半导体装置的制作方法

文档序号:7216970阅读:148来源:国知局
专利名称:半导体装置的制作方法
技术领域
本发明涉及半导体装置,尤其涉及具有螺旋电感器和电磁波屏蔽层的半导体装置。
作为这样的薄膜电感器,有例如在任一个布线层上形成平面状的螺旋(涡卷)图形,或将多个布线层和各布线层间的导电插头相组合,形成立体的线圈等的情况。
其中,具有平面状的螺旋图形的所谓螺旋电感器,由于由一个布线层构成电感器部分,具有含有引出电极部的必需的布线层数少,结构简单,连接部分少,从而可减小电感器的电阻小等特点,所以广泛应用。
但是,另一方面,由于螺旋电感器在平面上形成回旋图形,必需有必较大的占有面积。所以,其它电路产生的电磁波等串扰信号容易流入,容易导致电路特性的误动作。尤其是,最近,模拟电路和数字电路在同一衬底上同时混载的场合增加,不能忽视数字电路等产生的电磁波的影响。于是,研究了同时有螺旋电感器时,为了阻止串扰信号的流入应具有何种电磁波屏蔽装置的结构。考虑了使用例如在螺旋电感器上方具有作为电磁波屏蔽层的导体层的简易结构。
图6(a)和6(b)展示了在半导体衬底100上形成的螺旋电感器和简单的电磁波屏蔽层结构的一例。
如图6(a)所示,螺旋电感器200具有例如矩形的涡卷图形,从最内侧的螺旋图形的起点和最外侧的螺旋图形的终点分别引出用于通电的电极。电磁波屏蔽层600接地,具有覆盖螺旋电感器200的电感器部分的充分的宽度,如图6(b)所示,夹着绝缘膜150位于电感器的上方。
希望作为电感器特性的Q值比较高。当自感(L)值高,电阻(R)低时,可得到高的Q值。
虽然电磁波屏蔽层600可发挥阻止来自其它电路的串扰信号的流入,但另一方面,存在以下说明的因电磁感应使螺旋电感器200的自感(L)降低,结果成为Q值劣化的主要原因的忧虑。
通常,若具有回旋图形的布线通电就会因圆电流而产生磁场。该磁场在圆中心部分具有最强的磁力线密度(磁场强度)。螺旋电感器200的情况也同样,若通电就会如图6(b)所示,在螺旋电感器的中央产生与螺旋面垂直的方向上的磁力线。该磁力线贯通位于上方的电磁波屏蔽层600。由于电磁波屏蔽层600是导体,当贯通的磁力线变化时就会因电磁感应有感应电流在电磁波屏蔽层600内的磁力线周围涡旋地流动。由于因电磁感应生成的该感应电流以阻挡磁场变化的方式生成,螺旋电感器200产生的磁力线密度降低,自感(L)减小,Q值劣化。
针对这个问题,美国专利公报No.5,969,590和5,831,331中公开了设置具有与螺旋电感器的主要圈的图形一致的图形的电磁波屏蔽层,来阻止感应电流的产生的方法。但是由于该结构在电磁波屏蔽层处设有大量空隙从而不能得到充分的电磁波屏蔽效果。
本发明正是鉴于上述问题而提出的,其目的在于在具有螺旋电感器和电磁波屏蔽层的半导体装置中,同时实现螺旋电感器的Q值不劣化和良好的电磁波屏蔽效果。
根据上述本发明的第一方面,由于螺旋电感器产生的磁力线的大多数通过电磁波屏蔽层内的开口部,通过是导体的电磁波屏蔽层中的磁力线数量减少。因此,可以抑制因电磁感应生成的回旋电流的发生,可以抑制螺旋电感器产生的磁力线密度的降低。由于该开口部设在电磁波屏蔽层的中央部分,电磁波屏蔽效果的牺牲也少。
本发明第二方面的半导体装置,其特征在于包括以第一导电层形成的具有螺旋图形的螺旋电感器;和夹着绝缘膜在上述螺旋电感器的上方或下方配置的、接地或与恒压电源连接的、由第二导电层构成的电磁波屏蔽层;上述电磁波屏蔽层,具有以不形成回绕通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线的周围的电流路径的方式,隔断该回绕路径的缝隙。
根据上述本发明的第二方面,由于上述缝隙隔断了围绕螺旋电感器产生的磁力线周围而闭合的电流路径,可以抑制因电磁感应在电磁波屏蔽层内生成的回绕电流。因此,可以抑制因该回绕电流产生的磁力线,防止螺旋电感器产生的磁力线密度的降低,同时,由于只在电磁波屏蔽层上形成了缝隙,可以维持良好的电磁波屏蔽效果。
另外,在上述第二方面的半导体装置中,上述缝隙可以具有从通电时因上述螺旋电感器在上述螺旋图形的中央产生磁力线通过的区域的中心向上述电磁波屏蔽层的周边部分延伸的缝隙图案。此时,由于上述缝隙隔断了围绕螺旋电感器产生的磁力线周围的闭合的电流路径,可以确定地抑制回绕电流的产生,同时可以维持良好的电磁波屏蔽效果。
本发明第三方面的半导体装置,其特征在于包括以第一导电层形成的具有螺旋图形的螺旋电感器;和夹着绝缘膜在上述螺旋电感器的上方或下方配置的、接地或与恒压电源连接的、由第二导电层构成的电磁波屏蔽层;上述电磁波屏蔽层具有在通过通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线的区域上设置的开口部以及从上述开口部向上述电磁波屏蔽层的周边部分延伸的缝隙。
根据上述本发明的第三方面,由于结合了上述第一方面和第二方面,可以更确定地抑制螺旋电感器产生的磁力线密度的降低。
另外,上述电磁波屏蔽层上形成的开口部可以在上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域内形成。而且,上述开口部可以占上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域的面积的50~90%。由于螺旋电感器产生的磁力线在螺旋图形的中心磁力线密度最高,通过在与该中心部分对应的区域上设置开口部,可以有效地抑制感应电流的产生。而且,通过把开口部限制在电磁波屏蔽层的与螺旋图形最内侧一圈包围的区域对应的区域内,可以维持良好的电磁波屏蔽效果。
实施发明的具体方式下面,参照


本发明的实施形态。(第一实施方案)图1(a)是展示本发明的半导体装置的第一实施方案的正面图;图1(b)是图1(a)中的虚线A-A处的剖面图。
如图1(a)所示,根据第一实施方案的半导体装置具有具有在同一平面内形成的螺旋图形的螺旋电感器20、和电磁波屏蔽层60。电磁波屏蔽层60在其与螺旋电感器20的位于最内侧的圈包围的区域对应的区域内具有开口部100,同时,具有从该开口部延伸到电磁波屏蔽层60的周边部分的缝隙120。
下面,更具体地说明各部分的构成。
对螺旋电感器的形成位置没有特别的限制,但是可以如图1(b)所示,在例如第一布线层的位置用同一层形成。此时,用在半导体衬底10上形成的第一层间绝缘膜15上的第一布线层,形成具有图1(a)所示的涡卷图形的螺旋电感器20。
构成螺旋电感器20的布线层,虽然可以采用作为布线层而广泛使用的包含Al布线的任一种布线层,但为了提高螺旋电感器20的Q值,希望能只抑制螺旋电感器20自身的电阻。因此,优选使用电阻低的金属布线,尤其是Cu布线。
螺旋电感器的尺寸虽然可以根据各电路选择适当的尺寸,但若以形成具有例如100μm见方的占有面积的螺旋电感器20为例,为了降低电感器的电阻,最好螺旋的线宽为具有一定宽度如5~10μm,线间距为10μm左右。图中为了方便示出了由三圈构成的螺旋图形,但圈数可根据需要选择。另外,为了降低电阻布线层的厚度最好为具有一定程度的厚度,例如用Cu布线层时,希望有2~4μm左右的厚度。
螺旋电感器20中,由于在螺旋中流过电流,从螺旋中央的圈起点和螺旋最外周的圈终点分别引出电极。例如,如图1(b)所示,从圈起点引出的线通过在第二层间绝缘膜35中形成的导电通孔30,形成引出到第二布线层的线40,再用电极引出到螺旋电感器20外部。另外,从圈终点引出的线可用构成螺旋电感器的第一布线层形成。
另外,用第三层间绝缘膜55上的第三布线层形成电磁波屏蔽层60。希望如图1(a)所示,电磁波屏蔽层60具有为了对于螺旋电感器20具有充分的电磁波屏蔽效果而覆盖螺旋电感器20的足够的宽度。由于电磁波屏蔽层60只要能屏蔽电磁波就可以,只要是导体之类的材质就可以。电磁波屏蔽层60通过图中未示出的引出线与接地电位相连。另外,也可以取代接地电位而与恒压电源相连。
根据第一实施方案的电磁波屏蔽层60的特征在于,第一,在与位于螺旋电感器20最内侧的圈包围的区域相对应的、电磁波屏蔽层60的中央部分上形成开口部。
如图1(b)所示,若在螺旋电感器20中通电,由于螺旋中流过回绕电流,在螺旋的中央产生由该回绕电流产生的磁力线。该磁力线在螺旋中心的磁力线密度最高,在与螺旋形成面垂直的方向上形成。
在电磁波屏蔽层60上形成的开口部100与位于螺旋电感器20的最内侧的圈多少有些重叠是可以的,但是为了防止电磁波屏蔽效果的降低,例如以不超出螺旋电感器20的最内侧一圈包围的矩形区域的方式只在中央部分形成,具有例如50~90%,更好为80%左右的开口部面积。即,在内侧一圈包围的矩形区域为10μm见方的情况下,希望开口部100为例如8μm见方左右。
通过在电磁波屏蔽层60的中央设置开口部100,在螺旋电感器20的中央形成的磁力线几乎都通过了开口部100。在导体中通过磁力线的情况下,虽然伴随着磁力线的强度变化因电磁感应在磁力线的周围产生感应电流,但是由于开口部100已不是导体,通过开口部100内的磁力线不产生感应电流。结果,大幅度减少了与因现有电磁波屏蔽层60中产生的感应电流引起的、与螺旋电感器20引起的磁力线方向相反的磁力线的产生。因此,可以抑制螺旋电感器20的自感(L)的衰减,防止Q值的劣化。
另外,根据第一实施方案的电磁波屏蔽层60的特征在于,第二,形成从在电磁波屏蔽层60的中央部分形成的开口部100延伸到电磁波屏蔽层60的周边部分的缝隙120。
该缝隙120用来隔断围绕通过电磁波屏蔽层60中央的磁力线的电流路径。因此,对缝隙的宽度不做限制,只要能形成电气上的断线部分即可。但是,如果缝隙太宽,存在从它泄露电磁波的危险,所以最好是只形成宽度5~6μm以下的缝隙。
由于缝隙120的存在,即使一部分磁力线通过作为电磁波屏蔽层60的导体,也不能在该磁力线周围形成闭环的电流路径,不会产生回绕的感应电流,所以也不会产生与螺旋电感器20的磁力线方向相反的磁力线。因此,可以防止螺旋电感器20的自感(L)的衰减,防止Q值的劣化。
另外,根据第一实施方案的螺旋电感器20与电磁波屏蔽层60可以用在半导体装置的制造中通用的制造方法形成。例如,可用下面的镶嵌工艺(大马士革工艺)或双镶嵌工艺形成。
例如,在用Cu布线层形成螺旋电感器20和电磁波屏蔽层60时,在半导体衬底10上形成的第一层间绝缘膜15上形成绝缘膜25,并在该绝缘膜上用光刻工艺形成与螺旋电感器的螺旋图形和引出部相当的沟。以填埋该沟的方式在衬底表面上形成Cu布线层,然后用CMP工艺使衬底表面平滑,由此形成螺旋电感器20。
然后,形成第二层间绝缘膜35和绝缘膜45,形成与在螺旋电感器20的最内侧一圈起点上形成的导电通孔30和引出线40相当的沟图形。此后,同时填埋与导电通孔和布线图形相当的沟部,然后用CMP工艺使衬底表面平滑化,形成导电通孔30和引出线40。
形成第三层间绝缘膜55,并形成绝缘膜65。形成与具有开口部100和缝隙120的电磁波屏蔽层图形对应的沟后,以填埋该沟的方式用Cu布线层覆盖衬底表面,用CMP工艺使衬底表面平滑化,形成电磁波屏蔽层60。并用层间绝缘膜或钝化膜等的绝缘膜70覆盖表面,形成图1(a)、1(b)所示的结构。
这样,根据第一实施方案的半导体装置,通过在电磁波屏蔽层60上形成开口部100和缝隙120,在电磁波屏蔽层60中可以抑制与螺旋电感器产生的磁力线抵销的相反方向的磁力线的产生,不会导致螺旋电感器20的Q值劣化。可以阻止电磁波的影响。(第二实施方案)图2(a)是展示本发明的半导体装置的第二实施方案的正面图;图2(b)是图2(a)中的虚线B-B处的剖面图。
与第一实施方案同样地,第二实施方案中也是,电磁波屏蔽层在其与螺旋电感器的位于最内侧的圈包围的区域对应的区域内具有开口部,同时,具有从该开口部延伸到电磁波屏蔽层的周边部分的缝隙。但是,电磁波屏蔽层是在螺旋电感器的下方形成,这一点与第一实施方案不同。
如图2(a)和2(b)所示,与第一实施方案同样地,对在半导体衬底10上形成的第一层间绝缘膜15上的第一布线层构图,形成具有涡卷状的螺旋图形的螺旋电感器20。螺旋电感器20的尺寸和形状可以采用与第一实施方案的情况基本上相同的条件。
另一方面,根据第二实施方案的电磁波屏蔽层12由半绝缘层,即在半导体衬底10的表面层上形成的杂质扩散层构成。杂质扩散层12是这样形成的,形成覆盖例如Si衬底之类的半导体衬底10的衬底表面上的不形成扩散层的区域的光刻胶膜图案,以光刻胶膜作为注入掩膜用注入法注入杂质离子。注入的杂质可以是赋予p型或n型的任一种的杂质。例如,以1019cm-3~1020cm-3的杂质浓度注入五价的P、As等,之后用退火工艺激活,赋予杂质扩散层导电性。
用这样的杂质扩散层形成电磁波屏蔽层12时,利用在同一衬底上形成的MOS晶体管的形成工艺,可以同时进行MOS晶体管的源区或漏区的制作。
在这种场合,也具有位于电磁波屏蔽层12的与螺旋电感器20的最内侧一圈包围的区域相对应的区域的中央部分的开口部105、和从开口部105延伸到电磁波屏蔽层12的外缘的缝隙125。
通过在电磁波屏蔽层12上设置该开口部105,在螺旋电感器120的中心形成的磁力线几乎都通过了开口部105。由于开口部105内是半绝缘层,通过它的磁力线基本上不会产生感应电流。结果,可以抑制现有的电磁波屏蔽层12导致的感应电流产生的螺旋电感器的磁力线密度的下降。
另外,由于从在中央部分形成的开口部105延伸到电磁波屏蔽层12的外缘的缝隙125,可以阻止围绕通过电磁波屏蔽层12中央的磁力线的电流路径的形成,可以抑制围绕的感应电流导致的磁力线的产生。因此,不会牺牲电磁波屏蔽层12的电磁波屏蔽效果,可以抑制抵销螺旋电感器20产生的磁力线的相反方向的磁力线的产生,从而可以维持螺旋电感器的自感(L)值,防止Q值劣化。(第三实施方案)图3(a)是展示本发明的半导体装置的第三实施方案的正面图;图3(b)是图3(a)中的虚线C-C处的剖面图。
与第一、第二实施方案同样地,第三实施方案也是,电磁波屏蔽层在其与螺旋电感器的位于最内侧的圈包围的区域对应的区域内具有开口部,同时,具有从该开口部延伸到电磁波屏蔽层的周边部分的缝隙。但是,电磁波屏蔽层是在螺旋电感器的上方和下方形成,这一点与第一、第二实施方案不同。
如图3(a)和3(b)所示,与第一、第二实施方案同样地,用在半导体衬底10上形成的第一层间绝缘膜15上的第一布线层,形成具有涡卷状的螺旋图形的螺旋电感器20。螺旋电感器20的尺寸和形状可以采用与第一实施方案的情况基本上相同的条件。
上方的电磁波屏蔽层60以与第一实施方案相同的条件形成,下方的电磁波屏蔽层12以与第二实施方案相同的条件形成。由此,在根据第三实施方案的半导体装置中,通过具备两层电磁波屏蔽层,与第一、第二实施方案相比,可以具有更高的电磁波屏蔽效果。
通过在各电磁波屏蔽层60、12上分别设置开口部100、105,在螺旋电感器20的中心形成的磁力线几乎都通过了上、下开口部100、105。通过开口部105内的磁力线基本上不会产生感应电流。结果,可以减少现有的电磁波屏蔽层60、12导致的与螺旋电感器产生的磁力线方向相反的磁力线。
另外,由于从分别在中央部分形成的开口部100、105延伸到电磁波屏蔽层的外缘的各缝隙120、125,可以阻止围绕通过电磁波屏蔽层中央的磁力线的电流路径的形成,可以抑制围绕的感应电流导致的其它磁力线的产生。因此,不会牺牲电磁波屏蔽层60、12的电磁波屏蔽效果,可以维持螺旋电感器的磁场,防止Q值劣化。
另外,在第二、第三实施方案中,虽然螺旋电感器下方具有的电磁波屏蔽层12由杂质扩散层形成,但也可以用布线层形成。例如,可以用第一布线层形成下方的电磁波屏蔽层,用第二或第三布线层形成螺旋电感器,并用上方的布线层形成电磁波屏蔽层。(第四实施方案)图4(a)和4(b)是展示本发明的半导体装置的第四实施方案的电磁波屏蔽层和螺旋电感器的正面图。在此图中省略了半导体衬底等。
在第一到第三实施方案中,虽然展示的是在电磁波屏蔽层上形成开口部和缝隙这两者的情形的例子,但即使只形成开口部,抑制电感器的Q值劣化的效果也很大。因此,在此示出了使用只具有开口部的电磁波屏蔽层的例子。另外,虽然示出的是在螺旋电感器上方具有电磁波屏蔽层的情形的例子,但是象第二、第三实施方案那样电磁波屏蔽层的位置在上方或下方都可以。
例如,如图4(a)所示,在电磁波屏蔽层62上的与位于螺旋电感器20最内侧的圈规定的区域对应的区域内形成开口部110。螺旋电感器20产生的磁力线几乎都通过开口部110,通过导体的磁力线大幅度减少,限制了因磁力线通过导体而产生的感应电流量,所以可以抑制与螺旋电感器产生的磁力线方向相反的磁力线的产生,可以防止螺旋电感器的Q值劣化。
对在电磁波屏蔽层上形成的开口部的形状并不特别限制,只要是适合螺旋电感器的螺旋图形的形状就可以。如例如图4(b)所示,在螺旋电感器22具有基本上为八角形的螺旋图形时,在电磁波屏蔽层63的中央形成的开口部112可以是圆形、或与圆形接近的多角形。
如第四实施方案所示,在电磁波屏蔽层上仅形成了开口的情况,与形成了开口和狭缝这两者的情况相比,电磁波屏蔽效果可以更高。(第五实施方案)图5(a)~5(c)是展示本发明的半导体装置的第五实施方案的电磁波屏蔽层和螺旋电感器的正面图。在此图中省略了半导体衬底等。虽然示出的是在螺旋电感器上方具有电磁波屏蔽层的情形的例子,但是象第二、第三实施方案那样电磁波屏蔽层的位置在上方或下方都可以。
在第一到第三实施方案中,虽然展示的是在电磁波屏蔽层上形成开口部和缝隙这两者的情形的例子,但即使只形成开口部,抑制电感器的Q值劣化的效果也很大。即使通电时由螺旋电感器产生的磁力线通过作为电磁波屏蔽层的导体内时,通过设置缝隙,不会形成在该磁力线周围闭合的电流路径,不产生回绕的感应电流,所以不会形成与感应电流产生的螺旋电感器的磁力线方向相反的磁力线。因此,在电磁波屏蔽层上形成的缝隙最好是形成在螺旋电感器产生的磁力线通过电磁波屏蔽层时通过该磁力线的中心延伸到电磁波屏蔽层的周边的缝隙。或者,也可以形成至少从该磁力线的中心向电磁波屏蔽层的周边延伸的缝隙。
例如,可以如图5(a)所示,形成从由螺旋电感器20产生的磁力线中心延伸到电磁波屏蔽层64的周边的缝隙131。此时的缝隙131具有电磁波屏蔽层64的矩形平面的一边的一半长度,几乎不会牺牲电磁波屏蔽层64的电磁波屏蔽效果。
另外,也可以如图5(b)所示,形成把由螺旋电感器20产生的磁力线中心通过的电磁波屏蔽层65完全分成两个区域的缝隙132。此时,与图5(a)的情况相比,可以更确定地防止在由螺旋电感器生成的磁力线周围回绕的电流路径的产生。另外,由缝隙分割的电磁波屏蔽层65必需分别与接地电位或恒压电源相连。
另外,以把由螺旋电感器20生成的磁力线中心通过的电磁波屏蔽层完全分割成两个区域的方式设置的缝隙,并不特别限制缝隙的方向。可以如图5(b)所示的缝隙132那样沿图中纵方向形成,也可以如图5(c)所示的缝隙133那样沿图中的横方向形成。或者也可以沿对角方向或其它方向形成。
另外,缝隙的个数也不限于1个,但越少越不会牺牲电磁波屏蔽效果。另外,希望缝隙的宽度能比较窄。
上面,虽然基于实施方案说明了本发明的半导体装置,但本发明并不仅限于上述的实施方案的描述,本领域技术人员很清楚,可以进行各种改进和材料的替换。例如,螺旋电感器的平面图形,并不限于矩形的螺旋,也可以是各种多角形或圆形的螺旋形状。另外,电磁波屏蔽层不仅可以配置在螺旋电感器的上方、下方,根据需要也可以设在螺旋电感器的侧面等之上。
另外,根据上述的本发明的实施方案的半导体装置,可以适用于必须混载模拟电路的半导体装置或搭载RF电路之类的螺旋电感器的半导体装置。另外,在混载有数字电路或电压控制振荡电路(Vco)的半导体装置中,电磁波的影响大,必须采用在螺旋电感器中具备电磁波屏蔽层的结构,所以上述本发明的结构极为有效。
发明效果如上所述,本发明的具有第一特征的半导体装置,通过在电磁波屏蔽层的通过由螺旋电感器产生的磁力线的区域上设置开口部,可以抑制因感应电流生成的回绕电路的发生,抑制螺旋电感器产生的磁力线密度的降低,没有Q值的劣化,可发挥良好的电磁波屏蔽效果。
本发明的具有第二特征的半导体装置,通过在电磁波屏蔽层中具有从通过由螺旋电感器产生的磁力线的区域的中心向周边部分延伸的缝隙,可以抑制回绕电流的发生,抑制螺旋电感器产生的磁力线密度的降低,没有Q值的劣化,可发挥良好的电磁波屏蔽效果。
本发明的具有第三特征的半导体装置具有上述本发明的第一特征和第二特征的结合。
因此,如果使用具有上述的本发明的特征的半导体装置,可以提供具有Q值高且因电磁波影响造成的误动作少的电磁波屏蔽层的半导体装置。
权利要求
1.一种半导体装置,其特征在于包括以第一导电层形成的具有螺旋图形的螺旋电感器;和夹着绝缘膜在上述螺旋电感器的上方或下方配置的、接地或与恒压电源连接的、由第二导电层构成的电磁波屏蔽层;上述电磁波屏蔽层,在通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线通过的区域上具有开口部。
2.一种半导体装置,其特征在于包括以第一导电层形成的具有螺旋图形的螺旋电感器;和夹着绝缘膜在上述螺旋电感器的上方或下方配置的、接地或与恒压电源连接的、由第二导电层构成的电磁波屏蔽层;上述电磁波屏蔽层具有以不形成回绕在通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线的周围的电流路径的方式,隔断该回绕路径的缝隙。
3.如权利要求2所述的半导体装置,其特征在于上述缝隙具有从通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线通过的区域的中心向上述电磁波屏蔽层的周边部分延伸的缝隙图案。
4.一种半导体装置,其特征在于包括以第一导电层形成的具有螺旋图形的螺旋电感器;和夹着绝缘膜在上述螺旋电感器的上方或下方配置的、接地或与恒压电源连接的、由第二导电层构成的电磁波屏蔽层;上述电磁波屏蔽层具有,在通过通电时因上述螺旋电感器在上述螺旋图形的中央产生的磁力线的区域上设置的开口部、以及从上述开口部向上述电磁波屏蔽层的周边部分延伸的缝隙。
5.如权利要求1所述的半导体装置,其特征在于上述开口部在上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域内形成。
6.如权利要求1所述的半导体装置,其特征在于上述开口部在上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域的中心部部上,并占该区域的面积的50~90%。
7.如权利要求4所述的半导体装置,其特征在于上述开口部在上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域内形成。
8.如权利要求4所述的半导体装置,其特征在于上述开口部在上述电磁波屏蔽层的与上述螺旋电感器的螺旋图形的最内侧一圈包围的区域相对应的区域的中心部分上,并占该区域的面积的50~90%。
9.如权利要求1~8中任一项所述的半导体装置,其特征在于上述螺旋电感器是在模拟电路或RF电路内形成的。
10.如权利要求9所述的半导体装置,其特征在于上述模拟电路或RF电路在同一衬底上与数字电路混载。
全文摘要
提供一种半导体装置,没有Q值的劣化且可发挥良好的电磁波屏蔽效果。该半导体装置具有螺旋电感器和电磁波屏蔽层,在具有螺旋图形的螺旋电感器的上方或下方配置电磁波屏蔽层,在电磁波屏蔽层上的因螺旋电感器在螺旋图形中心产生的磁力线通过的区域上形成开口部和从该开口部延伸到周边部分的缝隙。
文档编号H01F27/34GK1361550SQ0114400
公开日2002年7月31日 申请日期2001年12月26日 优先权日2000年12月26日
发明者新津阳一郎 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1