ψ的值ψOPT[108]。
图3是说明这些测量的例子的曲线图,其中标绘出与枢转角ψ(i)(水平轴,单位为mrad)相对应的平均跟踪误差信号振幅<ATE(i)>(垂直轴,任意单位),叉号表示测量结果。
如本领域的技术人员应该清楚的那样,任何在q=qM时具有最大值的函数p(q)可在该最大值qM周围的一个小范围内用一个依照下式的二次函数合理地近似,p(q)≈c0+c1·(q-qM)+c2·(q-qM)2其中c0、c1和c2是常数。为测量pi(qi)结果寻找最佳拟合相当于为qM和c0、c1、c2寻找最佳值。通常,这通过公知的最小二乘法来进行,本文不需要对此进行解释,在任何情况下,本领域的技术人员应该清楚,根据在这种函数的最大值周围的几次测量,可以计算最佳抛物线拟合,因此可以计算qM和pM(qM),在图3中,曲线80说明这种抛物线拟合。该拟合的最大值点81具有坐标ψOPT和ATE,MAX。从该曲线可知,在该例子的情况下,平均跟踪误差信号振幅<ATE>在枢转角ψOPT为5mrad时具有最大值ATE,MAX。
在盘驱动器装置1随后的操作过程中,控制电路90产生其枢转控制信号SCT,这样就使得枢转致动器43把物镜34带到最佳枢转角ψOPT[109]。于是,跟踪误差信号振幅ATE处于其最大值,至少是平均起来的最大值。参考图2,这意味着该净倾斜NT是零,这样,现在已经最佳地补偿了盘2的倾斜θ。
这里要注意,本发明实际上没有为某个设定的枢转角ψ计算净倾斜,本发明的方法也不需要这种计算。本发明的方法基于在这种情况下净倾斜为零的认识,寻找振幅ATE的最大值。即使光学传感器输出端信号出于任何原因出现波动也可以应用这种方法,因为这种波动同样地影响所有测量,但是最佳值ψOPT的位置不受影响。
在上文中,已经说过,测量数据存储在存储器中,并且在执行预定数量的测量之后计算抛物线拟合。也可以在进行三次测量之后计算抛物线拟合,并且在每回进行下面三次测量之后更新该抛物线拟合,以节省存储单元,为了能够获得适合于进行上述测量的跟踪误差信号STE,需要在每个测量过程中出现至少一个轨道交叉。实际上,由于盘偏心和转台偏心总是存在一些轨道交叉,甚至是在理想盘和理想转台的情况下也存在轨道交叉,由于轨道的螺旋形,每次旋转也将会出现一个轨道交叉。但是,不能确定在旋转到一部分的过程中实际出现一个还是多个轨道交叉。这可以通过以高于盘旋转速度的频率轻微摆动径向致动器来强制执行,但是这不是优选的,因此,在没有这种摆动的情况下,优选的是,每次测量所花的测量时间至少与盘旋转一周的持续时间一样长;更优选的是,该测量时间基本上等于盘的旋转周期,从而使测量结果<ATE>是盘旋转一周的平均值,如上所述。
但是,本发明的原理不限于在盘旋转一周过程中求平均值,原则上,特别是在经历足够数量的轨道交叉的情况下,可以在固定半径r处的多个位置做多次单独的测量ATE(r,)(i),并针对枢转角ψ(i)的几个值重复这样的多次测量。然后,针对每个这种位置(r,),都获得作为枢转角ψ(i)的函数的多个测量结果,并且针对每个这种位置(r,)计算最佳枢转角ψOPT(r,),然后,在写或读的过程中,在某一半径r处,可以依照每个位置(r,)的所述最佳枢转角ψOPT(r,),根据角坐标来设置枢转致动器43。
在上文中,已经解释了针对光学透镜34的几个枢转位置ψ(i)测量跟踪误差信号STE的振幅ATE。原则上,通过将光学透镜34带到某一枢转位置,并在测量过程中使光学透镜34保持固定,随后将其位移到下一个枢转位置,并且再次使光学透镜34保持固定等来进行这些测量,但是,光学透镜的这种逐步移动不是优选的,因为其产生透镜的不希望的振动,由于在减小所述振动之前会花一些时间,因此导致测量时间延长。可通过使该透镜以基本上小于盘的旋转速度的频率经历连续的谐运动(倾斜摆动)使这种振动和其他可能的扰动减到最小。图5中示出本发明的该实施例,在图5的曲线中,水平轴表示时间,以毫秒为单位,曲线51是转速器信号,代表盘的旋转;在该例子中,盘的旋转速度是52Hz。
曲线52代表倾斜致动器43的倾斜控制信号SCT,因此代表透镜的枢转角ψ,在该例子中,透镜以2.75Hz的频率摆动。该曲线左侧的垂直轴对应于角度,单位为mrad。
水平线53和54代表将要考虑在其中要进行这些测量的枢转角范围[ψMIN,ψMAX]的边界ψMIN和ψMAX。
每次盘旋转一周都对应于一次<ATE(i)>的测量;对于在所述范围[ψMIN,ψMAX]内的枢转角ψ(i),对应的枢转角ψ(i)(在该例子中也是在盘旋转一周的过程中求平均值)表示为开圆55,对于在所述范围[ψMIN,ψMAX]之外的枢转角ψ(i),对应的枢转角ψ(i)表示为叉号56。在该例子中,在摆动的半周期的过程中,即在透镜的一次“扫描”的过程中,在所述范围[ψMIN,ψMAX]内的7个枢转角ψ(i)[i=1-7]处执行7次测量ATE(i)[i=1-7]。
要注意,原则上,透镜的一次“扫描”足以能够计算最佳值ψOPT。于是,在该例子中,测量过程花了摆动的半周期的时间,即稍小于200ms。但是,如果需要,可以在透镜的更多扫描过程中继续该测量,以便提高准确度。
上述过程发生在盘的一个特定半径rj处,即,在径向致动器41的一个设置处。由于倾斜θ可随着盘而变化,因此优选的是应该在大量不同的半径rj[j=1-Nr]处计算最佳枢转角ψOPT。这需要在每个所述不同半径rj[j=1-Nr]处,即径向致动器41的Nr个不同设置处进行上述过程,这样就产生Nr个不同的最佳枢转角ψOPT(rj)[j=1-Nr],每个都对应于一个所述选定的测量半径rj。将计算所得的最佳枢转角ψOPT(rj)[j=1-Nr]例如以查找表的形式存储在与控制电路90相关联的存储器中,例如存储在所述存储器96中,该计算所得的最佳枢转角ψOPT(rj)[j=1-Nr]与对应的测量半径rj有关。在盘驱动器装置的操作过程中,控制电路90总是根据所述存储器中的信息,并考虑将要进行写或读动作所处的当前半径来选择用于倾斜致动器43的控制信号SCT。
在径向致动器41的Nr个不同设置处进行测量需要径向致动器41的Nr-1个径向跳动。将倾斜致动器的Nr个测量扫描与径向致动器41的Nr-1个径向跳动结合的最有效的方法是在两个相继的扫描之间完成径向跳动。由于径向跳动需要存取时间,因此在两个相继扫描之间应该存在非测量时间。通过选择比枢转角测量范围的一半大的透镜摆动振幅(在图5中的AW)来提供该时间。如果光学透镜在零枢转角附近摆动,如在该例子中,意味着ψMIN=-ψMAX,相当于选择大于ψMAX的透镜摆动振幅AW,如图5中所示。实际枢转角ψ超过所述测量范围[ψMIN,ψMAX]的时间周期,在图5中用tj表示,可用作存取时间。
很明显,总测量时间,即用于测量ψ(i;rj)[i=1-Ni][j=1-Nr]和计算Nr个最佳枢转角ψOPT(rj)[j=1-Nr]的总测量时间取决于大量因素。因此,可以根据需要选择测量参数Nr、AW、摆动频率等的最佳设置。当然,半径数量Nr增大导致扫描次数和跳动次数增大,但是考虑到跳动距离减小,上述半径数量增大导致所需存取时间减小,因此扫描振幅AW可减小和/或扫描频率可增大。另一方面,如果增大盘的旋转速度,那么可减小总测量时间和/或可增大摆动频率和/或可增大半径的数量Nr。通常,根据最大容许总测量时间来选择测量参数,出于市场方面的考虑来选择该最大值。
这样,本发明成功地提供了一种补偿光盘2倾斜的方法。将可枢转安装的光学透镜34枢转到最佳枢转位置ψOPT,从而使推挽跟踪误差信号STE的振幅ATE最大。通过测量在不同枢转位置ψ(i)处的所述振幅ATE,并通过这些测量(ψ(i),ATE(i))计算最佳抛物线拟合的最大值点(ψOPT,ATE,MAX)来确定所述最佳枢转位置ψOPT。
本领域的技术人员应该清楚,本发明不限于上面讨论的示范性实施例,而是可以在随附的权利要求书限定的本发明的保护范围内进行各种变化和修改。
例如,尽管上面指出用于这些测量的最佳抛物线拟合的顶点的两个坐标ATE,MAX和ψOPT均被计算,但是应该清楚,不需要实际地计算该最大参数值ATE,MAX计算最佳枢转角ψOPT就足够了。
此外,尽管通过示出作为光学透镜34的枢转角ψ的函数的推挽跟踪误差信号STE的振幅ATE来描述本发明,但是实际上不需要知道实际的枢转角值ψ(i)和ψOPT。控制电路90知道用于倾斜致动器43的倾斜控制信号SCT的对应值SCT(i)和SCT,OPT就足够了。实际上,设置和/或计算枢转角被认为是相当于分别设置和/或计算倾斜控制信号。此外,要注意,在上文中,以举例方式使用一斑点跟踪误差信号;但是作为选择,可以使用其他跟踪误差信号,例如三斑点跟踪误差信号。
此外,要注意,如上面方程式(2)中定义的一斑点跟踪误差信号未被规一化。作为代替,可以使用规一化误差信号STEN,该规一化误差信号STEN例如根据公式STEM=STE/SD来获得,其中SD优选地通过低通滤波器过滤。
此外,在上文中,将跟踪误差信号的振幅ATE作为倾斜相关参数。可替换的是,可以对这种跟踪误差信号进行处理来获得另一倾斜相关参数,例如峰值振幅、信号功率、RMS值、绝对值、振幅的平方等。
权利要求
1.用于补偿光盘驱动器装置(1)中光盘(2)的倾斜(θ)的方法,该光盘驱动器装置包括光学透镜(34),该光学透镜被安装成可枢转的;该方法包括以下步骤-选择倾斜相关参数(ATE),该倾斜相关参数在倾斜角为零之时具有极值;-在该光盘的一定半径处,针对所述光学透镜(34)的枢转角的几个值(ψ(i))测量所述倾斜相关参数的值(ATE(i));-通过测量结果(ψ(i),ATE(i))来计算与抛物线拟合(80)的最佳点(81)对应的最佳枢转角(ψOPT);-选择所述最佳枢转角(ψOPT),作为所述光学透镜(34)在所述一定半径处进行写或读动作的过程中的设置。
2.根据权利要求1的方法,其中所述枢转角(ψ)在测量过程中保持常量。
3.根据权利要求1的方法,其中在测量之后,所述枢转角(ψ)逐步改变。
4.根据权利要求1的方法,其中所述倾斜相关参数的所述值(ATE(i))被测量为在基本上盘旋转一周过程中的平均值。
5.根据权利要求1的方法,其中在所述测量过程中,通过光学透镜的谐运动连续改变所述光学透镜(34)的所述枢转角。
6.根据权利要求5的方法,其中所述谐运动的频率低于盘的旋转速度。
7.根据权利要求5的方法,其中在所述预定测量范围[ψMIN,ψMAX]内进行所述测量,并且所述谐运动的振幅(AW)大于所述测量范围[ψMTN,ψMAX]的长度(ψMAX-ψMIN)的一半。
8.根据权利要求7的方法,其中在枢转角(ψ)位于所述测量范围[ψMIN,ψMAX]之外的时间周期(tj)中,控制径向致动器(41)以跳到另一个半径。
9.根据权利要求1的方法,其中针对一定数量的不同测量半径(rj),计算所述最佳枢转角(ψOPT(rj))。
10.根据权利要求9的方法,其中将最佳枢转角(ψOPT(rj))和半径(rj)之间的关系存储在存储器(96)中;并且其中,当在一定盘半径(r)处进行写或读动作时,根据在所述存储器中存储的所述关系,将所述光学透镜(34)的枢转角(ψ)设置为最佳枢转角(ψOPT(rj))。
11.根据权利要求9的方法,其中枢转角(ψ)在所述测量范围[ψMIN,ψMAX]中的一个扫描过程期间,针对一个测量半径进行所述测量;其中,枢转角(ψ)在所述测量范围[ψMIN,ψMAX]之外的时间周期(tj)期间,控制径向致动器(41)以跳到另一个半径;并且其中枢转角(ψ)在所述测量范围[ψMIN,ψMAX]中的后续的扫描过程期间,针对所述其他测量半径进行所述测量。
12.根据权利要求1的方法,其中可从所述光盘驱动器装置的光学检测器(35)的输出信号(SR)得出所述倾斜相关参数(ATE)。
13.根据权利要求12的方法,其中所述倾斜相关参数(ATE)是对跟踪误差信号(STE)的振幅的测量,所述跟踪误差信号优选地为推挽跟踪误差信号(STE)。
14.根据权利要求12的方法,其中所述倾斜相关参数是所述跟踪误差信号的峰值振幅,或者是所述跟踪误差信号的信号功率,或者所述跟踪误差信号的RMS值,或者是所述跟踪误差信号的绝对值。
15.一种光盘驱动器装置(1),包括-用于扫描光盘(2)的轨道的光学系统(30),该光学系统(30)包括光束产生装置(31);用于将光束(32b)聚焦在盘(2)上的物镜(34);用于检测反射光束(32d)的光学检测器(35);所述物镜(34)被安装成可枢转的;-用于使物镜(34)相对于盘(2)枢转的可控枢转致动器(43);-控制电路(90),具有用于接收来自光学检测器(35)的输出信号(SR)的输入端(91),并且具有与所述枢转致动器(43)的控制输入端耦合的输出端(95);其中控制电路(90)适合于进行根据权利要求1-14中任一项的倾斜补偿方法。
全文摘要
本发明描述了一种用于补偿光盘(2)倾斜(θ)的方法。光学透镜(34),是可枢转地安装的,被枢转到最佳枢转位置(W
文档编号G11B7/09GK1791911SQ200480013689
公开日2006年6月21日 申请日期2004年5月13日 优先权日2003年5月21日
发明者J·A·L·J·拉伊马克斯 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1