处理方法及装置的制作方法

文档序号:6820309阅读:134来源:国知局
专利名称:处理方法及装置的制作方法
技术领域
本发明涉及半导体装置的制备,特别涉及以悬空键的封端为目的的氢等离子体处理方法及装置。
背景技术
对于半导体装置而言,已知在装置运转时,存在于硅类材料的薄膜界面或多晶硅晶界、或等离子体损害导致的缺陷处的悬空键,成为载流子的陷阱能级或载流子移动的障碍,对性能有不良影响。例如,已知对于TFT(薄膜晶体管)而言,存在于多晶硅晶界内的悬空键引起导通电流衰减、截止电流增大及S值增大;对于CCD而言,存在于硅与氧化膜之间的缺陷增大了暗电流。
作为上述问题的有效解决方案,已知有用氢自由基对悬空键进行封端处理的方法,比较常见的是在氢气气氛中进行的退火处理或利用RIE装置等进行的氢等离子体处理(参见例如特开平7-74167号公报、特开平4-338194号公报、及特公平7-087250号公报)。
但是,在氢气气氛下进行的退火处理中,存在悬空键封端速度缓慢、需要较长的处理时间等问题。另一方面,等离子体处理方法的封端效率高,能够在比退火处理短的时间内结束处理。但是,现有技术中的氢等离子体处理法如特开平4-338194号公报所述,为了获得较高的处理效率,通常使用在紧靠近等离子体生成区设置基板、且可以施加偏压的处理装置,由于将基板暴露在高能带电粒子中,因此,很可能因等离子体损害对装置造成晶体管Vth(阈值电压)改变或新的界面能级产生等不良影响。

发明内容
因此,本发明的目的在于提供一种处理方法及装置,所述处理方法能够将等离子体损害降低至最低限度、并高效率地进行封端处理。
本发明的一个内容为一种处理方法,是利用至少含有氢气的处理气体的等离子体对至少其中一部分由硅类材料构成的被处理体的悬空键进行封端的处理方法;其特征在于,所述方法具有如下步骤将上述被处理体载置在具有电介质窗和载置台的处理室中的上述载置台上;将所述载置台的温度控制为规定温度;将上述处理室的压力控制为规定压力;将至少含有氢气的处理气体导入上述处理室内;将用于对上述被处理体实施等离子体处理的微波经由上述电介质窗导入上述处理室内,使上述处理气体的等离子体的等离子体密度为1011cm-3或1011cm-3以上;上述电介质窗与上述被处理体间的距离保持在20mm或20mm以上、200mm或200mm以下。
优选在不对上述被处理体施加偏压的条件下进行上述等离子体处理。在上述微波导入步骤中,可以预先调节供给上述微波的微波发生器输出量,以达到上述等离子体密度。上述距离也可以为50mm或50mm以上、150mm或150mm以下。上述规定温度可以为200℃或200℃以上、400℃或400℃以下。上述规定压力可以为13Pa或13Pa以上、665Pa或665Pa以下。上述压力控制步骤也可以具有在高于上述规定压力的压力下将等离子体点火的步骤,和在点火步骤后将压力转变为上述规定压力的步骤。上述电介质窗的热传导率可以为70W/m·K或70W/m·K以上。上述方法也可以经由至少具有1条或1条以上隙缝(slot)的天线将上述微波导入上述电介质窗内。也可以至少在等离子体点火时使上述处理气体含有惰性气体。
本发明的另一内容为一种处理装置,用于将至少其中一部分由硅材料构成的被处理体实施等离子体处理、进行悬空键封端,所述处理装置包括与用于提供微波的微波发生源连接的处理室,所述处理室具有使所述微波发生源产生的微波通过的电介质窗和载置所述被处理体的载置台,其特征在于,上述处理装置还具有如下部分将至少含有氢气的处理气体导入上述处理室的导入部;测定上述处理气体的等离子体的等离子体放电状态的测定部;将上述测定部的测定结果与用以使等离子体密度为1011cm-3或1011cm-3以上的基准值相比较,判断上述等离子体密度低于1011cm-3时,认为发生异常放电而发出警报的控制部;将上述电介质窗与上述被处理体的距离维持在20mm或20mm以上、200mm或200mm以下的范围内。
下面,参照


优选的实施例,从而明确本发明的其他目的及其特征。

图1是表示本发明处理装置的一个实施方案的简要结构图。
图2是由图1所示的电介质窗至被处理体的距离与氢等离子体导致的抗蚀膜减少速度间关系的曲线图。
图3是因等离子体照射使图1所示电介质窗的温度升高与电介质窗热传导率间关系的曲线图。
图4(a)至(e)是能够适用于图1所示隙缝天线的各种形状的平面图。
图5是氢等离子体的点火性与氢气压力间关系的曲线图。
图6(a)和(b)是用于说明高密度等离子体导致的微波停止现象的图,图6(a)是未发生停止的低密度等离子体的图,图6(b)是发生停止的高密度等离子体的图。
图7是距电介质的距离与微波电场强度间关系的曲线图。
具体实施例方式
下面,参照附图详细说明作为本发明一个实施方案的等离子体处理装置100。图1为等离子体处理装置100的简要剖面图。等离子体处理装置100具有微波发生源102、绝缘体104、导波管106、阻抗匹配器108、控制部110、存储器112、真空容器120、无终端圆形导波管122、隙缝天线130、电介质窗140、处理气体导入管142、排气管144、压力计146、真空泵148、载置台150、温度计152、温控部154、检测部160;对至少其中一部分由硅材料构成的被处理体W实施等离子体处理。
微波发生源102例如由磁电管组成,例如产生2.45GHz的微波。然后,利用图中未示出的模式转换器将微波转换成TM、TE或TEM等模式,经导波管106传送。绝缘体104为了防止被导波管106等反射的微波返回微波发生源102,而将反射波吸收。阻抗匹配器108由EH调谐器或穿刺调谐器等构成,具有检测由微波发生源102供给至负荷的前进波与被负荷反射回微波发生源102的反射波各自的强度和相位的功率表,发挥了使微波发生源102与负荷侧匹配的效果。
控制部110控制等离子体处理装置100各部分的运转,特别是基于存储在存储器112内的数据,进行微波发生源102的输出控制以便将等离子体密度维持在规定值、阻抗匹配器108的阻抗控制、真空容器120的压力控制、载置台150的温度控制等各种控制。
存储器112内存储了各种控制所必须的数据。具体而言,存储器112内存储了为了获得1011cm-3或1011cm-3以上理想的等离子体密度而按一定方式指定的规定微波输出值,以及为了将上述等离子体密度维持恒定而必须的许可误差范围。另外,为了进行阻抗控制,存储器112内存储了等离子体点火所必须的调谐器位置区域(表示穿刺处于几毫米的位置或移动至何处)与使等离子体处理中微波的反射波最小的阻抗匹配器108的调谐器位置区域的关系。而且,为了进行压力控制,存储器112内存储了13Pa或13Pa以上、665Pa或665Pa以下理想的压力或压力范围。另外,为了进行温度控制,存储器112内存储了200℃或200℃以上、400℃或400℃以下理想的温度或温度范围。存储器内大致上存储了按一定方式所指定的值。
真空容器120为收纳被处理物W、在真空或减压环境下对被处理物W实施等离子体处理的处理室。需要说明的是,在图1中省略了用于将被处理物W在图中未示出的负荷承载室与处理室间输送的门阀等。无终端圆形(或环状)导波管122形成由导波管106供给的微波的干涉波。无终端环状导波管122上设置了图中未示出的冷却水路。
隙缝天线130在电介质窗140表面的真空侧形成表面干涉波。图4(a)至图4(e)示出的隙缝天线130A至130E中的任一种均能够适用于隙缝天线130。隙缝天线130A为具有6条径向排列的隙缝132A的金属制圆板。隙缝天线130B为具有4条沿圆周方向排列的2种隙缝132B1及132B2的金属制圆板。隙缝天线130C是具有配置成大致呈同心圆状或螺旋状的多条T形隙缝132C的金属制圆板。隙缝天线130D是具有4对V形隙缝对132D的金属制圆板。当然,隙缝天线130的天线形状不限定于径线隙缝天线(RLSA),也可以使用其他形式的天线,例如图4(e)所示的具有隙缝132E的方形导波管130E。
需要说明的是,为了在被处理体W的整个表面内实施均匀的处理,在被处理体W上供给表面内均匀性良好的活性物种是重要的。通过给隙缝天线130A至130E配置至少1条或1条以上的隙缝132A至132E,能够大面积生成等离子体,等离子体强度·均匀性的控制也变得容易。需要说明的是,本说明书中带大写字母的标号表示变形例,包括在不带字母的标号之内。
电介质窗140在将真空容器120真空封闭的同时,将微波透过并导入真空容器120内。电介质窗140与被处理体W间的距离WD如下所述,维持在20mm或20mm以上、200mm或200mm以下的范围内,优选在50mm或50mm以上、150mm或150mm以下的范围内。
由于电介质窗140直接暴露在等离子体生成区内,因此使用热传导率低的材料时,有时因电介质窗的过度升温,间接导致被处理体W温度过度升高。图3是在等离子体照射后开放真空容器而测得的氢等离子体照射后电介质窗温度的升温数据。由于开放真空容器进行测定,因此照射中的温度应为更高温;作为电介质窗140的材料,通过使用热传导率为70W/m·K或70W/m·K以上的例如氮化铝等材料,即使在等离子体照射中,也能够将此电介质温度抑制在300℃或300℃以下,能够避免因被处理体W过热而导致的处理效率降低。
处理气体导入管142是气体供给装置的一部分,连接在真空容器120上。气体供给装置包括气体供给源、阀、质量流量控制器、以及连接各个部分的气体导入管142,供给经微波激发获得规定等离子体的处理气体或放电气体。在本实施方案中,处理气体中至少含有氢气,为了将等离子体迅速点火,也可以至少在点火时添加Xe或Ar、He等惰性气体。由于惰性气体不具有反应性,因此对被处理体W无不良影响,而且,由于惰性气体容易电离,因此能够提高微波投入时等离子体的点火速度。
此处,由于氢活性种在从等离子体发生区域向外传送的过程中,因分子间的碰撞而失活,因此到达被处理体W的氢活性种的密度较大程度地依赖于载置台150和电介质窗140的距离WD。图2示出用氢等离子体照射用作抗蚀体的有机材料时导致的抗蚀膜减少速度与WD的关系。由图2可知WD越小,到达被处理体W的氢活性种的密度越高。
但是,如果WD为小于20mm,则因被处理体W接近等离子体生成区P,增大了过剩的高能氢活性种导致的损害,因此不是优选的。因此,能够获得有效的封端处理效果的WD为20mm或20mm以上、200mm或200mm以下;而且,作为同时满足高处理效率和低损害的条件,更优选为50mm或50mm以上、150mm或150mm以下。
排气管144典型地连接真空容器120的底部,真空泵148连接在排气管144上。排气管144、压力调节阀145、压力计146、真空泵148及控制部110构成压力调节机构。即,控制部110边运转真空泵148,边通过控制压力调整阀145(例如,VAT制带压力调整功能的闸门阀或MKS制排气隙缝阀)的开关来控制真空容器120内的压力,以便使检测真空容器120内压力的压力计146显示为规定值。其结果为经由排气管144,将真空容器120的内部压力控制为13Pa或13Pa以上、665Pa或665Pa以下范围内的理想压力。真空泵148例如由涡轮分子泵(TMP)构成,经由图中未示出的电导阀等压力调整阀连接在真空容器120上。
载置台150收纳在真空容器120内,支撑被处理体W,由加热器等温控部154将其温度控制为200℃或200℃以上、400℃或400℃以下范围内理想的温度。载置台150的温度由温度计152测定,温控部154的运转由控制部110控制。控制部110控制例如由图中未示出的电源向作为温控部154的加热线通电,以便使温度计152测定的温度为规定温度。需要说明的是代替测定载置台150的温度,也可以间接地测定被处理体W的温度(例如,利用辐射热测定被处理体W的温度等)。
检测部160是Q-MAS、兰米尔探针等测定等离子体放电状态的等离子体发光强度测定装置,监测等离子体密度是否在正常的范围内。等离子体发光强度测定装置由滤光片或棱镜等波长选择装置和光电转换元件构成,测量例如被激发的氢原子发光强度(486nm、656nm等)。兰米尔探针等等离子体测量探针测量由等离子体中的离子或电子产生的电流。Q-MAS将等离子体中被激发的气体吸收入检测器内,利用质谱测定氢活性种的强度。
下面,说明处理装置100的运转。将图中未示出的气体供给装置的阀打开,经由质量流量控制器,将至少含有氢气的处理气体由处理气体导入管142导入真空容器120。另外,使冷却水流入图中未示出的冷却水路,将无终端环状导波管122冷却。在输出控制中,控制部110判断由检测部160测得的等离子体放电状态测定值是否在存储于存储器112内的规定范围内。将此值与基准值比较,超出规定范围时,认为因异常放电导致等离子体密度降低,使控制器110发出警报,或维持并监测微波输出量为按一定方式指定的规定值,以便处理过程中的等离子体密度能够在规定的范围内。如果等离子体密度高于规定值(2.45GHz的微波时为7×1010cm-3),则因称为微波中止的现象(图6)使微波不向图1的下方传播,而仅向电介质窗140的表面方向传播,形成所谓的表面波。由于电场仅存在于电介质表面(图7),因此将等离子体生成区P限定在电介质窗附近。
因此,微波发生源102产生的微波经由无终端环状导波管122、电介质窗140供给至真空容器120,在真空容器120内产生等离子体。导入无终端环状导波管122内的微波被分配成左右两支,以大于自由空间的管内波长进行传送,由隙缝132经由电介质窗140导入真空容器120内,将电介质窗140表面作为表面波传送。此表面波在相邻的隙缝132间发生干涉,形成电场。由此电场生成高密度等离子体。由于等离子体生成区P的电子密度高,因此能够效率良好地将氢气解离。另外,由于电子温度在离开等离子体生成区P后急剧降低,因此能够抑制对装置的损害。等离子体中的氢活性种经扩散等传送至被处理体W附近,到达被处理体W表面。
另外,在阻抗控制过程中,控制部110检测由阻抗匹配器108的负荷侧输入的微波的反射波强度及相位,控制阻抗匹配器108,以便使此反射波变得最小。等离子体产生后,使此反射波变得最小的匹配状态处于阻抗匹配器108的匹配位置。
而且,在压力控制过程中,控制部110由反馈控制等调节压力调整阀145,以便将压力计146检测的真空容器120的压力大致维持在预先规定的数值。此处,预先规定的压力值优选为13Pa或13Pa以上、665Pa或665Pa以下。氢气的电离剖面积小于氧气或氮气等,等离子体点火性差,因此如果在13Pa以下过低的压力条件下,则有可能成为处理的不稳定因素。另外,由于生成的氢活性种的平均自由行程变长,因此额外的高能活性物种可能到达被处理体W,可能对装置产生损害,虽然这种损害比在被处理体W上施加偏压吸引带电粒子时或将被处理体W直接暴露在等离子体生成区P时造成的损害小。与此相反,如果处于665Pa以上过高的压力条件下,则可能发生氢活性种在到达被处理体W表面之前就已经失活。
需要说明的是,氢气的电离剖面积比氧气等小,点火性差,因此射入微波后至等离子体点火前,有时发生时滞。此时,如图5所示,通过在高于处理压力的压力下(在13~665Pa的范围内)进行等离子体点火,能够使等离子体点火稳定,确保处理过程的重现性。或添加等离子体点火性较好的惰性气体也能够有效地改善处理过程的重现性。
另外,在温度控制构成中,控制部110调节温控部154,以便将温度计152检测的载置台150的温度大致维持在预先规定的数值。此处,预先规定的温度值优选为200℃或200℃以上、400℃或400℃以下。如果处理温度低于200℃,则抑制到达被处理体W表面的氢活性种向装置部分的扩散;与此相反,如果处理温度高于400℃,则如日本专利第7-87250号所述,使得氢从用氢封端处理的被处理体W上脱离,导致处理效率降低。
然后,控制部110将微波发生源102产生的规定输出量的微波导入真空容器120。结果为在电介质窗140处形成电场,利用在电介质窗140上形成的电场和由处理气体导入管142导入的至少含有氢气的处理气体,仅在电介质窗140附近区域内产生1011cm-3或1011cm-3以上的高密度等离子体。利用经气流从此等离子体生成区P传送至载置台150的氢活性种对在载置台150上加热至规定温度的被处理体W,进行封端处理,修复悬空键。在本实施方案中,由于等离子体密度极高,因此即使未在被处理体W上施加偏压以将带电粒子吸引至被处理体W上,也能够获得足够的处理效率。
另外,由于将等离子体生成区P仅限定在电介质窗140附近,距离WD为20mm或20mm以上,在与等离子体生成区P相距足够距离的位置上处理被处理体W,因此,与现有技术相比,对装置造成损害的可能性小。因此,能够抑制伴随等离子体处理产生的、取消封端处理效果的新缺陷出现或Vth发生变化,使等离子体处理装置100能够对被处理体W实施高品质的等离子体封端处理。
另外,阻抗匹配器108在短时间内将微波制成等离子体,然后,控制部110控制阻抗匹配部108的运转以便维持匹配的位置。因此,能够将微波有效地导入真空容器120,使等离子体处理装置100维持高密度的等离子体处理。等离子体处理仅在预先设定的规定时间内进行。
(实施例1)使用处理装置100,并使用上述处理方法,对形成在石英基板上的多晶硅TFT进行氢气封端处理。将电介质窗140与载置台150的距离WD设定为100mm,处理条件为基板温度275℃,气体为氢气100%,气压66.5Pa,微波输出量为3KW。结果为与使用现有的RIE装置进行的30分钟处理相比,仅需处理10分钟即可获得同等程度的处理结果(例如S值减少结果),并能够将对装置的损害抑制在更低水平或相同水平。
如上所述,通过使用处理装置100,能够在不将被处理体W暴露在等离子体生成区P附近的条件下,由仅在电介质窗140附近产生的高密度等离子体的扩散进行处理,需要说明的是由于不对被处理体W施加偏压,吸引带电粒子,因此能够在较低的损害下进行效率良好的氢气封端处理。另外,同时能够获得装置本身结构简单的效果。
根据本发明,能够提供一种处理方法及装置,所述处理方法和装置将等离子损害抑制在最低程度,并能够高效率地进行封端处理。
权利要求
1.一种处理方法,是利用至少含有氢气的处理气体的等离子体对至少其中一部分由硅类材料构成的被处理体的悬空键进行封端的处理方法;其特征在于,所述方法具有如下步骤将所述被处理体载置在具有电介质窗和载置台的处理室的所述载置台上,将所述载置台的温度控制为规定温度;将所述处理室内的压力控制为规定压力;将所述处理气体导入所述处理室内;将用于对所述被处理体实施等离子体处理的微波经由所述电介质窗导入所述处理室内,使所述处理气体等离子体的等离子体密度为1011cm-3或1011cm-3以上;将所述电介质窗与所述被处理体的距离维持在20mm或20mm以上、200mm或200mm以下的范围内。
2.如权利要求1所述的处理方法,其特征在于,在不对所述被处理体施加偏压的条件下,进行所述等离子体处理。
3.如权利要求1所述的处理方法,其特征在于,在所述微波导入步骤中,也可以预先调节供给所述微波的微波发生源的输出量,以达到所述等离子体密度。
4.如权利要求1所述的处理方法,其特征在于,所述距离为50mm或50mm以上、150mm或150mm以下。
5.如权利要求1所述的处理方法,其特征在于,所述规定温度为200℃或200℃以上、400℃或400℃以下。
6.如权利要求1所述的处理方法,其特征在于,所述规定压力为13Pa或13Pa以上、665Pa或665Pa以下。
7.如权利要求1所述的处理方法,其特征在于,所述压力控制步骤具有在高于所述规定压力的压力下将等离子体点火的步骤,和在此点火步骤后变化至所述规定压力的步骤。
8.如权利要求1所述的处理方法,其特征在于,所述电介质窗的热传导率为70W/m·k或70W/m·k以上。
9.如权利要求1所述的处理方法,其特征在于,在所述微波导入步骤中,可以经由至少具有1条或1条以上隙缝的天线将所述微波导入所述电介质窗内。
10.如权利要求1所述的处理方法,其特征在于,所述处理气体至少在等离子体点火时含有惰性气体。
11.一种处理装置,是利用等离子体对至少其中一部分由硅类材料构成的被处理体的悬空键进行封端处理的装置,所述处理装置包括与用于提供微波的微波发生源连接的处理室,所述处理室具有使所述微波发生源产生的微波通过的电介质窗和载置所述被处理体的载置台,其特征在于,所述装置还具有如下部分将至少含有氢气的处理气体导入所述处理室的导入部;测定所述处理气体的等离子体的等离子体放电状态的测定部;将所述测定部的结果与使等离子体密度成为1011cm-3或1011cm-3以上的基准值相比较,判断所述等离子体密度低于1011cm-3时,认为发生异常放电,而发出警报的控制部;将所述电介质窗与所述被处理体的距离维持在20mm或20mm以上、200mm或200mm以下。
全文摘要
本发明提供一种处理方法及装置,利用至少含有氢气的处理气体的等离子体对至少其中一部分由硅类材料构成的被处理体的悬空键进行封端处理;其特征在于,将被处理体载置在具有电介质窗和载置台的处理室的所述载置台上,在特定的载置台温度和处理室内压力下,用处理气体的等离子体对被处理物进行处理,其中使等离子体密度为10
文档编号H01L29/786GK1610080SQ20041000850
公开日2005年4月27日 申请日期2004年3月11日 优先权日2003年10月22日
发明者石原繁纪 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1