P型GaN上镉铟氧透明电极及其制备方法

文档序号:7230415阅读:269来源:国知局
专利名称:P型GaN上镉铟氧透明电极及其制备方法
技术领域
本发明涉及一种P型GaN上的欧姆接触方案及其制备方法,尤其涉及一种P型GaN 上镉铟氧透明电极及其制备方法。
技术背景GaN基材料是第三代宽禁带半导体材料的代表,具有许多优异的性能,在蓝、紫光 发射、超高频、高温、大功率等许多光电和微波器件领域有着广阔的应用前景。随着高 亮度篮、紫色GaN基LED的商品化和实用化,高亮度白色LED将有可能取代目前的各种 照明灯,照明技术面临一场新的革命。但目前对于GaN基LED的制作,还有一些技术难 题没有完全解决,其中最主要的难题之一是在材料生长过程中难以获得足够高浓度的 P型载流子浓度,加上可供选择的金属材料有限,导致难以在GaN上制作良好的P型欧 姆接触电极。因此,人们想出许多方法来降低P型GaN上欧姆接触的电阻。某些研究者 就提出了采用金和镍材料,在P型GaN上依次淀积Ni/Au,然后在40CTC以上的温度下 退火,可以在金属与P型GaN之间得到欧姆接触。在GaN基LED上采用Ni/Au金属作为P型GaN接触电极的主要问题是当Ni/Au太 薄则影响电流的均匀扩散和热稳定性;太厚时,金属薄膜的透光率低,大大降低了LED 发光效率。因此, 一般采用Ni/Au的厚度为50nm,透光率低于50%.因此,如何在P型GaN 上获得低阻、高热稳定性和高透光率的欧姆接触,从而提高LED发光效率, 一直是众多 研究者关注的焦点问题之一。为提高LED的发光效率,除了在封装结构、光学设计等方 面的工作外,方法之一是采用透明导电膜(TCO)代替金属作为P型GaN上的接触电极, 以实现电流的均匀扩散及高透光率,从而获得更高的光输出。目前,应用最广泛的透明导电薄膜材料是In203:Sn (ITO)和Sn02:F薄膜。但ITO 价格高,存在In易扩散导致器件性能衰减的问题;Sn02存在难以刻蚀、生成需要较高 的温度(40(TC以上)的问题,同时,这些薄膜均需要通过掺杂才能满足产品的需要, 虽然掺杂可以降低薄膜的电阻率,但同时也提高了载流子对光的吸收,影响了薄膜的透 光率。因而人们开发出在无需刻意掺杂的情况下具有更高的透光率和更低的电阻率的三 元氧合物,例如Cdlri204(CI0)、 Cd2Sn04、 Mgln204、 MgAl20jtl SnZri204及其相应的混合物, 这是一类具有尖晶石结构的宽带隙氧化物薄膜材料,由于可以通过调节组元之间的比例
来渐变地调节其光电性能,因而在透明导电薄膜领域得到了广泛关注。 与Sn02、 ITO等透明导电薄膜材料相比,CIO具有以下优点(1) 非常低的电阻率(10—4 Q. cm数量级)和高透光率(可见光区域透光率大于90%、 红外光区域的反射率高达93%)。(2) 不需要任何掺杂就可以达到很低的电阻率。对于现在商业应用最多的ITO需要 掺锡、Sn02需要掺F等才能达到良好的效果,而CIO薄膜不需要任何刻意的掺杂就可以达 到良好的光电性能,而且其光电性能可以较易通过调整Cd和In的比例来实现调节。(3) 相比ITO薄膜价格更便宜。由于CIO是三元化合物,Cd的价格比In便宜,所以 总体价格要比ITO薄膜便宜。(4) 短波相应良好。比Sn02的化学性能更稳定,更高的耐磨性和强抗化学腐蚀性。 但直接将CdlnA薄膜沉积在P型GaN上,合金化处理后难以得到欧姆接触,原因在于(l)P型GaN禁带宽度为3.4eV,电子亲和能为4. leV,功函数很大(7. 5eV),与 CdlnA接触形成的势垒高度大;(2)P型GaN难以实现重掺杂,通常Mg在P型GaN中掺 杂浓度为102°cnT3,但由于Mg在P型GaN中会形成深受主能级,并且其离化能很高( 170meV),依据费米-狄拉克统计,Mg掺杂剂的离化率大约是1%,导致载流子浓度很难 超过l(Tcm—3;此外,Mg还可与材料中的氢形成络合物Mg-H(即氢钝化作用),并补偿部 分残余受主杂质,使P型GaN的空穴浓度进一步降低,限制了形成低阻欧姆接触所需的 隧道电流;(3)工艺过程中很容易在P型GaN表面产生作为施主的N空位,降低P型GaN 表面的空穴浓度。此外,金属化工艺的条件也会影响P型GaN接触电阻率。因此,要在 P型GaN上形成欧姆接触,需要降低势垒高度,所以考虑在用透明氧化物薄膜与半导体 衬底之间插入中间金属层来降低势垒高度,从而降低比接触电阻率。 发明内容本发明的目的在于提供一种在P型GaN上实现低阻、高透光率的欧姆接触方案及其 制备方法。一种P型GaN上镉铟氧透明电极,它包括一P型GaN,在P型GaN上有第一导电 层,在第一导电层之上有CIO(镉铟氧)透明导电薄膜;可以在所述的第一导电层和CIO 透明导电薄膜之间再沉积第二导电层。所述的第一导电层采用的金属材料可以是Ni、 Pt、 Pd、 Ru、 Re、 Cu中的一种;所 述的第二导电层,所采用的金属材料可以是Au、 O、 Ir中的一种。所述的第一导电层的厚度范围可以是2到100埃,所述的第二导电层的厚度范围可
以是2到100埃;所述的CIO透明导电薄膜(3)的厚度范围可以是100到1000nm。 P型GaN上镉铟氧透明电极的制备方法,其工艺步骤为1) 在P型GaN上以物理气相沉积方式,沉积第一导电层;2) 在第一导电层上以物理气相沉积方式,沉积CIO透明导电薄膜;3) 进行合金化热处理。在步骤l)之后,还可以再沉积一热稳定金属薄膜所构成的第二导电层。 第一导电层和第二导电层的沉积方法可以是电子束蒸镀、热蒸镀或溅射。 步骤2)中所述的CIO透明导电薄膜的沉积方法可以是溅射或电子束蒸镀。 前述的制备方法的具体步骤为步骤1)将P型GaN浸入王水溶液中3-5min,并采用丙酮、酒精和去离子水分别超 声振荡5min,把样品用氮气吹干,立即置于电子枪蒸镀系统中,抽真空,在P型GaN 蒸发沉积厚度为5nm的金属Ni,其工艺条件为高压6KV,束流155mA,工作气压2.2 X10—3Pa;步骤2)采用直流磁控溅射法在P型GaN/Ni上沉积200nm的CdlnA薄膜,靶材原 料选用纯度为99.99y。直径为6cm的Cd-In合金靶材,Cd、 In的原子比为1:2,其工艺参 数为工作压强3. 1Pa,氧浓度4. 29%,溅射功率50W,基片温度250°C,革巴基距7. 5cm;步骤3)中所述的合金化热处理,是在氧气或空气中,40(TC-70(TC范围内退火处理 l-5min。本发明的有益技术效果是CIO透明电极的透光率比传统的金属(Ni或Ni/Au)电极 提高15%以上,可望应用于GaN基蓝光发光二极管或激光二极管提高其出光效率,或应用 于GaN基光电探测器上提高其响应度,具有极高的产业利用价值;本发明还公开了上述 透明电极的制备方法,该方法解决了 CI0透明导电薄膜在P型GaN上难于获得欧姆接触 的问题。


附图l, P型GaN上镉铟氧透明电极结构示意图;附图2,在第一导电层上再沉积第二导电层时的结构示意图;附图3, CIO透明导电薄膜的X射线衍射图;附图4, Ni/CI0膜与Ni膜的透光率曲线;附图5, P型GaN上沉积Ni/CI0薄膜后空气中不同退火温度下的I-V曲线。 附图中p型GaN 1,第一导电层2, CI0透明导电薄膜3,第二导电层4。
具体实施方式
实施例l:参见附图l, 一P型GaN 1,在P型GaN l上有第一导电层2,其特征在于 在第一导电层2之上有CI0透明导电薄膜3,此例为导电层只包括第一导电层2时的情况, 其步骤如下1) 将P型GaN 1(载流子浓度3.37X10"cm—3,迁移率4. 34cm2/V. s)浸入王水溶液中 3-5min,并采用丙酮、酒精和去离子水分别超声振荡5min(目的是为了去除表面杂质和 氧化层,以降低势垒高度);2) 把前一步骤中得到的样品用氮气吹干,立即置于电子枪蒸镀系统中,抽真空,在 P型GaN l蒸发沉积厚度为5nm的金属Ni(即第一导电层2),其工艺条件为高压6KV,束 流155mA,工作气压2. 2X10—3Pa;3) 采用直流磁控溅射法在P型GaN/Ni上沉积200nm的Cdlri204薄膜(g卩CIO透明导电薄 膜3),靶材原料选用纯度为99.99y。直径为6cm的Cd-In合金靶材,Cd、 In的原子比为l:2, 其工艺参数为工作压强3. 1Pa,氧浓度4.29%,溅射功率50W,基片温度25(TC,靶基 距7. 5cm;4) 在空气中,400 °C -55CTC范围内对样品进行合金化退火处理lmin 。 参见附图3,本实施例中得到的CI0透明导电薄膜3的X射线衍射图,可见CIO透明导电膜3是多晶结构,它包含大量的CIO相和少量的In203相及微量的CdO相。在本实施例步骤3)工艺条件下制备的CIO透明导电薄膜3的主要性能为电阻率 为2. 95X10—4 Q cm;载流子浓度为3. 508X 102°cm—3;载流子霍尔迁移率为60. 32cm2/V. S, 在可见光区域内,波长为628nm时薄膜的透光率高达91. 7%。参见附图4,得到的Ni/CIO薄膜与Ni膜透光率的对比图,可见,在400-600nm波 长范围内,Ni厚度为5nm时,透光率约为50%, Ni膜厚度为10nm时,透光率仅为20%左 右,而退火后Ni(5nm)/CI0(200nm)和Ni (10nm)/CI0(200nm)薄膜透光率分别为约65%和 约55%,即与相应厚度的Ni金属膜相比,Ni(5nm)/CIO(200nm)和NiaOnm)/CI0 (200nm), Ni/CIO透光率分别提高15%和30%左右,说明采用CIO作为透明电极材料,可明显提 高电极的透光率。参见附图5,在P型GaN 1与CI0透明导电薄膜3之间插入一层金属Ni(5ran)后, 对未退火的样品以及分别在400。C、50(rC、55(rC空气中退火lmin后的样品的I-V曲线, 可见未退火的样品I-V为曲线,呈现整流特性,开启电压较大;40(TC下和500'C下退 火的样品I-V曲线是直线,表明样品在400'C和50(TC下退火后,呈欧姆接触特性,比
接触电阻率分布为3.2X10—4Q.cm2和4. 9X10—4Q. cm2;当退火温度升高到550。C时,曲 线比较弯,表明接触又开始呈现整流特性。实施例2:参见附图l、附图2,本例为在第一导电层2和CI0透明导电薄膜3之间 再沉积一第二导电层4的情况,其步骤如下-1) 将P型GaNl浸入王水溶液中3-5min,并采用丙酮、酒精和去离子水分别超声振 荡5min(目的是为了去除表面杂质和氧化层,以降低势垒高度);2) 把前一步骤得到的样品用氮气吹干,立即置于电子枪蒸镀系统中,抽真空,在P 型GaN 1蒸发沉积厚度为5nm的金属Ni (即第一导电层2),接着采用同样方法在沉积 一层5nm厚的金Au (即第二导电层4),其工艺条件为高压6KV,束流155raA,工作气 压2.2Xi(T3Pa);3) 用直流磁控溅射法在P型GaN/Ni/Au上沉积200nm的Cdln2(V簿膜(即CIO透明 导电薄膜3),靶材原料选用纯度为99. 99%直径为6cm的Cd-In合金耙材,Cd、 In的原 子比为1:2,其工艺参数为工作压强3. 1Pa,氧浓度4. 29%,溅射功率50W,基片温 度250。C,耙基距7.5cm;4) 把所得到的样品在空气中,500。C下合金化退火处理lmin。实施例1为本发明的一种优选实施例,通过在P型GaN 1与CIO透明导电薄膜3之 间插入中间金属Ni层(第一导电层2)来降低势垒高度,从而获得了欧姆接触.实施例2与实施例1不同之处在于在中间Ni层(第一导电层2)上再沉积了一层 Au (第二导电层4),主要是为了防止氧化,提高接触的热稳定性。
权利要求
1、一种P型GaN上镉铟氧透明电极,它包括一P型GaN(1),在P型GaN(1)上有第一导电层(2),其特征在于在第一导电层(2)之上有CIO透明导电薄膜(3)。
2、 根据权利要求1所述的P型GaN上镉铟氧透明电极,其特征在于可以在所述 的第一导电层(2)和CIO透明导电薄膜(3)之间再沉积一第二导电层(4)。
3、 根据权利要求2所述的P型GaN上镉铟氧透明电极,其特征在于所述的第一 导电层(2)采用的金属材料可以是Ni、 Pt、 Pd、 Ru、 Re、 Cu中的一种;所述的第二导 电层(4),所釆用的金属材料可以是Au、 Cr、 Ir中的一种。
4、 根据权利要求2或3所述的P型GaN上镉铟氧透明电极,其特征在于所述的 第一导电层(2)的厚度范围可以是2到100埃,所述的第二导电层(4)的厚度范围可以是2 到100埃。
5、 根据权利要求l所述的P型GaN上镉铟氧透明电极,其特征在于所述的CIO 透明导电薄膜(3)的厚度范围可以是100到1000nm。
6、 一种P型GaN上镉铟氧透明电极的制备方法,其特征在于其工艺步骤为1) 在P型GaN(l)上以物理气相沉积方式,沉积第一导电层(2);2) 在第一导电层(2)上以物理气相沉积方式,沉积CIO透明导电薄膜(3);3) 进行合金化热处理。
7、 根据权利要求6所述的P型GaN上镉铟氧透明电极的制备方法,其特征在于 在步骤l)之后,还可以再沉积一热稳定金属薄膜所构成的第二导电层(4)。
8、 根据权利要求7所述的P型GaN上镉铟氧透明电极的制备方法,其特征在于 第一导电层(2)和第二导电层(4)的沉积方法可以是电子束蒸镀、热蒸镀或溅射。
9、 根据权利要求8所述的P型GaN上镉铟氧透明电极的制备方法,其特征在于 步骤2)中所述的CIO透明导电薄膜(3)的沉积方法可以是溅射或电子束蒸镀。
10、 根据权利要求6所述的P型GaN上镉铟氧透明电极的制备方法,其特征在于: 步骤l)所述的沉积方法是将P型GaN (1)浸入王水溶液中3-5min,并采用丙酮、酒精和去离子水分别超声振荡5min,把样品用氮气吹干,立即置于电子枪蒸镀系 统中,抽真空,在P型GaN (1)蒸发沉积厚度为5nm的金属Ni,其工艺条件为高压 6KV,束流155mA,工作气压2.2xl(r3Pa;步骤2)所述的沉积方法是采用直流磁控溅射法在P型GaN/Ni上沉积200nm的 Cdln204薄膜,靶材原料选用纯度为99.99%直径为6cm的Cd-In合金耙材,Cd、 In的原 子比为1:2,其工艺参数为工作压强3.1Pa,氧浓度4.29%,溅射功率50W,基片温 度250。C,靶基距7.5cm;.步骤3)所述的合金化热处理,是在氧气或空气中,40(TC-70(TC范围内退火处理 l-5min。
全文摘要
本发明公开了一种P型GaN上的镉铟氧(CIO)透明电极,它通过采用CIO透明导电薄膜结构,使透明电极的透光率比传统的金属(Ni或Ni/Au)电极提高15%以上,可望应用于GaN基蓝光发光二极管或激光二极管提高其出光效率,或应用于GaN基光电探测器上提高其响应度,具有极高的产业利用价值。本发明还公开了上述透明电极的制备方法,该方法解决了CIO透明导电薄膜在P型GaN上难于获得欧姆接触的问题。
文档编号H01L33/00GK101162751SQ20071009291
公开日2008年4月16日 申请日期2007年10月30日 优先权日2007年10月30日
发明者刘高斌, 张淑芳, 彭丽萍, 亮 方, 董建新 申请人:重庆大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1