双极性电池及其制造方法

文档序号:7237460阅读:133来源:国知局
专利名称:双极性电池及其制造方法
技术领域
本发明总体上涉及 一 种双才及性电池以及该双4及性电池的制 造方法。
背景技术
最近,为了保护环境,日益要求减小二氧化碳的排放量。 在汽车工业中,已经引入电动车和混合电动车以减小二氧化碳 的排放量。在这点上,主要期望采用双极性电池作为驱动这些
车辆的电动机(motor )的电源。
日本特开平11-204136号公报公开了 一种通过将电解质层 布置在双极性电极中、并且通过堆叠该电解质层以形成层叠体 (stack)来制造双极性电池,在该双极性电极中,在集电极 (collector)的一侧形成阴极,在集电极的另 一侧形成阳极。
当形成该层叠体时,在集电极中设置具有阴极和阳极的电 解质层(电解质渗透到其中并隔开(segment)阴极和阳极的 隔板(separator )层,或者阴极或阳极与隔板之间的电解质层)。 然后将电解质层相互堆叠。

发明内容
本发明的实施例l是供一种双才及性电池,该双才及性电池通过
限制其内气泡的存在而提高功率密度,从而具有优异的电池性
台匕 3匕。
这里示教的双极性电池的一个实施例包括布置在层叠体中 的至少两个双极性电极,电极中的每一个均包括形成在集电极 的一侧的阴极和形成在集电极的相反侧的阳极;以及布置在层
叠体中的电极中的每一个的相反侧的隔板对,隔^反对中的每一 个均具有充分的渗透性以使电解质渗透其中。电极中的邻近电 极的隔^反互相4妄触。
这里还示教了双极性电池的制造方法。 一个方法包括形 成第 一双极性电极,该第 一双极性电极包括形成在第 一 集电极 的 一 侧的第 一 阴极和形成在第 一 集电极的相反侧的第 一 阳极; 在第一双极性电才及的相反侧布置第一隔^反对,第一隔板对中的 每一个均具有充分的渗透性以使电解质渗透其中;形成第二双 极性电极,该第二双极性电极包括形成在第二集电极的 一侧的 第二阴极和形成在第二集电极的相反侧的第二阳极;在第二双 极性电极的相反侧布置第二隔板对,第二隔板对中的每一个均 具有充分的渗透性以使电解质渗透其中;以及堆叠第 一双极性 电极和第二双极性电极,使得第 一 隔板对的第 一 隔板和第二隔 板对的第二隔板互相接触。


这里,参照附图进行说明,其中,在所有的图中,相同的 附图标记表示相同的部件,并且
图l是才艮据本发明的第 一 实施例构造的双极性电池的剖视
图2是图l所示的双极性电池的剖视图; 图3是被构造成使用图l所示的双极性电池的电池组的立 体图4是安装图3所示的电池组的车辆的图; 图5是根据第 一 实施例构造的双极性电池的制造方法的流 程图6是图5所示的集成单元的形成过程的流程图7是图6所示的电极的形成过程的俯视图; 图8是图6所示的电极的形成过程的剖视图; 图9是图6所示的电解质的布置过程的剖视图; 图10是图6所示的密封材料的布置过程的俯视图; 图ll是图6所示的密封材料的布置过程的剖视图; 图12A是集成单元和图6所示的隔板的布置过程的剖视图; 图12B是在图5所示的接合体形成过程中当部分堆叠图 12A所示的集成单元时的剖视图13是图5所示的形成接合体的流程图14是图13所示的集成单元的设置过程的剖视图15是如图13所示的堆叠过程和加压过程的图16是图13所示的密封层的形成过程的图17是图13所示的界面的形成过程的图18是如图13所示的初始充电过程的图19是根据第 一 实施例构造的变形例的剖视图20是根据本发明的第二实施例的集电极的形成过程的 流程图21是图20所示的密封材料的渗透过程的图; 图22是根据本发明的第三实施例的密封材料的布置过程 的俯视图23是根据第三实施例的加压过程的概念图; 图24是根据第三实施例构造的变形例的俯视图。
具体实施例方式
在已知的如日本特开平11-204136号公报中所说明的双极 性电池中,阴极和阳极设置有电解质,而隔板与阴极或阳极重 叠以形成单个层。其后,堆叠该层。当使隔板重叠时,气泡被
引入并保持在阴极或阳极与隔板之间的电解质中。
具体地,当在阴极或阳极设置的电解质层中布置隔板时,
在隔板上形成褶铍(corrugation)从而在电解质层中形成樣i小 的间隙。作为选择,由于重叠使气泡被引入电解质层中。如果 层叠体形成有残留的气泡,则由于阴极和阳极夹着电解质存在 于隔板的两个表面,所以难以排出气泡。此外,如上所述,当 气泡残留在层叠体中时,产生离子不能透过且电子不能移动的 死区(dead space )。死区可能成为功率劣化的主要因素。当 设法提高功率密度时,这将成为问题。
相反,本发明的实施例提供一种双极性电池,其通过限制 这样的气泡来提高功率密度,从而具有优异的电池性能。
图l是根据本发明的第 一 实施例构造的双极性电池的剖视 图。图2是图l所示的双极性电池的剖视图。图3是被构造成使 用图l所示的双极性电池的电池组的立体图。图4是安装图3所 示的电池组的车辆的图。
在根据第一实施例构造的双极性电池10中(如图2所示), 通过将电解质层120布置在双极性电极中并将电解质层相互堆 叠而形成层叠体100。双极性电极具有阳极112、阴极113和集 电极lll。阴极113布置在集电极111的一个侧面,阳极112布置 在集电极lll的另 一侧面。也就是说,集电极lll被放置在阴极 113和阳极112之间。
电解质层120具有包括相互堆叠的隔板121和122 (两片) 的层、以及隔板121、 122和阴极113或阳极112之间的电解质的 层。隔板121和122是具有渗透性的多孔状膜,用于隔开阴极113 和阳极112,其中,电解质可以渗透至该膜中。电解质可以是 例如聚合物凝胶电解质(凝胶聚合物类电解质)。
也就是说,由于在电解质层120中隔板121和122相互堆叠,
所以,尽管气泡残留于双极性电极的阴极侧或阳才及侧的电解质
中,但是,很容易经由隔板121和122排出该气泡。这是因为隔 板121和122具有渗透性,使得电解质可以从阴极113或阳极112 的相反侧的面渗透到其中。此外,还容易从隔板121和122之间 的空间排出气泡。与阴极侧和阳极侧存在于层叠体的电解质层 中的隔板的两个表面、难以排出气泡的已知的现有技术不同, 在此说明的第 一实施例中,阴极侧或阳极侧存在于层叠体IOO 的电解质层120中的隔板121和122的一个侧面,而隔板121和 122存在于另 一侧面。因此,容易将残留的气泡从隔板121和122 的一个侧面排出到另 一侧面。另外,容易从隔板121和122之间 的空间排出残留的气泡。
双极性电池10还具有第一和第二密封层115和117。将第一 密封层115布置在集电极111的一个侧面,并且使其延伸以包围 阴极113的端部。电解质层120被布置成覆盖阴极113和第一密 封层115。使第二密封层117与第一密封层115对位,从而将该 第二密封层117布置在集电极111的另 一侧面,并且使其延伸以 包围阳极112的端部。布置第一和第二密封层115和117的区域 表示为填充部。
集电极lll是例如不锈钢箔。然而,集电极lll当然不限于 此,也可包括铝箔,镍铝覆层材料、铜铝覆层材料,或这些金 属组合的电镀材料。
阳极112的阳极活性材料是例如硬碳(非石墨化碳材料)。 当然阳极活性材料不限于此,还可包括石墨基碳材料或锂过渡 金属复合氧化物。在某些实施例中,从电容和功率方面考虑, 优选由碳和锂过渡金属复合氧化物构成的阳极活性材料。
阴极113的阴极活性材料是例如LiMn204,当然也不限于 此。从电容和功率方面考虑,锂过渡金属复合氧化物是合适的。
可根据使用目的(例如,重视功率还是能量)或离子传导 性来设定阴极113和阳极112的厚度。
构成第 一 和第二密封层115和117的填充材料是例如单液 未固化环氧树脂。然而,填充材料不限于此,还可包括其它热 固树脂(聚丙烯或聚乙烯)或热塑树脂。在某些实施例中,可 根据应用类型优选具有期望的密封效果的材料。
在本实施例中,每一个隔板121、 122的材料可以是具有渗 透性的多孔状PE (聚乙烯),使得电解质可以渗透到隔板中。 然而,在某些实施例中,该材料可包括如PP (聚丙烯)等其它 聚烯烃、PP/PE/PP的三层结构的层叠体、聚酰胺、聚酰亚胺、 芳族聚酰胺或非织布。非织布包括例如棉、人造纤维、醋酸纤 维、尼龙或聚酯。
电解质的主聚合物是例如包含10M的HFP (六氟丙烯)共 聚物的PVDF-HFP (聚偏二氟乙烯和六氟丙烯的共聚物)。然 而,主聚合物不限于此,可包括无锂离子传导性的其它聚合物 或具有离子传导性的聚合物(固态聚合物电解质)。无锂离子传 导性的其它聚合物包括例如PAN (聚丙烯腈)和PMMA (聚甲 基丙烯酸曱酯)。具有离子传导性的聚合物是例如PEO (聚环 氧乙烷)或PPO (聚环氧丙烷)。
保持在主聚合物中的电解液包括例如由PC (碳酸丙烯)和 EC (碳酸乙烯)组成的有机溶剂、和作为支持盐的锂盐 (LiPFe)。由于有机溶剂可包括其它环形碳酸类、如碳酸二甲 酯等链形碳酸类、或如四氢呋喃等醚类,所以其不限于PC和 EC。锂盐可以选择包括其它无机阴离子盐和如LiCFsS03等有 机阴离子盐,代替LiPF"
如图l和图2所示,双^L性电池10以单元双;&性电池的层叠 体100的形式被容纳在外壳104内,从而防止外部沖击或环境劣
化。由高导电性构件构成的端子引线101和102分别与位于层叠 体IOO的最外层的各集电极lll连接。高导电性构件包括例如 铝、铜、钛、4臬、不锈钢或它们的合金。此外,附图标记103 表示增强板。
端子引线101和102延伸至夕卜壳104的夕卜部,并且均用作从 层叠体100中引出电流的电极片。此外,通过布置独立分开的 构件的电极片,并与端子引线101和102直接连接或用引线连 接,可以从层叠体100中引出电流。
为了减轻重量和导热性,外壳104可以由如聚合物-金属复 合物层压膜等片材构成,其中,用如聚丙烯膜等绝缘体覆盖如 铝、不锈钢、镍或铜等金属(包括它们的合金)。此外,通过热 熔使壳的部分或全部外周接合来形成外壳104。
可以单独使用双极性电池IO。任选地,例如,可以以如图 3所示的电池组130的形式使用双极性电池IO。通过串联和/或 并联双极性电池IO以及连接多个双极性电池IO构成电池组 130。电池组130具有导电棒132和134。导电棒132和134与从 双极性电池10的内部延伸的端子引线101和102连接。
当连接和构成双极性电池10时,可以通过适当的串联或并 联自由调整容量和电压。连接方法包括例如超声波焊接作业、 热焊接作业、激光焊接作业、铆接作业、砸边(caulking)作 业或电子束。
通过串联和/或并联以及连接多个电池组130,可以提供如 图4所示的电池组模块136 (大规模的电池组)。由于电池组模 块136可以保证较高的功率,所以,例如,可以安装该电池组 模块136,作为用于驱动车辆138的电动^li的电源电动机。车辆 包括例如电动车、混合电动车或电动火车。
例如,电池组模块136可以进行如在每个内部双极性电池
IO或每个电池组130中进行充电控制等非常精细的控制。因此, 可以实现如延长每次充电的驱动距离或延长安装在车辆上的电 池的寿命等功能的提高。
图5是根据第 一 实施例的双极性电池的制造方法的流程 图。该方法包括形成作为子集成单元的集成单元的步骤,其 中,将电解质和隔才反顺序布置在双极性电才及的两侧;形成接合 体的步骤,其作为形成层叠体(接合体)的组装步骤,其中, 堆叠集成单元(子集成单元)并使其一体化;以及使一体化的 层叠体容纳在外壳中的组装步骤。
如下所述,形成接合体(组装步骤)包括通过插入电解质 层而使双极性电池相互堆叠的堆叠步骤。在堆叠步骤中,由于 使电解质可渗透的隔板互相重叠,因此容易经由隔板从与阴极 侧或阳极侧相反的表面排出残留在双极性电极的阴极侧或阳极 侧的气泡,该隔板具有电解质可渗透到其中的特性。此外,还 容易从隔板之间的空间排出气泡。
也就是说,仅单个层导致阴极侧和阳极侧存在于隔板的两 个表面的情形。这使得难以排出气泡。然而,这里,由于阴极 侧或阳极侧存在于隔板的一个侧面,而隔板存在于另 一侧面, 因此容易将残留的气泡从一个侧面排出到另一侧面。此外,还 容易从隔板之间的空间排出气泡。
图6是图5所示的集成单元的形成过程的流程图。图7是图6 所示的电极的形成过程的俯视图,而图8是图6所示的电极的形 成过程的剖视图。图9是图6所示的电解质的布置过程的剖视 图,而图10是图6所示的密封材料的布置过程的俯视图。图ll 是图6所示的密封材料的布置过程的剖视图。图12A是图6所示 的隔板的布置过程和作为子集成体的集成单元108的剖视图。
如图6所示,形成集成单元的过程可以包括以下步骤形 成电极、布置电解质、布置密封材料和布置隔板。
在本实施例中,在形成电极的过程中,首先调整阴极浆液。
制备阴极浆液,例如使其具有85重量%的阴极活性材料、5重量 %的导电辅助剂和10重量%的粘合剂。通过在其中添加粘度调 整溶剂,使阴极浆液获得期望的粘度。阴极活性材料是例如 LiMn204,而导电辅助剂是乙炔黑。粘合剂是PVDF(聚偏二 氟乙烯)。粘度调整溶剂是NMP ( N-曱基-2-吡咯烷酮)。将阴 极浆液涂布到由不锈钢箔构成的集电极lll的一个侧面。
导电辅助剂可包括例如炭黑或石墨。粘合剂和粘度调整溶 剂不限于PVDF和NMP。
接着,调整阳极浆液。制备阳极浆液,例如使其具有90重 量%的阳极活性材料和10重量%的粘合剂。通过在其中添加粘 度调整溶剂,使阳极浆液获得期望的粘度。将阳极浆液涂布到 集电极lll的另一侧面。在该实例中,阳极活性材料是硬碳, 粘合剂是PVDF,粘度调整溶剂是NMP。将阳极浆液涂布到集 电极lll的另一侧面。
例如通过使用真空炉干燥阴极浆液和阳极浆液的涂布膜, 并且使其分别形成由阴极活性材料组成的阴极113和由阳极活 性材料组成的阳极112 (参见图7和图8)。此时,通过挥发除去 匪P。
当然,阴极113和阳极112的厚度不受限制,并且可根据使 用目的(例如,重视功率还是能量)或离子传导性而设定。
在布置电解质的过程中,将电解质124和125分别涂布到阴 极113和阳极112的电极部(参见图9)。
制备电解质124和125,例如使其具有90重量%的电解液和 10重量%的主聚合物。通过在其中添加粘度调整溶剂,使电解 质124和125获得适于涂布的粘度。
电解液包括由PC (碳酸丙烯)和EC (碳酸乙烯)组成的
有机溶剂和作为支持盐的锂盐(LiPF6)。锂盐的浓度是例如 1M。
主聚合物是例如含10% HFP (六氟丙烯)共聚物的 PVDF-HFP (聚偏二氟乙烯和六氟丙烯的共聚物)。粘度调整 溶剂是DMC (碳酸二曱酯)。粘度调整溶剂不限于DMC。
参照图IO,在密封材料的布置过程中,首先布置第一密封 材料114,使其在集电极lll露出的阴极侧的外周和阴极113的 边缘延伸。为了布置第 一密封材料114,例如使用分配器 (dispenser)进行涂布。
接着,如图ll所示,布置第二密封材料116,使其在集电 极lll露出的阳极侧的外周和阳极112的边缘延伸。此时,第二 密封材料116被布置成与第一密封材料114相对(并重叠)。为 了布置第二密封材料116,例如,使用分配器进行涂布。此外, 在本例中,第一和第二密封材料是由单液未固化环氧树脂组成 的填充材料。
如图12A所示,在隔板的布置过程中,布置隔板121和122 使其覆盖集电极lll的阴极侧面和阳极侧面。这样,形成集成 单元108,其中,电解质124和125以及隔板121和122顺次布置 在双极性电极的两侧。此外,隔板121和122是多孔状PE。
同样,由于布置集成单元108使其覆盖集电极111的阴极侧 面和阳极侧面,因此,集成单元108变成通过如PE等隔板封装 而不露出电极和电解质的子集成元件。这样,供电变得容易而 不会改变或劣化电极和电解质。此外,在后面的过程中由于使 子集成元件相互堆叠,因此,堆叠操作变得非常容易。
此外,集成单元(子集成体)108可以被容纳在真空容器 中,或者使用真空吸杯从隔板两侧的边缘对集成单元(子集成
体)108进行抽吸。此时,由于可以经由具有渗透性的隔板121 和122将气泡从双极性电极两侧的电解质124和125排出,因此, 如下所述,除了在形成层叠体100之后排出气泡外,还可进一 步限制残留的气泡。
在密封材料的布置过程中,在集电极111和电解质层120之 间的空间中形成填充部。在填充部中布置填充材料,使其包围 阴极113的边》彖和阳才及112的边缘。
此外,在根据某些实施例的密封材料的布置过程中,优选 将第一密封材料114的厚度预定为小于阴极113和电解质124的 总厚度。此外,在一些这样的实施例中,优选将第二密封材料 116的厚度预定为小于阳极112和电解质125的总厚度。由于隔 板121和122在与布置在外周的第 一和第二密封材料114和116 接触之前,与布置电解质124和125的中央部分接触,因此,限 制了在由第 一和第二密封材料114和116包围的内部中残留的 气泡。
图12B是在图5所示的接合体的形成过程中当部分堆叠图 12A所示的集成单元108时的剖视图。图13是形成图5所示的接 合体(组装过程)的流程图,而图14是图13所示的集成单元的 设置过程的剖视图。图15是如图13所示的集成单元的堆叠过程 和加压过程的图。图16是图13所示的密封层的形成过程的图, 而图17是图13所示的界面的形成过程的图。图18是如图13所示 的初始充电过程的图。
如图13所示,接合体的形成过程包括以下步骤设置和堆 叠集成单元、加压和形成密封层、形成界面、初始充电以及排 出气泡。
在集成单元的设置过程中,如图14所示,在盒(magazine ) 150中顺次设置集成单元108 (作为多个子集成体)。此时,如
图12A所示,由于隔板121和122被布置在电解质124和125以及 第一和第二密封材料114和116的外侧,因此,电解质124和125 以及第一和第二密封材料114和116并不露在外面,其中,电解 质124和125布置在集成单元108中所包含的双极性电极的两 侧。为此,容易处理集成单元108,从而保证良好的工作特性。
现在,再次参照图14,为了避免在设置集成单元108时的 干涉,盒150具有夹具机构152,该夹具机构152具有框架形状 并且能够把持集成单元108的外周部。
夹具机构152被布置成沿堆叠方向具有间隔,使得集成单 元108不互相纟妻触。堆叠方向与集成单元108的表面方向垂直。
夹具机构15 2被构造成例如具有由弹簧组成的弹性构件, 并且在基于弹性力向集成单元108施加张力时能保持和支撑, 从而不会产生褶铍。具有夹住功能的其它机构也是可以的。由 于在现有技术中已知这样的机构,这里省略了其详细说明。
在集成单元的堆叠过程中,如图15所示,将盒150布置在 真空处理装置160内。在真空度是例如0.2 0.5xl(^Pa的范围 下,形成集成单元108的层叠体100。
由于包含在集成单元(子集成体)108中的电解质124和125 以及第 一 和第二密封材料114和116被隔板121和12 2覆盖,所 以,它们并不露在外面。为此,容易处理集成单元108,从而 确保工作特性。此外,由于隔板121和122仅互相重叠,所以容 易在限制任何残留气泡的状态下进行堆叠操作。此外,由于隔 板互相重叠,所以难以产生褶皱,从而使由此残留的气泡最少。 由于集成单元108处于真空,所以气泡被引入到电极和电解质 层的堆叠界面,通过隔板并且被有效地从隔板之间的空间排出 到外部。这进一步减少了残留的气泡。
图12B是在接合体的形成过程中堆叠一部分集成单元108 时的剖视图。尽管隔板121和122互相重叠,但是图12B示出了 其间具有空间的隔板121和122,以便于更容易地说明如何排出 气泡N的理论。如图12B所示,由于隔板121和122 (即,两片) 互相重叠,其中,电解质124和125可以渗透到其中,所以,尽 管气泡N残留在双极性电极的阴极侧113或阳极侧112,但是, 经由具有渗透性的隔板121和12 2 ,气泡N容易从阴极侧113或 阳极侧112的相反面排出。从而,电解质124和125可以渗透到 其中并且从隔板121和122之间的空间进一步排出气泡N。因为 在隔板121和122之间渗透有电解质124和125,所以离子和电 子可以在隔板121和122之间移动。
此外,如上所述,即使安装到集成单元108中,仍可经由 隔板121和122排出气泡N。任选地,在堆叠集成单元108之后 的如加压或形成界面等任何过程中,都可以从隔板121和122 之间的空间排出气泡N。而且,在封装之后也可以排出气泡N。
因此,由于离子不可渗透和电子不能移动的死区受到抑制, 所以,在使用过程中,不会阻止离子和电子的移动,从而实现 高功率密度。
层叠体IOO的形成方法包括例如从下侧顺次释放用来把持 集成单元108的夹具机构152,以使其堆叠在布置于盒150的下 部的架上。其形成方法当然并不限于此。
此外,除了从下侧到上侧顺次释放夹具机构之外,可从盒 15 0的下侧向上侧移动架以堆叠邻近的集成单元10 8而不会过 度移位。作为选择,可通过紧固架从上侧向下侧移动盒。
图15所示的真空处理装置160具有用于进行抽真空操作的 设备162、用于进行加压操作的设备170和控制器178。
抽真空设备162具有真空室163、真空泵164和管道系统 165。真空室163具有可拆卸的(可打开的)盖部以及其中布置盒150和加压设备170的固定基部。真空泵164是例如离心式的, 并且用于使真空室163的内部形成真空状态。管道系统165用于 连接真空泵164和真空室163,并且其中布置泄漏阀(未示出)。 加压设备170具有基板171和与基板171间隔开的压板 173。任选地,可在基板171和压板173上布置片状弹性体。控 制器178用于控制基板173的移动或压力。控制器178可以是例 如包括随机存取存储器(RAM)、只读存储器(ROM)和中央 处理器(CPU)以及各种输入输出连接设备的微型计算机。通 常,通过CPU执行储存在ROM中的一个或多个程序来实现控制 功能。
如图15所示,在加压过程中,在保持真空状态的同时通过 压板173和基板171加压层叠体100。这样,制备第一和第二密 封材料114和116,使其形成期望的厚度。加压时采用的压力是 例如l ~ 2 x 106Pa。
现在,参照图16,由于在密封层的形成过程中,将层叠体 100布置在炉子190中,然后加热该层叠体IOO,所以,包含在 层叠体100中的第一和第二密封材料114和116被热固化,从而 形成第一和第二密封层115和117。加热条件是例如80。C。可以 在除了炉子之外的装置中进行加热层叠体的作业。
尽管锂二次电池厌恶水分,但是,由于第一和第二密封层 115和117由树脂构成,所以不能避免水分的引入。为此,设定 加压过程中第一和第二密封材料114和116的期望厚度,以通过 使第 一 和第二密封层115和117的与外部大气接触的厚度最小 化,减少水分的4曼入。
任选地,热塑树脂可适用于第 一 和第二密封材料114和 116。在该情况下,通过加热使第一和第二密封材料114和116 塑化以形成第一和第二密封层115和117。
在界面的形成过程中,由于将层叠体100布置在加压设备 180中并且在加热条件下加压该层叠体100,所以,电解质124 和125渗透到包含在层叠体100中的隔板121和122中,并且如 图17所示,形成凝胶界面。加热条件和加压条件分别是例如80 。C和l ~ 2 x l06Pa。通过这样加热和加压,堆叠集成单元108, 从而可以获得一体化的层叠体(接合体)100。
这里,当电解质124和125渗透到包含在层叠体100中的隔 板121和122中时,尽管气泡N残留在电解质124和125以及隔板 121和122内,但是,可以排出气泡N。也就是说,气泡N经由 隔板121从电解质124中排出,经由隔板122从电解质125中排 出,从隔板121和122之间的空间排到外部。
加压设备180具有基板181、靠近基板181但与基板181间 隔开的压才反183、下部加热部185、上部加热部187和控制器 188。下部加热部185和上部加热部187具有例如电阻加热元件, 这两部分185、 187布置在基板181和压板183内,并且用于提 高基板181和压板183的温度。控制器188,与控制器178相似, 用于控制压板183的移动和压力,并且还用于控制下部加热部 185和上部力口热部187的温度。
任选地,可省略下部加热部185或上部加热部187。作为选 择,下部加热部185和上部加热部187可布置在基板181和压板 183的外部。此外,片状弹性体可布置在基板181和压板183中。
如图18所示,通过与层叠体100电连接的充电/放电装置 192进4亍关于图13所述的初始充电4喿作。产生气泡。初始充电 条件是例如由阴极的涂布重量近似计算的容量基值(capacity base)如在21V-0.5C下是4小时。
再次参照图13,在排出气泡的过程中,例如,层叠体IOO
的中央部中的气泡移动到外周,然后通过使辊压靠层叠体ioo
的表面而被移除。此外,由于在形成界面的过程中充分排出气 泡,所以,排出气泡的过程不是必须的。然而,通过经由该过 程进 一 步限制气泡可以提高电池的功率密度。
在封装过程中,在外壳104(参见图2)内容纳一体化的层 叠体(接合体)100,从而制造双极性电池IO (参见图l和图2 )。 通过在两个片状外部材料之间布置层叠体IOO并使外部材料的 外周接合来形成外壳104。外部材料可以是由如聚丙烯膜等绝
缘体覆盖并通过热熔接合的聚合物-金属复合物层压膜。
此外,可以通过将层叠体100堆叠在其它层叠体100之上地 进一步堆叠一体化的层叠体IOO,然后使该配置容纳在外壳104 内来实现双极性电池的附加层的高容量和/或高功率。任选地, 可以在大气条件下进行堆叠和加压过程,或者在真空下进行形 成密封层和界面的过程。
通过适当地选择电解质124和125以及第 一和第二密封材 料114和116,使密封层的形成过程和界面的形成过程一体化。 同时进行第 一 和第二密封材料114和116的硬化和电解质层的 完成。这样,可以减少制造过程的数量。任选地,可在密封层 形成过程和界面形成过程之间增加安装用于监控层叠体100的 各层(双极性单元电池)的电位的贴片(铅线,leadline)的 过程。
图19是根据第一实施例构造的变形例的剖视图。在前述第 一实施例的例子中,第一和第二密封材料114和116布置在集电 极111与隔板121、 122之间,并延伸到阴极113和阳极112的端 部。然而,密封结构当然不限于此。如图19所示,例如,可以 布置密封材料118,使其延伸到阴极113、集电极111和阳极112 的边缘。
同样地,第一实施例可以提供使气泡引入最少化的双极性电池和该电池的制造方法。
此外,由于聚合物凝胶电解质是在聚合物骨架内包含电解 质的热塑性材冲牛,所以防止液体泄漏,乂人而防止液体汇流,以 构成可靠性高的双极性电池。此外,由于聚合物凝胶电解质也 可以是热固性的,所以聚合物凝胶电解质当然不限于热塑性的。 在该情况下,通过在加热条件下加压使电解质层硬化来防止液 体泄漏,乂人而防止液体汇流。
由于可通过考虑如层叠体100的材料强度等材料特性来适
当地确定加压过禾呈和界面形成过程的表面压力,所以,加压过
程和界面形成过程的表面压力当然不限于l ~ 2 x 106Pa。密封 层形成过程中的加热温度不限于8(TC 。例如,在考虑如电解液 的耐热性或第一密封材料114 (第一密封层115)和第二密封材 料116 (第二密封层117)的硬化温度等材料特性时,密封层形 成过程中的加热温度可在60。C和150。C之间的范围内。
由于电解质124和125可包括电解液类,所以其当然不限于 凝胶聚合物类。在该情况下,在电解质的布置过程中,例如, 通过使用微量吸管将电解液涂布到阴极113和阳极112的各电 极部,并使电解液浸入其中(参见图9)。
电解液包括由碳酸丙稀(PC)和碳酸乙烯(EC)组成的 有机溶剂、作为支持盐的锂盐(如LiPFs)和少量的表面活性 剂。锂盐的浓度是例如1M。
由于有机溶剂可包括其它环形碳酸盐、如碳酸二曱酯等链 形碳酸盐类或如四氢呋喃等醚类,所以其当然不限于PC和EC。 由于锂盐可包括其它无机阴离子盐和如LiCF3S03等有机阴离 子盐,所以其也不限于LiPFe。
接着,将参照图20开始说明本发明的第二实施例,图20是 根据第二实施例的接合体形成过程的流程图。图21是图20中所
示的密封材料渗透过程的图。
第二实施例与第一实施例的不同之处在于第二实施例在 加压过程和密封层形成过程之间包括密封材料渗透过程。
现在,参照图21,为了限制气泡残留在由第一和第二密封 材料包围的内部,当设定第一和第二密封材料的厚度,使其分 别小于阴极和电解质的总厚度以及阳极和电解质的总厚度时, 尽管加压层叠体200,压力也不能充分传递到布置第 一和第二 密封材料的部分(填充部)。这将导致密封不足。
为此,为了使用加压装置280加压层叠体200中的填充部, 通过增加密封材料的渗透过程,使第 一 和第二密封材料充分渗 透到隔板中。
在密封层的形成过程中,加热第一和第二密封材料渗透到 的部分,以使其热固化。从而,与第一实施例相比,提高了第 一和第二密封层的粘附特性。此外,第一和第二密封材料渗透
到所制造的双极性电池的隔板的与第 一 和第二密封层相对的部 分。
加压装置280具有布置层叠体200的基板281、靠近基板 281并与基板281间隔开的压板283和图21中未示出的与控制 器177和188类似的控制器。压板283被分成中央压板284和外 周压板285。
中央压板284用于支撑层叠体200的布置电极部(即阴极和 阳极)的部分。外周压板285用于加压层叠体200的填充部。控 制器用于控制中央压板284和外周压板285的移动或压力。因 此,通过采用外周压板285,加压装置280能够仅加压布置在基 板281的层叠体200的填充部。
尽管不是必需的,但是优选在中央压板284加压层叠体200 的电极部之后进行外周压板285的加压操作。在该情况下,可
以使电极部中的气泡移动到外周部,进一步使电极部中残留的 气泡最少化。
同样,与第一实施例相比,进一步提高了密封特性。此外, 如果需要,可以适当地使密封材料的加压过程和渗透过程一体 化。
接着,将参照图22和图23说明本发明的第三实施例。图22 是根据第三实施例的密封材料的布置过程的俯视图;而图23是 根据第三实施例的加压过程的概念图。
第三实施例在密封材料的布置过程、堆叠过程和加压过程 方面与第一实施例不同。
首先参照图22,在密封材料的布置过程中,第一和第二密 封材料314和316不连续地延伸以包围阴极和阳极。在未布置第 一和第二密封材料314和316的位置形成切口状间隙部315和 317。也就是说,在填充部中形成间隙部,此外,附图标记311 表示集电极。
堆叠过程包括气泡排出过程。当形成层叠体时,经由间隙 部315和317排出残留在由集电极、电解质层以及第一和第二密 封材料314和316包围的内部空间中的气泡。
加压过程包括气泡排出过程和间隙闭塞过程。通过如前所 述的压板和基纟反,沿堆叠双极性电极的方向加压层叠体。此时, 加压层叠体的布置第一和第二密封材料314和316的部分(填充 部)。
为此,在加压开始时,经由间隙部315和317排出残留在由 集电极、电解质层以及第一和第二密封材料314和316包围的内 部空间中的气泡。此外,通过进行如图23所示的加压操作,使 位于间隙部315和317周围的第 一 和第二密封材料314和316流 向间隙部315和317。通过覆盖间隙部315和317闭塞间隙部315
和317,停止排出功能。
在该情况下,经由间隙部315和317,可以将包含在层叠体 中的电极部中的气泡移动到外周,直到间隙部315和317被闭 塞。从而,进一步限制残留在电极部中的气泡。
图24是根据第三实施例构造的变形例的俯视图。在该变形 例中,间隙部315和317周围的第 一和第二密封材料314和316 的端面是大致圓形的。间隙部315和317之间的距离不是恒定 的。也就是说,由于增加了第 一 和第二密封材料314和316的量, 第一和第二密封材料的流动性提高。此外,由于存在间隙部315 和317之间的空间窄的部分,所以可以容易地闭塞间隙部315 和317。
如上所述,与第一实施例相比,在第三实施例中可以进一 步限制气泡的引入。
此外,在第一至第三实施例中,电解质渗入的多孔状隔板 互相重叠。这样,尽管在双极性电极的阴极侧或阳极侧残留气 泡,但是,经由电解质可以渗透其中的隔板,容易从与阴极侧 或阳极侧相反的表面排出该气泡。此外,还容易从隔板之间的 空间排出气泡。
此外,尽管阴极和阳极位于双极性电极的两侧,将隔板布 置在阴极和阳极的两侧。为此,将隔板布置在阴极和阳才及的两 侧,从而形成单元。可以通过由隔板覆盖和保持来堆叠该单元, 而不会使阴极、阳极和电解质露出。这样,在隔板中几乎不会 产生褶皱,而且堆叠操作变得容易、便于批量生产。
此外,由于电解质可渗透其中的隔板互相重叠,所以,尽 管在隔板的一部分中产生多余的渗透部(即,微裂缝),由于重 叠的隔板的存在,阴极和阳极相互明显隔开。这样,确保隔板 的功能。因此,可提高生产率。
此外,第一至第三实施例说明了两个隔板互相重叠的隔板 的例子。然而,由于本发明可包括例如三个隔板互相重叠的隔 板,所以,本发明不限于此。在该情况下,考虑到功率密度, 优选尽可能薄地形成隔板。
为了容易理解本发明,已经说明了上述实施例,但本发明 不限于上述实施例。相反,本发明旨在覆盖包含在所附权利要 求书的范围内的各种变形及等同配置,所附权利要求书的范围 符合最宽的解释以包含法律允许的所有变形和等同结构。
本申请要求2006年ll月30日提交的日本专利申请No. 2006-324678的优先权,其全部内容通过引用包含于此。
权利要求
1.一种双极性电池,其包括布置在层叠体中的至少两个双极性电极,所述电极中的每一个均包括形成在集电极的一侧的阴极和形成在所述集电极的相反侧的阳极;以及布置在所述层叠体中的所述电极中的每一个的相反侧的隔板对,所述隔板对中的每一个均具有充分的渗透性以使电解质渗透其中;其中,所述电极中的邻近电极的隔板互相接触。
2. 根据权利要求l所述的双极性电池,其特征在于,所述 隔板对是隔开第 一双才及性电极的阴极和邻近的第二双极性电极 的阳极的多孔状膜,所述双极性电池还包括电解质,其位于所述第一双极性电极的阴极和与其邻近的隔板之间、以及邻近的第二双极性电极的阳极和与其邻近的另 一个隔^反之间。
3. 根据权利要求l所述的双极性电池,其特征在于,还包括电解质层,其布置在所述双极性电极中的每一个的阴极侧 和阳极侧,其中,所述电极中的邻近电极的所述隔板是重叠的。
4. 根据权利要求3所述的双极性电池,其特征在于,所述 电解质层是聚合物凝胶电解质或电解液,所述双极性电池还包 括填充部,其包括填充材料,所述填充材料布置在每一个集 电极和与其邻近的隔板之间的空间中并且包围相关的阴极和阳极的端部。
5. 根据权利要求4所述的双极性电池,其特征在于,所述 填充部具有在所述层叠体的形成过程中闭塞的间隙部。
6. 根据权利要求4所述的双极性电池,其特征在于,所述 电解质层是所述聚合物凝胶电解质;其中,所述填充部的厚度小于邻近的阴极或阳极与所述聚合物凝胶电解质的总厚度。
7. 根据权利要求l所述的双极性电池,其特征在于,还包括电解质层,其布置在每一个阳极和与其邻近的隔板之间和 每一个阴极和与其邻近的隔板之间,并且与所述邻近的隔板接 触,所述电解质层包括所述电解质。
8. 根据权利要求7所述的双极性电池,其特征在于,还包括第一密封材料,其布置在所述电极中的每一个的阴极和所 述隔板对中的与所述阴极邻近的第一隔板之间,所述第一密封 材料包围所述阴极及其各自电解质层的端部;以及第二密封材料,其布置在所述电极中的每一个的阳极和所述隔板对中的与所述阳极邻近的第二隔板之间,所述第二密封 材料包围所述阳极及其各自电解质层的端部。
9. 根据权利要求7所述的双极性电池,其特征在于,还包括..密封材料,其布置在每一个隔板对中的第一隔板和每一个 隔板对中的第二隔板之间,所述密封材料包围各自双极性电极 的所述阳极、阴极、集电极和电解质层。
10. 根据权利要求l所述的双极性电池,其特征在于,还包括..第一密封材料,其布置在所述电极中的每一个的阴极和所 述隔板对中的与所述阴极邻近的第一隔板之间,所述第一密封 材料包围所述阴^l的端部;以及第二密封材料,其布置在所述电极中的每一个的阳极和所 述隔板对中的与所述阳极邻近的第二隔板之间,所述第二密封 材料包围所述阳极的端部。
11. 一种双极性电池的制造方法,其包括形成第 一 双极性电极,所述第 一 双极性电极包括形成在第 一集电极的 一 侧的第 一 阴极和形成在所述第 一 集电极的相反侧 的第 一 阳极;在所述第一双极性电极的相反侧布置第一隔斧反对,所述第 一隔板对中的每 一 个均具有充分的渗透性以使电解质渗透其 中;形成第二双极性电极,所述第二双极性电才及包括形成在第 二集电极的一侧的第二阴极和形成在所述第二集电极的相反侧的第二阳极;在所述第二双极性电极的相反侧布置第二隔板对,所述第 二隔板对中的每一个均具有充分的渗透性以使电解质渗透其中;以及堆叠所述第 一 双极性电极和所述第二双极性电极,使得所 述第一隔板对的第一隔板和所述第二隔板对的第二隔板互相接 触。
12. 根据权利要求ll所述的方法,其特征在于,还包括 形成电解质层,所述电解质层包括电解质,所述电解质邻近所述第一隔板对和所述第二隔板对中的每一个,并且被置于 所述第 一和第二双才及性电极中的每一个的阴极侧和阳极侧;其 中,堆叠所述第一双极性电极和所述第二双极性电极还包括使 所述第 一隔板和所述第二隔板互相重叠。
13. 根据权利要求ll所述的方法,其特征在于,所述隔板 中的每一个均是多孔状膜,所述方法还包括形成电解质层,所述电解质层包括所述第一隔板和所述第 二隔板之间的所述电解质,在堆叠之后使所述第 一 隔板和所述 第二隔板重叠。
14. 根据权利要求13所述的方法,其特征在于,还包括 形成各自电解质层,所述电解质层包括所述第一阴极和所述第一隔板对中的与所述第一阴极邻近的第一隔寺反之间以及所 述第一阳极和所述第一隔板对中的与所述第一阳极邻近的第二 隔板之间的所述电解质;以及形成各自电解质层,所述电解质层包括所述第二阴极和所 述第二隔板对中的与所述第二阴极邻近的第 一 隔板之间以及所 述第二阳极和所述第二隔板对中的与所述第二阳极邻近的第二 隔板之间的所述电解质。
15. 根据权利要求12所述的方法,其特征在于,所述电解 质层中的每一个的所述电解质是聚合物凝胶电解质或电解液, 所述方法还包4舌在堆叠之前,布置用于形成填充部的密封材料,并且在所 述第 一 集电极和所述第 一 隔板对中的每 一 个之间的空间中布置 填充材料,以包围所述第一阴极和所述第一阳极的边缘。
16. 根据权利要求15所述的方法,其特征在于,在所述填 充部形成间隙部,所述方法还包括经由所述间隙部排出残留在由所述集电、所述第 一 隔板 对中的至少 一 个和所述填充材料形成的所述第 一 电极的内部空 间中的气泡。
17. 根据权利要求16所述的方法,其特征在于,还包括 在排出所述气泡之后,通过沿所述层叠体的堆叠方向加压所述填充部来闭塞所述间隙部的间隙。
18. 根据权利要求15所述的方法,其特征在于,所述电解 质是所述聚合物凝胶电解质,其中,所述填充部的厚度小于所 述第 一 阴极或所述第 一 阳极与所述聚合物凝胶电解质的总厚 度。
全文摘要
在此示教被构造成使引入的气泡最少化的双极性电池及该电池的制造方法。一个双极性电池包括电解质层,该电解质层包括具有渗透性以使电解质可以渗透其中的隔板,在该双极性电极中,在集电极的一侧形成阴极而在集电极的另一侧形成阳极。通过相互堆叠电解质层形成层叠体。层叠体的电解质层具有重叠的隔板层。
文档编号H01M10/40GK101192684SQ200710187798
公开日2008年6月4日 申请日期2007年11月30日 优先权日2006年11月30日
发明者佐藤一, 保坂贤司, 高山元 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1