环状单磁畴结构微小磁体及其制造方法以及采用该磁体的磁记录元件的制作方法

文档序号:6844940阅读:352来源:国知局
专利名称:环状单磁畴结构微小磁体及其制造方法以及采用该磁体的磁记录元件的制作方法
技术领域
本发明涉及可控制磁化的环线方向且具有静态环状单磁畴结构的微小磁体,以及将该微小磁体配置在衬底上的磁记录元件及其制造方法,特别是涉及采用该磁记录元件的磁随机存取存储器。
背景技术
作为下一代主存储用存储器,要求具有接近SRAM的高速性、接近DRAM的集成度以及可无限改写且非易失,基于这些理由,MRAM倍受关注。
MRAM指的是磁随机存取存储器(magnetic random accessmemory),是组合磁阻元件与标准半导体技术的存储器,具有非易失性、低压工作、无限次读出/写入、高速的读出/写入速度及优秀的耐辐射性等特征。
这里,磁阻元件指的是根据磁化的状态具有高的阻抗值与低的阻抗值的状态的元件,通过检出该阻抗值来判定磁化的状态。该阻抗值的检出方法,可考虑例如测量夹着薄的非磁性层的两个强磁层间的隧道电流的方式(TMR(隧道磁阻)tunneling magneto resistive)等。
不久的将来现在的MRAM方式也能实现与该SRAM同等以下的单元面积和存取时间,此外通过非易失性的特性,至少用作SRAM的代替而得以实用。另外,设想用于闪速EEPROM的利用领域。
另一方面,超高密度磁记录时的记录区已经进入纳米级的领域。还有,已知纳米级磁体的磁畴结构、磁化反转过程等的动作完全不同于所谓空间磁性。已知在例如微米、超微尺寸的磁盘中,中心部采用涡旋状的涡旋(vortex)磁畴结构。
这是由于在纳米领域形成磁畴壁反而不利于能量转换,在纳米级磁体中,其中心部采用同心圆状的涡旋结构来消除磁畴壁,并实现减少静磁能量。特别是,在纳米级的圆形状或环状的强磁体具有封闭的磁畴结构,报告观测到同心圆状的涡旋结构。(参照非专利文献1)但是,这种纳米级的圆盘状强磁体中撤消外部磁场时的磁化方向有时为顺时针方向有时为逆时针方向,因此不能进行稳定的控制。(参照非专利文献2、3)另外,已知在纳米级的环状强磁体中,通过施加或撤消外部磁场,经过局部的涡旋结构的发生、生长,整个环区域由一方向磁化的状态变化到涡旋结构,以及其逆现象。(参照非专利文献4)还有,在过渡性发生的局部的磁化歪曲有C型模式和S型模式,已知C型模式在更小尺寸时有优势。(参照非专利文献5)非专利文献1“日本应用物理学会杂志”,Vol.26,No.12(2002)pp.1168-1173非专利文献2“APPLIED PHYSICS LETTERS”,Vol.77,No.18(2000),pp.2909-2911非专利文献3“PHYSICAL REVIEW LETTERS”,Vol.88,No.15(2002),pp.157203-1~157203-4非专利文献4“JOURNAL OF APPLIED PHYSICS”,Vol.92,No.12(2002),pp.7397-7403非专利文献5“JOURNAL OF APPLIED PHYSICS”,Vol.92,No.3(2002),PP.1466-1472在考虑扩展这种MRAM的用途时,成为最大障碍的就是单元面积的问题。特别是,在考虑与DRAM混装时,MRAM的单元面积会达到DRAM的数倍,存在不能采用同一设计标准的问题。
至少,现在的MRAM原理上在写入时利用感应磁场,因此不仅难以降低写入电流,而且难以减小布线宽度或外围电路面积,以避免来自其它感应磁场的影响。于是,需要在小的写入电流下可稳定控制磁化的元件。
另一方面,以单元面积的小型化为目标采用纳米级强磁体时,可预测其磁化的状态采用涡旋结构,但这时的磁化方向控制极为困难,根据过渡状态中发生的磁化分布的歪曲状况,有时成为顺时针方向有时成为逆时针方向。
这样,由于不能控制磁化方向,不能利用例如磁阻效应,由阻抗值的高低读出磁化的状态。因而,采用该数量级的单元时,将不能用作存储器。
这样看来,MRAM的实用化中单元面积的纳米级化是不可缺少的,但这时通常的磁化方式存在不能控制单元的磁化状态即磁化的旋转方向的问题。因而,现在方式的MRAM虽然可取代SRAM或闪速EEPROM,但不适合与DRAM混装,而且难以取代DRAM。
本发明的目的在于解决上述技术上的课题,提供可与DRAM混装并取代DRAM用于主存储的磁存储元件。其由以下技术项目构成。
发明的公开本发明为了达成上述目的而采用以下解决手段。
解决课题的手段本发明(1)是一种微小磁体,其特征在于由平板状强磁体构成,其平面部形状具有线对称轴的同时在与该线对称轴垂直的方向上非对称,在平行外部磁场堙没时显示环状单磁畴结构。
本发明(2)是一种微小磁体,其特征在于由强磁材料构成,并具有与可导通、截止及反转控制的平行外部磁场平行的平面部;该平面部形状相对于所述平行外部磁场非对称,并具有在与所述平行外部磁场垂直的方向上左右对称的线对称轴;
在施加所述平行外部磁场后撤消时显示环状单磁畴结构。
本发明(3)是本发明(1)或本发明(2)任一发明的微小磁体,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁通方位显示包含磁通方位不连续变化的部位的圆周方向分布。
本发明(4)是本发明(1)或本发明(2)任一发明的微小磁体,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
本发明(5)是本发明(1)~(4)中任一发明的微小磁体,其特征在于所述平面部形状的最大宽度为10nm以下。
本发明(6)是一种磁记录元件,其特征在于在非强磁体衬底上设有至少一个以上的强磁区域层,并设有可对该强磁区域层施加可导通、截止及反转控制的平行磁场的外部磁场发生部件;所述强磁区域层的平面形状相对所述外部磁场发生部件的平行磁场为左右非对称,并具有相对与该平行磁场垂直的方向成为左右对称的线对称轴,通过所述外部磁场发生部件,在施加外部磁场后使该外部磁场堙没,从而使所述强磁区域层成为环状单磁畴结构,而在反转所述外部磁场后施加,然后使该外部磁场堙没,从而使所述强磁区域层成为具有反向的磁化方向的环状单磁畴结构。
本发明(7)是一种磁记录元件,其特征在于在非强磁体衬底上设有至少一个以上的强磁区域层,并设有可对该强磁区域层施加可导通、截止及反转控制的平行磁场的外部磁场发生部件;
所述强磁区域层的平面形状相对所述外部磁场发生部件的平行磁场为左右非对称,并具有相对与该平行磁场垂直的方向成为左右对称的线对称轴,通过所述外部磁场发生部件施加的磁场方向,并不与所述强磁体区域层的左右非对称轴平行时,所述强磁体区域层的环状单磁畴结构在磁场堙没后不变化。
本发明(8)是本发明(6)或(7)任一发明的磁记录元件,其特征在于所述强磁区域层夹着非磁性层在上下方向成为层叠结构,通过至少使上下任一方的强磁区域层的长宽比大于另一方强磁体区域层地形成,使长宽比小的强磁体区域的磁化方向相对长宽比大的强磁体区域的磁化方向可独立控制地构成,基于所述强磁区域层间的阻抗值,检出所述强磁区域层的磁化方向。
本发明(9)是本发明(8)的磁记录元件,其特征在于所述长宽比取决于同一平面形状的强磁区域层厚度的差异。
本发明(10)是本发明(8)的磁记录元件,其特征在于所述长宽比取决于强磁区域层的平面部面积的差异。
本发明(11)是本发明(6)~(10)中任一发明的磁记录元件,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;在施加所述平行外部磁场时,所述强磁区域层的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
本发明(12)是本发明(6)~(10)中任一发明的磁记录元件,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
本发明(13)是本发明(6)~(12)中任一发明的磁记录元件,其特征在于所述平面部形状中最大部分宽度是10nm以下。
本发明(14)是本发明(6)~(14)中任一发明的磁记录元件,其特征在于在所述强磁区域层的上下面还分别布置写入用位线与写入用字线,配置所述强磁区域层的线对称轴,使得通过向这些布线通电来产生的合成感应磁场作为所述平行外部磁场起作用。
本发明(15)是本发明(6)~(14)中任一发明的磁记录元件,其特征在于将所述强磁体区域层在垂直方向多层层叠,使各强磁体区域层的平面部平行且使各强磁体区域层间夹着非磁性层,各平面部的线对称轴的方位沿垂直方向配置成彼此间具有相位差,根据由写入位线和写入用字线产生的合成感应磁场的方向,可独立控制除最下层和/或最上层的强磁体区域层的任何一层以上中间的各强磁体区域层的磁化方向。
本发明(16)是一种磁随机存取存储器,其特征在于在所述非强磁体衬底上配置多个本发明(14)或(15)任一发明的磁记录元件,可独立选择各磁记录元件。
本发明(17)是本发明(16)的磁随机存取存储器,其特征在于在所述非强磁体衬底上配置的多个所述磁记录元件配置成使相邻的磁记录元件的同一高度的强磁体区域层的各平面部线对称轴彼此不在同一方位。
本发明(18)是一种环状单磁畴结构的微小磁体的制造方法,其特征在于至少包含平板状的强磁体是其平面部形状具有线对称轴且在与该线对称轴垂直的方向上非对称的微小磁体,将该微小磁体在可施加平行外部磁场的区域内,使所述线对称轴与该平行外部磁场的施加方向垂直地配置的工序;以及配置向所述微小磁体施加所述平行外部磁场的外部磁场形成部件的工序。
本发明(19)是本发明(18)的环状单磁畴结构的微小磁体的制造方法,其特征在于所述平行外部磁场形成部件可使施加的磁场方向反转并可导通、截止。
本发明(20)是本发明(18)或(19)任一发明的环状单磁畴结构的微小磁体的制造方法,其特征在于所述微小磁体通过溅镀法、电子束蒸镀法、分子束外延法中任一种或其组合,形成图案。
本发明(21)是由环状单磁畴结构的微小磁体构成的磁记录元件的制造方法,其特征在于在至少包含非磁体衬底上至少描绘写入用字线的工序、描绘磁阻效应元件的工序和描绘写入用位线的工序的微小磁记录元件的制造方法中,描绘所述磁阻效应元件的工序至少还包括平板状的强磁体是其平面部形状具有线对称轴且在与该线对称轴垂直的方向上为非对称的第一微小磁体,将该第一微小磁体配置成使所述线对称轴与因在所述写入用字线和写入用位线上通电而产生的合成感应磁场的方向垂直的工序;覆盖所述平板状强磁体顶面地沉积非磁性层的工序;以及在所述第一微小磁体垂直上方的所述非磁性层上,将与所述第一微小磁体相同材料且长宽比不同的形状的第二微小磁体配置成使其界面平行的工序,通过所述合成感应磁场的控制,至少可控制长宽比小的微小磁体的感应磁场堙没时的磁化方向。
本发明(22)是本发明(21)的磁记录元件的制造方法,其特征在于所述长宽比取决于同一平面形状的强磁区域层厚度的差异。
本发明(23)是本发明(21)的磁记录元件的制造方法,其特征在于所述长宽比取决于强磁区域层的平面部面积的差异。
本发明(24)是本发明(18)~(23)中任一发明的磁记录元件的制造方法,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;
在施加所述平行外部磁场时,所述强磁区域层的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
本发明(25)是本发明(18)~(23)中任一发明的磁记录元件的制造方法,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
本发明(26)是本发明(18)~(25)中任一发明的磁记录元件的制造方法,其特征在于所述平面部形状的最大部分宽度为10nm以下。
本发明(27)是本发明(18)~(26)中任一发明的磁记录元件,其特征在于在所述强磁区域层的上下面还分别布置写入用位线与写入用字线,配置所述强磁区域层的线对称轴,使得通过向这些布线通电产生的合成感应磁场作为所述平行外部磁场起作用。
本发明(28)是本发明(18)~(27)中任一发明的磁记录元件的制造方法,其特征在于将所述强磁体区域层在垂直方向多层层叠使各强磁体区域层的平面部平行且使各强磁体区域层间夹着非磁性层,各平面部的线对称轴的方位沿垂直方向配置成彼此间具有相位差,根据由写入位线和写入用字线产生的合成感应磁场的方向,可独立控制除最下层和/或最上层的强磁体区域层的任何一层以上中间的各强磁体区域层的磁化方向。
本发明(29)是一种磁随机存取存储器的制造方法,其特征在于利用本发明(27)或(28)任一发明的磁记录元件的制造方法,在所述非强磁体衬底上配置多个该磁记录元件,可独立选择各磁记录元件。
本发明(30)是本发明(29)的磁随机存取存储器的制造方法,其特征在于在所述非强磁体衬底上配置的多个所述磁记录元件配置成使相邻的磁记录元件的同一高度的强磁体区域层的各平面部线对称轴彼此不在同一方位。
这里,根据强磁体区域的形状各向异性的效果,局部区域的磁化方向(极化方向)即便在外部磁场的下方,也未必与外部磁场平行,沿着强磁体区域的外缘形状发生磁化方位分布的不连续。认为由于该磁化方位分布上的不连续,在撤消外部磁场时,局部的C型涡旋结构导入强磁体区域,并在整个强磁体区域传播,从而产生涡旋结构的环状单磁畴结构。
附图的简单说明

图1是关于本发明的微小磁体的平面部形状的说明图。
图2是本发明的微小磁体对应于外部磁场的磁化履历的示图。
图3是关于本发明的微小磁体的磁记录方式的说明图。
图4是涡旋堙没磁场的磁体厚度依存性的示图。
图5是涡旋堙没磁场的磁体直径依存性的示图。
图6是用本发明的微小磁体构成MRAM时的元件剖视图。
图7是用本发明的微小磁体构成MRAM时单元配置的一形态的示图。
图8是本发明的多值记录元件的元件结构的示图。
实施本发明的最佳方式图1表示一例采用本发明的强磁体的平面部形状。该平面部形状是由圆形切去一部分或在一部分上设置凸部的形状,基本上具有在外部磁场的方向上左右非对称,而在其垂直方向上左右对称的形状。
图1中,采用直径(D)1μm的圆上,将该圆直径D为长边并其0.25×D为短边的长方形,使长边通过圆中心地重叠时的投影形状作为平面形状。另外,其厚度为50nm。还有,本发明并不限于该图1的形状。
实施例1
对该图1所示的强磁体施加1000Oe的外部磁场时模拟试验的磁化方向的样子如图2所示。本例中,将外部磁场的施加方向与所述长方形的长边平行地配置,设成对外部磁场非对称且与外部磁场的垂直方向左右对称。
首先,将1000Oe的外部磁场按图中由左到右方向施加时磁化的样子显示在右侧的方块。外部磁场贯通强磁体内,从而强磁体内的磁化也大致与外部磁场平行。这里,由圆的外周突出的长方形部分的磁化方向并不与外部磁场完全平行,判断在强磁体的外周部的磁化方向的变化上发生了不连续。认为是由端面效应引起的。
接着,由该状态撤消外部磁场时的磁化的样子显示在图中央上侧的方块中。其结果,形成顺时针方向涡旋结构的封闭单磁畴。
另外,对成为该涡旋结构的试料反向施加1000Oe的外部磁场时的样子显示在图中左侧的方块中。观察到与外部磁场平行地箭头方向(磁化方向)大致左方向对齐。
然后,由该左方向对齐的状态一旦撤消外部磁场(成为0Oe),则如图中央下侧的方块所示,观察到逆时针方向的磁化。
还有,对该逆时针卷绕的磁体,又施加右方向或左方向的外部磁场时,也同样能按外部磁场相同的方向磁化,表示具有再现性。同样地,根据由图中央上侧的状态施加外部磁场的方向,能够自由地将磁化方向向一方对齐。
由这结果可确认通过切换外部磁场的磁场方向,能够自由控制强磁体区域内的磁化方向分布,尤其能够控制涡旋结构的旋转方向。并且,判断该磁化方向的控制为可逆且可无限次重复进行。
通过比较实施例,明确了沿着上述磁化方向变化时不连续的部位的磁化方向,涡旋卷绕。认为该磁化方向上的不连续是因对应于外部磁场伴随形状各向异性的端面效应而产生,在该外部磁场的方向上不左右对称的磁化分量,在撤消外部磁场时残留,由于该局部的磁化歪曲,确定在整个磁体上扩散的涡旋方向。
实施例2图3是利用本发明的微小磁体构成磁记录元件时的原理说明图。在中间夹着薄的非磁性层(2)地将本发明的磁体上下两层配置,并将这种结构在平面上配置多个。使下侧磁体的层厚较大并作为固定层(3),并将上侧较薄的磁性层作为自由层(1)。
这里,两个强磁体的磁化方向相同时,两个强磁体层间的阻抗值较小,而在磁化方向相反时阻抗值较大,这种效应作为磁阻效应众所周知。因而,本发明的磁记录元件,根据外部磁场控制自由层的涡旋磁场方向,从而进行写入,且利用磁阻效应,通过判定该磁化方向来进行读出。
这里,关于涡旋磁场的形状依存性,在图4和图5中示出其测定结果。图4是使直径1微米的强磁体的厚度进行各种变化,测定涡旋磁场堙没的外部磁场大小的结果。另一方面,图5是使厚度50nm的强磁体的直径进行各种变化,同样测定涡旋磁场堙没的外部磁场大小的结果。
由这些结果判断出能够通过使夹着非磁性层的两个强磁体形状的长宽比不同,使涡旋磁场的堙没磁场上存在差异。因而,将强磁体形状中长宽比大的一方作为固定了磁化方向的固定层,并通过施加两个强磁体的涡旋堙没磁场之间的磁场来控制另一方的自由层的磁化方位。从而,本发明需要用以固定一方的磁化方向的定位层。
实施例3本发明的微小磁体中,与磁体的左右对称轴垂直的方向配置成与写入用位线和写入用字线(ww1,ww2)发生的合成磁场方向平行,构成磁随机存取存储器。该元件剖视图如图6所示。另外敷设了读出位线及读出用的字线(rw1,rw2)。这些读出用线的电流量小于写入用线,因此不影响磁阻效应元件的磁化方向。
这里,写入用位线与写入用字线(ww1,ww2)交叉点单元以外的单元上,不与感应磁场合成,因此写入用字线与写入用位线的电流量设定为感应磁场不超过自由层的涡旋堙没磁场。
磁阻效应元件上下的强磁层上的磁化方向相同时,两个强磁层间的阻抗值变小,相反地在反向时阻抗值变大,因此如果通过读出用的位线和读出用的字线选择所需单元并检出隧道电流大小,就能读出该单元的自由层(1)的磁化方向。
还有,如果如图7那样在相邻的单元间使自由层(1)的线对称轴方位彼此差异地配置,就不易受选择相邻单元时的感应磁场的影响,因此缓和单元分离的问题,并能进一步实现单元配置的高密度化。
实施例4图8概略表示在一个单元上记录多值的单元结构。基本上强磁体区域沿垂直方向配置多层。首先,固定层(fx1,fx2)构成为不具有与自由层(fr1~fr)相同的平面形状。从而,能够取较大的长宽比,能够将因形状各向异性的自由层周边部上磁化方位散乱而产生的对磁阻的影响抑制为最小。
在层间插入隧道势垒层(tb1~tb5),并使各自由层(fr1~fr4)的平面部线对称轴每90度移相地沿垂直方向层叠配置。还有,各自由层间的相位差并不限于90度,但考虑写入用字线和写入用位线的布线设计,在90度的场合容易多层化。
还有,对写入用字线和写入用位线施加电流时,该电流大小能够发生使一个自由层的线对称轴和垂直方向的磁场成为涡旋堙没磁场以上,且其它自由层的线对称轴和垂直方向的磁场分量成为自由层的涡旋堙没磁场以下以及固定相的涡旋堙没磁场以下的强度的感应磁场,能够只控制所要的自由层的磁化方位。
但是,由于读出时检出固定层(rb1,rb2)间的阻抗值,本实施例中,每一单元上不能记录2的4(自由层数)次方的信息量。但是,在自由层为一层时,与只有0,1的2值的情况相比,能够在一个单元上存储3值,而且该值也成为0,2,4的强度,因此取得较大的S/N比,即便将单元小型化,也可期待足够大小的阻抗值变化。
发明的效果依据本发明,即使是纳米级的微小磁体,也能控制其涡旋结构上的磁化方向。因而,能够进一步减小单元面积,因此也能实现与DRAM的混装或取代DRAM等技术目标。
还有,在本发明的磁体的场合,由于具有形状各向异性,如果将各磁阻效应元件的形状各向异性的对称轴移相后沿垂直方向配置,能够将由其它层的写入用字线施加的感应磁场的影响抑制得较小,因此可多层配置,并可期待更高的高集成化。另外,本发明中,不需要用以固定一方的磁化方向的定位层,因此能简化MRAM等器件制造的步骤,并可减小相对集成密度的制造成本。
权利要求
1.一种微小磁体,其特征在于由平板状强磁体构成,其平面部形状具有线对称轴的同时在与该线对称轴垂直的方向上非对称,在平行外部磁场堙没时显示环状单磁畴结构。
2.一种微小磁体,其特征在于由强磁材料构成,并具有与可导通、截止及反转控制的平行外部磁场平行的平面部;该平面部形状相对于所述平行外部磁场非对称,并具有在与所述平行外部磁场垂直的方向上左右对称的线对称轴;在施加所述平行外部磁场后撤消时显示环状单磁畴结构。
3.如权利要求1或2所述的微小磁体,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁通方位显示包含磁通方位不连续变化的部位的圆周方向分布。
4.如权利要求1或2所述的微小磁体,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
5.如权利要求1至4中任一项所述的微小磁体,其特征在于所述平面部形状的最大宽度为10nm以下。
6.一种磁记录元件,其特征在于在非强磁体衬底上设有至少一个以上的强磁区域层,并设有可对该强磁区域层施加可导通、截止及反转控制的平行磁场的外部磁场发生部件;所述强磁区域层的平面形状相对所述外部磁场发生部件的平行磁场为左右非对称,并具有相对与该平行磁场垂直的方向成为左右对称的线对称轴,通过所述外部磁场发生部件,在施加外部磁场后使该外部磁场堙没,从而使所述强磁区域层成为环状单磁畴结构,而在反转所述外部磁场后施加,然后使该外部磁场堙没,从而使所述强磁区域层成为具有反向的磁化方向的环状单磁畴结构。
7.一种磁记录元件,其特征在于在非强磁体衬底上设有至少一个以上的强磁区域层,并设有可对该强磁区域层施加可导通、截止及反转控制的平行磁场的外部磁场发生部件;所述强磁区域层的平面形状相对所述外部磁场发生部件的平行磁场为左右非对称,并具有相对与该平行磁场垂直的方向成为左右对称的线对称轴,通过所述外部磁场发生部件施加的磁场方向,并不与所述强磁体区域层的左右非对称轴平行时,所述强磁体区域层的环状单磁畴结构在磁场堙没后不变化。
8.如权利要求6或7所述的磁记录元件,其特征在于所述强磁区域层夹着非磁性层在上下方向成为层叠结构,通过至少使上下任一方的强磁区域层的长宽比大于另一方强磁体区域层地形成,使长宽比小的强磁体区域的磁化方向相对长宽比大的强磁体区域的磁化方向可独立控制地构成,基于所述强磁区域层间的阻抗值,检出所述强磁区域层的磁化方向。
9.如权利要求8所述的磁记录元件,其特征在于所述长宽比取决于同一平面形状的强磁区域层厚度的差异。
10.如权利要求8所述的磁记录元件,其特征在于所述长宽比取决于强磁区域层的平面部面积的差异。
11.如权利要求6至10中任一项所述的磁记录元件,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;在施加所述平行外部磁场时,所述强磁区域层的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
12.如权利要求6至10中任一项所述的磁记录元件,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
13.如权利要求6至12中任一项所述的磁记录元件,其特征在于所述平面部形状中最大部分宽度是10nm以下。
14.如权利要求6至14中任一项所述的磁记录元件,其特征在于在所述强磁区域层的上下面还分别布置写入用位线与写入用字线,配置所述强磁区域层的线对称轴,使得通过向这些布线通电产生的合成感应磁场作为所述平行外部磁场起作用。
15.如权利要求6至14中任一项所述的磁记录元件,其特征在于将所述强磁体区域层在垂直方向多层层叠使各强磁体区域层的平面部平行且使各强磁体区域层间夹着非磁性层,各平面部的线对称轴的方位沿垂直方向配置成彼此间具有相位差,根据由写入位线和写入用字线产生的合成感应磁场的方向,可独立控制除最下层和/或最上层的强磁体区域层的任何一层以上中间的各强磁体区域层的磁化方向。
16.一种磁随机存取存储器,其特征在于在所述非强磁体衬底上配置多个权利要求14或15所述的磁记录元件,可独立选择各磁记录元件。
17.如权利要求16所述的磁随机存取存储器,其特征在于在所述非强磁体衬底上配置的多个所述磁记录元件配置成使相邻的磁记录元件的同一高度的强磁体区域层的各平面部线对称轴彼此不在同一方位。
18.一种环状单磁畴结构的微小磁体的制造方法,其特征在于至少包含平板状的强磁体是其平面部形状具有线对称轴且在与该线对称轴垂直的方向上非对称的微小磁体,将该微小磁体在可施加平行外部磁场的区域内,使所述线对称轴与该平行外部磁场的施加方向垂直地配置的工序;以及配置向所述微小磁体施加所述平行外部磁场的外部磁场形成部件的工序。
19.如权利要求18所述的环状单磁畴结构的微小磁体的制造方法,其特征在于所述平行外部磁场形成部件可使施加的磁场方向反转并可导通、截止。
20.如权利要求18或19所述的环状单磁畴结构的微小磁体的制造方法,其特征在于所述微小磁体通过溅镀法、电子束蒸镀法、分子束外延法中任一种或其组合,形成图案。
21.一种由环状单磁畴结构的微小磁体构成的磁记录元件的制造方法,其特征在于在至少包含非磁体衬底上至少描绘写入用字线的工序、描绘磁阻效应元件的工序和描绘写入用位线的工序的微小磁记录元件的制造方法中,描绘所述磁阻效应元件的工序至少还包括平板状的强磁体是其平面部形状具有线对称轴且在与该线对称轴垂直的方向上为非对称的第一微小磁体,将该第一微小磁体配置成使所述线对称轴与因在所述写入用字线和写入用位线上通电而产生的合成感应磁场的方向垂直的工序;覆盖所述平板状强磁体顶面地沉积非磁性层的工序;以及在所述第一微小磁体垂直上方的所述非磁性层上,将与所述第一微小磁体相同材料且长宽比不同的形状的第二微小磁体配置成使其界面平行的工序,通过所述合成感应磁场的控制,至少可控制长宽比小的微小磁体的感应磁场堙没时的磁化方向。
22.如权利要求21所述的磁记录元件的制造方法,其特征在于所述长宽比取决于同一平面形状的强磁区域层厚度的差异。
23.如权利要求21所述的磁记录元件的制造方法,其特征在于所述长宽比取决于强磁区域层的平面部面积的差异。
24.如权利要求18至23中任一项所述的磁记录元件的制造方法,其特征在于所述平面部形状在其具有互相垂直的两个线对称轴的形状中,在外周部设有相对于一个线对称轴左右对称且相对于另一线对称轴左右非对称的切口;在施加所述平行外部磁场时,所述强磁区域层的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
25.如权利要求18至23中任一项所述的磁记录元件的制造方法,其特征在于所述平面部形状是具有互相垂直的两个线对称轴的形状和将一个线对称轴作为长边并将另一线对称轴的小于一半的长度作为短边的长方形被投影时的外缘形状;在施加所述平行外部磁场时,所述磁性材料的边缘部上的磁化方位显示包含磁化方位不连续变化的部位的圆周方向分布。
26.如权利要求18至25中任一项所述的磁记录元件的制造方法,其特征在于所述平面部形状的最大部分宽度为10nm以下。
27.如权利要求18至26中任一项所述的磁记录元件,其特征在于在所述强磁区域层的上下面还分别布置写入用位线与写入用字线,配置所述强磁区域层的线对称轴,使得通过向这些布线通电产生的合成感应磁场作为所述平行外部磁场起作用。
28.如权利要求18至27中任一项所述的磁记录元件的制造方法,其特征在于将所述强磁体区域层在垂直方向多层层叠使各强磁体区域层的平面部平行且使各强磁体区域层间夹着非磁性层,各平面部的线对称轴的方位沿垂直方向配置成彼此间具有相位差,根据由写入位线和写入用字线产生的合成感应磁场的方向,可独立控制除最下层和/或最上层的强磁体区域层的任何一层以上中间的各强磁体区域层的磁化方向。
29.一种磁随机存取存储器的制造方法,其特征在于利用权利要求27或28所述的磁记录元件的制造方法,在所述非强磁体衬底上配置多个该磁记录元件,可独立选择各磁记录元件。
30.如权利要求29所述的磁随机存取存储器的制造方法,其特征在于在所述非强磁体衬底上配置的多个所述磁记录元件配置成使相邻的磁记录元件的同一高度的强磁体区域层的各平面部线对称轴彼此不在同一方位。
全文摘要
由平板状强磁体构成,其平面部形状具有线对称轴的同时在与该线对称轴垂直的方向上非对称,在平行外部磁场堙没时显示环状单磁畴结构,通过这种结构的微小磁体和采用该微小磁体的MRAM或它们的制造方法,能够在纳米级的微小磁体上控制磁化方向,并可消除改写及写入次数的限制。
文档编号H01L43/08GK1833320SQ20048002250
公开日2006年9月13日 申请日期2004年6月4日 优先权日2003年6月5日
发明者秋永广幸, 小野宽太, 尾岛正治, 谷内敏之 申请人:独立行政法人产业技术综合研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1