多层陶瓷电容器的制作方法

文档序号:6835355阅读:88来源:国知局
专利名称:多层陶瓷电容器的制作方法
技术领域
本发明涉及多层陶瓷电容器,特别是涉及与小型大电容化相对应的多层陶瓷电容器。
背景技术
电子部件的一例即多层陶瓷电容器的制造方法为,在例如由规定的介电陶瓷组成物构成的陶瓷生片上印刷规定图形的内部电极,将它们交替层叠多片成为一体,之后将得到的未处理晶片(green chip)同时烧结。由于多层陶瓷电容器的内部电极层与陶瓷介电体通过烧结成为一体,因此,需要选择不与陶瓷介电体反应的材料。因此,作为构成内部电极层的材料,以前不得已只能使用铂和钯等高价的贵金属。
但是,近年开发了能够使用镍和铜等廉价的贱金属的介电陶瓷组成物,实现了大幅度的成本降低。
此外,近年来,随着电子线路的高密度化,对电子设备的小型化的要求增高,多层陶瓷电容器的小型化和大电容化快速发展。为此,采取了将多层陶瓷电容器中的每一层的介电体层薄层化的方法。
但是,若使介电体层薄层化,就产生了多层陶瓷电容器的短路故障多发的问题。作为解决该问题的方法,有将介电体粒子微细化的方法,但若介电体粒子微细化,介电常数就很大地减少。从而,在薄层化了介电体层的情况下,就难以抑制短路故障,难以得到高介电常数。
作为解决上述问题的方法,在日本特开2001-316114号公报中记载了以下方法。该文献的目的在于,通过将例如钛酸钡这样具有钙钛矿结构的氧化物的粒子直径设为0.03~0.2μm,来解决上述问题。
但是,在该文献中公开的发明中,特别是在实施例中公开的发明中,使用了微细的钛酸钡原料粉末,若使用微细的钛酸钡原料粉末,在制成介电体糊剂时,就难以使添加辅助成分原料分散,因此,就必须要容易分散辅助成分原料。另外,在该文献的实施例中,作为辅助成分,含有Mg的情况较多。对于Mg,由于一般起到抑制钛酸钡的居里点中的介电常数的峰值的作用,因此,若Mg的添加量增多,就有可能对温度特性特别是高温侧的温度特性产生问题。
此外,在日本特开平9-35985号公报中公开了沿着位于内部电极间的陶瓷层的厚度方向存在的陶瓷粒子数n(陶瓷粒子数n是陶瓷层的厚度/陶瓷粒子的平均粒子直径)不足5个的多层陶瓷电子部件。根据该文献,通过将多层陶瓷电子部件设置为上述结构,就能够有效地防止被称作脱层的层间剥离现象和裂纹等的结构缺陷。
但是,上述特开平9-35985号公报中公开的多层陶瓷电子部件特别是实施例中公开的多层陶瓷电子部件,仅提及了脱层和裂缝等结构缺陷,而其电气特性不清楚。另外,实施例记载的多层陶瓷电子部件的陶瓷层的厚度是5μm,以该厚度难以实现多层陶瓷电容器的小型化和大电容化。从而,在该文献中,就不清楚在薄层化了介电体层(陶瓷层)的情况(例如2.0μm以下)中,为了得到具有良好特性(例如电气特性)的多层陶瓷电容器,将介电体层中的厚度方向的粒子数设为怎样的范围才好。

发明内容
本发明的目的在于提供一种在多层陶瓷电容器中,在薄层化了介电体层的情况中,也能降低短路故障率,得到具有高介电常数、具有满足B特性和X5R特性的良好的温度特性、并且具有良好的DC偏压特性的多层陶瓷电容器。
本发明的发明者等关于在薄层化了介电体层的情况中,也能降低短路故障率,得到具有高介电常数、具有良好的温度特性、并且具有良好的DC偏压特性的多层陶瓷电容器的研究的结果发现,通过将介电体层的厚度设为2.0μm以下,将介电体层的每一层的平均粒子数设为3个以上、6个以下,就能达到本发明的目的,以至于完成了本发明。
即,本发明涉及的多层陶瓷电容器具有内部电极层和介电体层,其特征在于,上述介电体层的厚度在2.0μm以下,通过用上述介电体层的厚度除以构成上述介电体层的介电体粒子的平均粒径来求得的介电体层的每一层的平均粒子数在3个以上、6个以下。
在本发明涉及的多层陶瓷电容器中,其特征在于,优选上述介电体层包含包含钛酸钡的主要成分,作为辅助成分,对于上述主要成分100摩尔,含有按MgO换算是0.1~3摩尔的Mg的氧化物、按MnO换算是0~0.5摩尔的Mn的氧化物、按V2O5换算是0~0.5摩尔的V的氧化物、按Y2O3换算是0~5摩尔的Y的氧化物、按SiO2换算是2~12摩尔的Si的氧化物、按(BaO+CaO)换算是2~12摩尔的Ba和Ca的氧化物。
需要注意的是,在本发明中,在Mn的氧化物中,所述“按MnO换算0~0.5摩尔”是指多于0摩尔,在0.5摩尔以下,对于V的氧化物和Y的氧化物也同样如此。
或者,本发明涉及的多层陶瓷电容器中,其特征在于,优选上述介电体层含有包含钛酸钡的主要成分,作为辅助成分,对于上述主要成分100摩尔,含有按MgO换算是0.1~3摩尔的Mg的氧化物、按SiO2换算是2~12摩尔的Si的氧化物、按(BaO+CaO)换算是2~12摩尔的Ba和Ca的氧化物。
在本发明涉及的多层陶瓷电容器中,上述辅助成分中的上述Mg的氧化物的含有对于上述主要成分100摩尔,按MgO换算,优选是0.1~3摩尔,进一步优选0.1~0.5摩尔,更优选0.1~0.3摩尔。通过将Mg的氧化物的含有设为上述范围,就能提高电容器的静电电容的温度特性,特别是提高在高温一侧的温度特性。
在本发明涉及的多层陶瓷电容器中,优选以上述介电体层是将表面系数在3m2/g以上、10m2/g以下的钛酸钡粉末作为原料进行制造的介电体层。
根据本发明,能够提供一种在薄层化了介电体层的情况中,例如设为2.0μm以下的情况中,通过使介电体层每一层的平均粒子数为3个以上、6个以下,也能降低短路故障率,得到具有高介电常数、具有满足B特性和X5R特性的良好的温度特性、并且具有良好的DC偏压特性的多层陶瓷电容器。
附图简要说明以下,基于附图,关于本发明的实施方式详细地进行说明。在此,

图1是本发明的一个实施方式涉及的多层陶瓷电容器的剖面图。
具体实施例方式
多层陶瓷电容器如图1所示,本发明的一个实施方式涉及的多层陶瓷电容器1具有交替层叠了介电体层2和内部电极层3而构成的电容器元件主体10。在该电容器元件主体10的两端形成了一对外部电极4,该外部电极4在元件主体10的内部分别与交替配置的内部电极层3导通。电容器元件主体10的形状不特殊限定,但通常为长方体状。此外,其尺寸不特殊限定,可以根据用途设置适当的尺寸,但通常是(0.4~5.6mm)×(0.2~5.0mm)×(0.2×1.9mm)左右。
层叠内部电极层3,以使各端面交替露出在电容器元件主体10的对面的两个端部的表面上。一对外部电极4形成在电容器元件主体10的两端,与交替配置的内部电极层3的露出端面连接,构成电容器电路。
介电体层2介电体层2含有介电陶瓷组成物。
介电陶瓷组成物优选具有包含钛酸钡的主要成分和辅助成分。
上述钛酸钡优选用组成式BamTiO2+m表示,m是0.980≤m≤1.035,Ba与Ti的比是0.980≤Ba/Ti≤1.035。
上述辅助成分优选含有Mg的氧化物、Mn的氧化物、V的氧化物、Y的氧化物、Si的氧化物、Ba和Ca的氧化物。
上述Mg的氧化物有抑制居里点中的介电常数峰值和抑制晶粒生长的效果,对于主要成分100摩尔,按MgO换算,优选是0.1~3摩尔,进一步优选0.1~0.5摩尔,更优选0.1~0.3摩尔。若Mg的氧化物的含有过少,就有产生异常晶粒生长的趋势,若过多,有静电电容的温度特性恶化的趋势。此外,通过将Mg的氧化物的含有设为上述范围,就能提高电容器的静电电容的温度特性,特别是提高在高温一侧的温度特性。
上述Mn的氧化物有促进烧结的效果、提高IR的效果、使高温负荷寿命提高的效果,按MnO换算,优选是0~0.5摩尔。若Mn的氧化物的含有过多,就有介电常数降低的趋势。
上述V的氧化物具有提高高温负荷寿命的效果,对于主要成分100摩尔,按V2O5换算,优选是0~0.5摩尔。若V的氧化物的含有过多,就有IR显著劣化的趋势。
上述Y的氧化物,主要显示出了使高温负荷寿命提高的效果,对于主要成分100摩尔,按Y2O3换算,优选是0~5摩尔。若Y的氧化物的含有过多,就有烧结性恶化的趋势。
需要注意的是,在本实施方式中,在Mn的氧化物中,所述“按MnO换算0~0.5摩尔”是指多于0摩尔、在0.5摩尔以下,对于V的氧化物和Y的氧化物也是如此。
上述Si的氧化物起烧结促进剂的作用,对于主要成分100摩尔,按SiO2换算,优选是2~12摩尔。若Si的氧化物的含有过少,就有烧结性变差的趋势,若过多,就有介电常数降低的趋势。
需要注意的是,在添加Si的氧化物时,优选同时添加Ba和Ca的氧化物,在用(Ba,Ca)xSiO2+x表示的复合氧化物的形态下添加更好。这样地,通过在预先使SiO2与BaO、CaO反应的状态下进行添加,就能够防止SiO2与BaTiO3的反应,能够防止BaTiO3粒子表面附近的组成改变。(Ba,Ca)xSiO2+x中的x优选是0.8~1.2,进一步优选0.9~1.1,若x过小,即SiO2过多,就与包含在主要成分中的钛酸钡反应,有介电体特性恶化的趋势,若x过大,则熔点变高,就有烧结性恶化的趋势。
需要注意的是,在本说明书中,用化学计量组成表示了构成主要成分和各辅助成分的各氧化物,但各氧化物的氧化状态也可以是除了化学计量组成之外的。但是,根据包含在构成各辅助成分的氧化物中的金属量,换算成上述化学计量组成的氧化物,来求各辅助成分的上述比率。
介电体层2的厚度每一层在2.0μm以下,优选是1.5μm以下。厚度的下限不特殊限定。在本实施方式中,即使在将介电体层2的厚度设为2.0μm以下,或进一步薄到1.5μm以下的情况下,也能较低地抑制短路故障率,提高介电常数。
包含在介电体层2中的介电体粒子的平均粒径优选在0.66μm以下,进一步优选0.4μm以下。平均粒径的下限不特殊限定。
此外,在本实施方式中,通过用介电体层2的厚度除以构成介电体层2的介电体粒子的平均粒径来求得的介电体层2的每一层的平均粒子数在3个以上、6个以下。
本发明的特征点在于,使介电体层薄层化,例如设为2.0μm以下,将上述介电体层的每一层的平均粒子数设为3个以上、6个以下。这样地,在薄层化了介电体层的情况中,也能降低短路故障率,得到具有高介电常数、具有满足B特性和X5R特性的良好的温度特性、并且具有良好的DC偏压特性的多层陶瓷电容器。若介电体层的每一层的平均粒子数过少,就有短路故障率变高的趋势,若过多,就有介电常数变低的趋势。
此外,关于介电体层2的层叠数不特殊限定,但可以根据用途等适当决定。
内部电极层3包含在内部电极层3中的导电材料不特殊限定,但可以使用廉价的贱金属。作为用作导电材料的贱金属,优选是Ni或Ni合金。作为Ni合金,优选是从Mn、Cr、Co、Cu和Al中选择的一种以上的元素与Ni的合金,合金中的Ni含有优选在95重量%以上。需要注意的是,Ni或Ni合金中也可以包含0.1重量%以左右下的P等各种微量成分。内部电极层3的厚度可以根据用途等适当决定,但通常是0.1~3μm,特别优选0.2~2.0μm左右。
外部电极4包含在外部电极4中的导电材料不特殊限定,但在本发明中可以使用廉价的Ni、Cu和它们的合金、或熔点低的In-Ga合金。外部电极4的厚度可以根据用途等适当决定,但通常优选是10~50μm左右。
多层陶瓷电容器的制造方法本发明的多层陶瓷电容器与现有的多层陶瓷电容器同样地,利用使用了糊剂的通常的印刷法和薄层法制成未处理晶片,将其烧结后,通过印刷或转印外部电极并烧结而制成。以下,关于制造方法具体地进行说明。
首先,准备介电体层用糊剂中包含的介电陶瓷组成物粉末,将其涂料化调制成介电体层用糊剂。
介电体层用糊剂可以是混合了介电陶瓷组成物粉末和有机载体的有机系的涂料,也可以是水系的涂料。
介电陶瓷组成物粉末含有主要成分原料的钛酸钡粉末和各辅助成分原料粉末。钛酸钡粉末其表面系数优选在3m2/g以上、10m2/g以下。
由于主要成分原料的钛酸钡粉末的表面系数对烧结后的烧结体粒子的平均粒径和电气特性影响大,因此,优选将表面系数设为上述范围,将平均粒径和电气特性设在规定的范围内。若表面系数过大,平均粒径就减少,这时介电体层的每一层的平均粒子数就增大,此外,有介电常数降低的趋势。此外,若过小,平均粒径就增大,就有介电体层的每一层的平均粒子数变小的趋势,有短路故障率变高的趋势。
作为介电陶瓷组成物粉末,可以使用上述的氧化物和其混合物、复合氧化物,但除此之外,也可以根据烧结的情况,从由上述氧化物和复合氧化物构成的各种化合物如碳酸盐、草酸盐、硝酸盐、氢氧化物、有机金属化合物等中适当选择,混合使用。可以这样来决定介电陶瓷组成物粉末中的各化合物的含有,使得烧结后成为上述介电陶瓷组成物的组成。在涂料化之前的状态下,介电陶瓷组成物粉末的粒径通常是平均粒径0.01~0.5μm左右。
有机载体是将粘结剂溶解在有机溶剂中的物质。使用于有机载体的粘结剂不特殊限定,可以从乙基纤维素、聚乙烯醇缩丁醛等通常的粘结剂中适当选择。此外,使用的有机溶剂也不特殊限定,可以根据印刷法和薄层法等利用的方法,从松油醇、丁基甲醇、丙酮、甲苯等各种有机溶剂中适当选择。
此外,在将介电体层用糊剂设为水系的涂料的情况下,可以将使水溶性的粘结剂和分散剂等溶解在水中的水系载体与介电体原料混合。使用于水系载体的水溶性粘结剂不特殊限定,例如使用聚乙烯醇、纤维素、水溶性丙烯酸树脂等。
将由上述各种导电性金属和合金构成的导电材料、或者烧结后构成上述导电材料的各种氧化物、有机金属化合物、树脂酸盐等,与上述的有机载体进行搅拌,调制成内部电极用糊剂。
外部电极用糊剂可以与上述的内部电极用糊剂同样地调制。
对于上述的各糊剂中的有机载体的含有不特殊限制,通常的含有可以是例如粘结剂1~5重量%左右、溶剂10~50重量%左右。此外,也可以根据需要,在各糊剂中含有从各种分散剂、增塑剂、介电体、绝缘体等中选择的添加物。它们的总含有优选在10重量%以下。
在使用印刷法的情况下,将介电体层用糊剂和内部电极用糊剂层叠印刷在PET等基板上,切断成规定形状之后,从基板剥离,成为未处理晶片。
此外,在使用薄层法的情况下,使用介电体层用糊剂形成生片,在其上面印刷内部电极用糊剂之后,将其层叠成为未处理晶片。
在烧结前,对未处理晶片实施脱粘结剂处理。可以按照介电体用糊剂和内部电极用糊剂中的粘结剂的种类和量,适当决定脱粘结剂处理,但例如优选将脱粘结剂气氛中的氧气分压设为10-9~105Pa。氧气分压若不足上述范围,脱粘结剂效果就降低。此外,氧气分压若超过上述范围,就有内部电极层氧化的趋势。
此外,作为除此之外的脱粘结剂条件,优选将升温速度设为5~300℃/小时,进一步优选10~100℃/小时,将保持温度设为180~400℃,进一步优选200~350℃,将温度保持时间设为0.5~24小时,进一步优选2~20小时。此外,烧结气氛优选为空气或还原性气氛,作为还原性气氛中的气体,例如优选将N2和H2的混合气体加湿后使用。
可以按照内部电极用糊剂中的导电材料的种类,适当决定未处理晶片烧结时的气氛,但作为导电材料,在使用Ni或Ni合金等贱金属的情况下,烧结气氛中的氧气分压优选设为10-9~10-4Pa。若氧气分压不足上述范围,有时就引起内部电极层的导电材料异常烧结而断裂。此外,若氧气分压超过上述范围,就有内部电极层氧化的趋势。
此外,烧结时的保持温度优选是1000~1400℃,进一步优选1100~1350℃。若保持温度不足上述范围,致密化就不充分,若超过上述范围,就容易产生内部电极层的异常烧结引起的电极断裂、内部电极层构成材料的扩散引起的电容温度特性和短路率恶化、介电陶瓷组成物还原和异常晶粒生长。
作为除此之外的烧结条件,优选将升温速度设为50~500℃/小时,进一步优选100~300℃/小时,优选将温度保持时间设为0.5~8小时,进一步优选1~3小时,优选将冷却速度设为50~500℃/小时,进一步优选100~300℃/小时。此外,烧结气氛优选为还原性气氛,作为气氛中的气体,例如优选将N2和H2的混合气体加湿后使用。
在还原性气氛中烧制成的情况下,优选对电容器元件主体实施退火。退火是为了再氧化介电体层的处理,由于能够显著增长电气特性,特别是高温负荷寿命,故可靠性提高。
退火气氛中的氧气分压优选在10-3Pa以上,特别优选10-2~10Pa。若氧气分压不足上述范围,介电体层的再氧化就困难,若超过上述范围,就有内部电极层氧化的趋势。
退火时的保持温度优选在1100℃以下,特别优选500~1100℃。由于若保持温度不足上述范围,介电体层的氧化就不充分,因此,IR变低,此外,电气特性特别是高温负荷寿命就容易变短。另一方面,若保持温度超过上述范围,则不仅内部电极氧化后电容降低,而且内部电极与介电体反应,就容易产生电容温度特性恶化、IR降低、高温负荷寿命降低。需要注意的是,退火也可以仅由升温过程和降温过程构成。即,也可以将温度保持时间设为零。该情况下,保持温度相当于最高温度。
作为除此之外的退火条件,优选将温度保持时间设为0~20小时,进一步优选2~10小时,优选将冷却速度设为50~500℃/小时,进一步优选100~300℃/小时。此外,作为退火的气氛中的气体,例如优选使用加湿后的N2气体等。
在上述的脱粘结剂处理、烧结和退火中,要加湿N2气体和混合气体等,可以使用例如加湿器等。该情况下,水温优选是5~75℃左右。
脱粘结剂处理、烧结和退火可以连续进行,也可以独立进行。
对如上所述得到的多层陶瓷烧结体主体,利用例如滚磨和喷砂器等实施端面研磨,涂覆、印刷或转印外部电极用糊剂,之后,根据需要进行烧结,形成外部电极4。作为使用含有Ni、Cu或它们的合金的外部电极用糊剂作为导电材料的情况中的烧结条件,例如优选是在加湿后的N2与H2的混合气体中在300~800℃中进行10分钟~2小时左右。需要注意的是,在使用了含有In-Ga合金的外部电极用糊剂作为导电材料的情况下,在形成外部电极时,不需要进行烧结。然后,根据需要,由电镀等在外部电极4的表面上形成被覆层。
利用锡焊等将这样制造的本发明的多层陶瓷电容器安装在印刷基板上,使用于各种电子设备等。
根据本发明,通过将介电体层的每一层的平均粒子数设为3个以上、6个以下,在薄层化了介电体层的情况中,例如设为2.0μm以下的情况中,也能降低短路故障率,得到具有高介电常数、显示良好的温度特性和DC偏压特性的多层陶瓷电容器。
以上关于本发明的实施方式进行了说明,但本发明不限定于上述实施方式,可以在不脱离本发明的主旨的范围内做各种各样的变形。
例如,在上述实施方式中,作为本发明涉及的电子部件,例示了多层陶瓷电容器,但作为本发明涉及的电子部件,不限定于多层陶瓷电容器,只要是具有由上述组成的介电陶瓷组成物构成的介电体层都可以。
此外,与上述实施方式不同,作为构成介电陶瓷组成物的辅助成分,也可以构成为不含有Mn的氧化物、V的氧化物和Y的氧化物。
实施例以下,基于更详细的实施例来说明本发明,但本发明不限定于这些实施例。
作为主要成分,准备了表1和3中示出的表面系数的BaTiO3原料。需要注意的是,由氮吸附法(BET法)测定了BaTiO3的表面系数。接着,在主要成分中添加MgO、MnO、V2O5、Y2O3、(Ba,Ca)SiO3作为辅助成分,通过由球磨机进行16个小时的湿式混合后干燥,得到了介电体原料。表1和表3中,用相对于主要成分100摩尔的摩尔数来示出了各辅助成分的添加量。
在得到的介电体原料中添加聚乙烯醇缩丁醛和乙醇系的有机溶剂,再次用球磨机混合,成糊后得到了介电体层用糊剂。
接着,由3根辊将Ni粒子44.6重量份、松油醇52重量份、乙基纤维素3重量份、苯并三唑0.4重量份搅拌成浆后,得到了内部电极用糊剂。
使用该糊剂,如下所述地制造了图1中示出的叠片型陶瓷片电容器1。
使用得到的介电体层用糊剂,利用刮刀法,在PET薄膜上形成了生片。利用丝网印刷法,在它的上面印刷了内部电极用糊剂。之后,从PET薄膜上剥离成为盖层的生片,层叠多片直到厚度为300μm,一边从PET薄膜剥离在其上面印刷了内部电极用糊剂的薄片,一边层叠多片(该情况下是5片),再进一步层叠成为盖层的生片,按压后就得到了未处理晶片。
接着,将未处理晶片切断成规定尺寸,在下述条件下进行脱粘结剂处理、烧结和退火,就得到了多层陶瓷烧结体。脱粘结剂处理条件为升温速度32.5℃/小时、保持温度260℃、温度保持时间8小时、气氛空气中。烧结条件为升温速度200℃/小时、保持温度1230℃、温度保持时间2小时、冷却速度200℃/小时、气氛中的气体加湿后的N2+H2混合气体。退火条件为升温速度200℃/小时、保持温度1050℃、温度保持时间2小时、冷却速度200℃/小时、气氛中的气体加湿后的N2气体。需要注意的是,在烧结和退火时的气氛气体的加湿中使用了水温20℃的加湿器。
接着,由喷砂器研磨了得到的多层陶瓷烧结体的端面之后,作为外部电极,涂覆In-Ga,就得到了图1中示出的多层陶瓷电容器的样品1~10。
得到的电容器样品的尺寸是3.2mm×1.6mm×0.6mm,夹在内部电极层中的介电体层的数量设为4个,内部电极层的平均厚度是1.2μm。在表1和表3中示出了各样品的介电体层的每一层的平均厚度(层间厚度)、介电体粒子的平均粒径、介电体层的每一层的平均粒子数。
作为介电体层的厚度的测定方法,首先,用垂直于内部电极的面切断得到的电容器样品,研磨其切断面,通过用金属显微镜观察其研磨面的多处,求出了烧结后的介电体层的平均厚度。
作为介电体粒子的平均粒径的测定方法,对上述研磨面实施化学刻蚀,之后,由扫描型电子显微镜(SEM)进行观察,由编码法假设介电体粒子的形状为球进行了计算。
从由上述测定的介电体层的厚度和平均粒径,求出了介电体层的每一层的平均粒子数。即,通过用介电体层的厚度除以平均粒径来计算。
关于得到的各电容器样品,利用下述示出的方法,进行了介电常数、短路故障率、DC偏压特性和电容温度特性的测定。
介电常数(εr)对于电容器的样品,在基准温度20℃中,利用数字LCR表(横河电机(株式会社)制YHP4284),在频率1kHz、输入信号水平(测定电压)1Vrms/μm的条件下,测定了静电电容C。然后,从得到的静电电容、多层陶瓷电容器的介电体厚度和内部电极彼此之间的重叠面积,计算出了介电常数(无单位)。表2和表4示出结果。
短路故障率对短路故障率使用80个电容器样品,用测试器进行了导通检验。然后,将电阻值在10Ω的作为短路故障,求出其不合格数,计算出了对于全体个数的百分比(%)。表2和表4示出结果。
DC偏压特性对于电容器的样品,在一定温度(20℃)中,计算出了逐渐施加直流电压时的静电电容的变化(单位是%)。表2和表4示出2V/μm中的结果。
静电电容的温度特性对于电容器的样品,在-55~125℃的温度范围中测定静电电容,计算出了+20℃中的静电电容的-55℃、-25℃、85℃和125℃中的静电电容的变化率ΔC(单位是%)。表2和表4中示出结果。
表1

表2

表1中示出了样品1~8的BaTiO3原料的表面系数、各辅助成分的添加量、介电体层厚度、介电体粒子的平均粒径和介电体层的每一层的平均粒子数。此外,表2中示出了样品1~8的介电体层的每一层的平均粒子数和各电气特性。
根据表1,样品1~8介电体层的厚度都在2.0μm以下,但关于介电体层的每一层的平均粒子数,实施例的样品2~7是在3个以上、6个以下的范围内,而在比较例的样品1中超过了6个,在比较例的样品8中不足3个。
根据表2,本发明的实施例的样品2~7都显示了介电常数高的结果。此外,关于短路故障率、DC偏压特性、静电电容的温度特性也取得了良好的结果。特别是静电电容的温度特性的结果,满足B特性[-25~85℃中电容变化率在±10%以内(基准温度20℃)]和X5R特性[-55~85℃中电容变化率在±15%以内(基准温度20℃)]。
另一方面,对于介电体层的每一层的平均粒子数是6.167的比较例的样品1,结果为介电常数变低,且低于2000。介电体层的每一层的平均粒子数是2.674的比较例的样品8,短路故障率为100%,作为电容器,不能得到有功能的样品。因此,关于该样品,不能测定除了短路故障率之外的其他电气特性。
根据该结果,在薄型化了介电体层的情况下,例如设为2.0μm以下的情况中,由于较低地抑制短路故障率且提高介电常数,因此可以确认介电体层的每一层的平均粒子数优选在3个以上、6个以下。
此外,根据表1和表2,关于MgO的添加量为0.1摩尔的样品6、7,与MgO的添加量为0.5、0.3摩尔的样品2~5相比,125℃中的温度特性显示了特别良好的结果。根据该结果可以确认,Mg的氧化物的含有对于主要成分100摩尔,按MgO换算,优选是0.1~3摩尔,进一步优选0.1~0.5摩尔,更优选0.1~0.3摩尔。
表3

表4

表3中示出了样品2、9、10的BaTiO3原料的表面系数、各辅助成分的添加量、介电体层厚度、介电体粒子的平均粒径和介电体层的每一层的平均粒子数。此外,表4中示出了样品2、9、10的介电体层厚度和各电气特性。
根据表3,比较例9、10关于介电体层的每一层的平均粒子数处于本发明的范围内,但介电体层的厚度是3.4μm,在本发明的范围外。需要注意的是,比较例的样品9的辅助成分的含有成为本发明的优选范围内。
根据表4,将介电体层的厚度设为厚到3.4μm的比较例的样品9、10,其DC偏压特性超过了-30%,与实施例的样品2相比,结果差。此外,在比较例的样品9、10中,与实施例的样品2相比,介电常数值高,但由于介电体层自身的厚度变厚,因此,作为结果,多层陶瓷电容器的静电电容自身没提高。根据该结果可以确认,介电体层的每一层的平均粒子数希望是3个以上、6个以下,介电体层的厚度希望在2.0μm以下,进一步优选1.5μm以下。
权利要求
1.一种多层陶瓷电容器,其具有内部电极层和介电体层,其特征在于,上述介电体层的厚度在2.0μm以下,通过用上述介电体层的厚度除以构成上述介电体层的介电体粒子的平均粒径来求得的介电体层的每一层的平均粒子数在3个以上、6个以下。
2.如权利要求1所述的多层陶瓷电容器,其特征在于,上述介电体层含有含有钛酸钡的主要成分,作为辅助成分,对于上述主要成分100摩尔,含有按MgO换算是0.1~3摩尔的Mg的氧化物、按MnO换算是0~0.5摩尔的Mn的氧化物、按V2O5换算是0~0.5摩尔的V的氧化物、按Y2O3换算是0~5摩尔的Y的氧化物、按SiO2换算是2~12摩尔的Si的氧化物、按(BaO+CaO)换算是2~12摩尔的Ba和Ca的氧化物。
3.如权利要求1所述的多层陶瓷电容器,其特征在于,上述介电体层含有含有钛酸钡的主要成分,作为辅助成分,对于上述主要成分100摩尔,含有按MgO换算是0.1~3摩尔的Mg的氧化物、按SiO2换算是2~12摩尔的Si的氧化物、按(BaO+CaO)换算是2~12摩尔的Ba和Ca的氧化物。
4.如权利要求2或3所述的多层陶瓷电容器,其特征在于,上述介电体层含有按MgO换算是0.1~0.5摩尔的Mg的氧化物。
5.如权利要求4所述的多层陶瓷电容器,其特征在于,上述介电体层含有按MgO换算是0.1~0.3摩尔的Mg的氧化物。
6.如权利要求1~5的任一项所述的多层陶瓷电容器,其特征在于,上述介电体层是将表面系数在3m2/g以上、10m2/g以下的钛酸钡粉末作为原料进行制造的介电体层。
全文摘要
一种多层陶瓷电容器,其具有内部电极层和介电体层,其特征在于,上述介电体层的厚度在2.0μm以下,通过用上述介电体层的厚度除以构成上述介电体层的介电体粒子的平均粒径来求得的介电体层的每一层的平均粒子数在3个以上、6个以下。
文档编号H01G4/30GK1610026SQ20041009518
公开日2005年4月27日 申请日期2004年10月22日 优先权日2003年10月24日
发明者梅田裕二, 佐藤阳 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1