一种液相制备覆碳球形纳米磷酸铁锂的方法

文档序号:6993026阅读:311来源:国知局
专利名称:一种液相制备覆碳球形纳米磷酸铁锂的方法
技术领域
本发明属于ー种锂离子电池正极材料的制备方法,特别是在常压液相条件下直接制备出覆碳纳米磷酸铁锂粉末的方法。
背景技术
磷酸铁锂理论容量170mAh/g,放电电压3. 4V,具有优良的安全性能和循环性能, 而且该材料的原料来源广泛,价格低廉,对环境无污染,被认为是极具潜力的动カ锂离子电池材料,成为近年来开发研究的热点。然而,磷酸铁锂本身也存在着ー些缺陷,第一是其特殊的结构阻碍了锂离子的脱嵌速率;第二是电子导电性能差,导致高倍率放电性能较差; 第三是振实密度低,直接影响到电池的比体积容量。根据上述的缺陷,人们通常采用掺杂C、 Ag、Cu等微粒来改善颗粒间的导电性能,通过掺杂Mg、Mn、Cu、Ti等离子以及减小磷酸铁锂粒径来改善锂离子的传导性能。但是粒径的减小和在粒径表面覆碳将会造成材料振实密度的降低,因此,如何使制备的材料既有细小的粒径和良好的颗粒间导电性,同时也具有相对较高的振实密度,以满足电动汽车用的高倍率充放电需求已成为人们研究的热点。通常提高振实密度大多采用特殊的エ艺来改变磷酸铁锂颗粒的形貌,使之呈现出球形形貌。申请号为200410103485. 3的发明专利“锂离子电池正极材料高密度球形磷酸铁锂的制备方法” 中,将铁源、磷源和碱溶液与氨水等络合剂分别用泵连续输入带搅拌的反应器中,控制物料的流速、PH和反应温度等得到球形磷酸铁前驱体,再经较长时间的高温热处理得到颗粒经为7-12 μ m的球形磷酸铁锂粉体。申请号为200910102323. 0的专利“球形磷酸铁锂的制备方法”中,将铁盐、锂盐、磷酸盐以及掺杂金属化合物在溶剂中搅拌溶解后,烘干和压块, 置于惰性气体中在600-900°C条件下烧结8-25h,得到的烧结物在经球磨后进行喷雾干燥二次物理造球,所需温度为600-900°C,压カ为0. 2-0. 8MPa,得到粒径为1_5 μ m的球形磷酸铁锂粉体。上述两种方法エ艺复杂,而且均需要高温较长时间的处理,制备的球形磷酸铁锂粒径较大,不利于锂离子在颗粒内部的传导,直接影响到材料的倍率性能。李颖等人在文献 “共沉淀法制备球形LiFePO4及其电化学性能的研究” [J]天津化工,2007,21 (3) :27- 提出了一种液相共沉淀法,将亚铁盐和磷酸配成稀溶液加入抗坏血酸和酒石酸后,在搅拌下逐渐加入氢氧化锂溶液,用氨水控制PH,反应后陈化他,得到前驱体,然后在前躯体中加入葡糖在350°C惰性气体中烧结8h,再在600°C烧结他,得到粒径为0. 5 μ m的球形磷酸铁锂粉体。该方法虽然可以得到粒径较小的球形磷酸铁锂粉体,但是前驱体仍然需要较长时间的高温处理。申请号为200810195055. 7的发明专利“一种沉淀法制备碳包覆的纳米级磷酸铁锂的方法”中,将ニ价铁盐水溶液与柠檬酸混合后加入含磷酸盐,然后用氨水控制PH值反应0. 5-24h,再经15-4 的陈化,将陈化后的沉淀洗涤再加水、葡萄糖和计量比的稀氢氧化锂溶液搅拌0. 5-Mh,将悬浊液烘干水份后在惰性气体保护下经450-850°C烧结IOh得到覆碳纳米磷酸铁锂。该方法前驱体处理时间长,过程复杂,由于前驱体并非形成橄榄石结构的磷酸铁锂,仍需要长时间的后续高温处理。

发明内容
本发明针对上述方法存在的不足之处,提出一种以液相合成为主,高温覆碳球化为辅的合成覆碳球形纳米磷酸铁锂粉体的方法。这种方法可以快速合成粒径细小而均勻的覆碳球形纳米磷酸铁锂粉体。本发明采用的技术方案是一种液相制备覆碳球形纳米磷酸铁锂粉体的方法,其特征在于1、一种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于包括有以下エ序(1)溶液配制,按狗P摩尔比为1 1.配制可溶性ニ价铁盐和磷酸混合水溶液,ニ价可溶性铁盐选自硝酸盐、硫酸盐和盐酸盐和醋酸盐的任ー种;(2)化学反应,先将上述混合溶液放入有回流装置的反应器中后,加入高沸点极性有机溶剤,加入量与水溶液体积比为0.5-2 1,再加入晶体生长抑制剂,加入量为可溶性 ニ价铁盐和磷酸混合水溶液质量的0. 05-3%,搅拌下加入一定浓度的氢氧化锂溶液,至反应液的PH值在6-7,然后加热至溶液沸点反应0. 5-3h,生成物经常规的过滤、洗涤和真空干燥得到纳米磷酸铁锂粉体;(3)将生成的纳米磷酸铁锂粉体与有机碳源混合,置于通有惰性气体保护的高温炉内,温度控制在500-700°C之间,优选600°C,晶化和球化时间为l_5h,优选2_池,冷却后粉碎即可得本发明产品。2、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤(1)中所述的ニ价铁盐和磷酸混合水溶液的浓度为0. 1-3. Omol.じ1。3、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在干步骤O)中所述的高沸点有机溶剂为ニ甲亚砜、乙ニ醇,ニ甘醇,四甘醇,ニ甲基甲酰胺的ー种。4、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤O)中所述的晶体生成抑制剂可选用蔗糖、聚丙烯酰胺、羧甲基纤维素、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵的ー种。5、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤O)中所述的一定浓度的氢氧化锂溶液浓度为0. 5-3. Omol.じ1。6、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤O)中所述的加热至溶液沸点为104-120°C7、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤(2)和步骤(3)中所述的纳米磷酸铁锂粉体为纯相橄榄石结构。8、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤(3)中所述的有机碳源可选葡萄糖、蔗糖、淀粉、酚醛树脂、聚乙烯醇等,优选葡萄糖,加入量为最终产物含碳量的1_10%,优选3-5%。9、根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于步骤(3)中所述的惰性气体为氩气、氮气、氩气与氢气的混合气体或氮气与氢气的混合气体之一,其中混合气体中氢气的体积含量为1_10%。本发明技术不需要采用高温高压水热反应设备,也不需要复杂的前驱体制备过程,在常压下104-120°C的液相环境下反应仅仅需要0. 5-3h即可生产纳米磷酸铁锂粉体, 由于液相合成出的粉体已经是纯相磷酸铁锂结构,因此与适量有机碳源混合后在惰性气体保护下只需高温短时间处理就可以同时完成碳化和球化,合成的磷酸铁锂为纳米级的球形粒径。纳米级的晶粒有利于缩短锂离子在固相中的传输距离,球形的形貌可以提高粉体的振实密度,包覆在颗粒表面的碳增加了颗粒间的导电性能,本发明合成的材料具有优异的大电流放电性能和循环性能。此外,由于是液相合成,而且由于晶粒生长抑制剂的作用,所合成的磷酸铁锂晶粒达到纳米级水平,且粒径均勻,大小可控。


图1是本发明实例1所合成的覆碳纳米磷酸铁锂的SEM照片图2是本发明实例1合成的覆碳纳米磷酸铁锂的XRD图谱。图3是本发明实例1合成的覆碳纳米磷酸铁锂的充放电曲线。图4是本发明实例1所合成的覆碳纳米磷酸铁锂的高倍率循环性能。
具体实施例方式结合以下实例对本发明作详细说明实例1按Fe P摩尔比为1 1配制lmol.じ1的硫酸亚铁盐和磷酸混合水溶液100ml, 将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入ニ甲亚砜IOOml和2%的聚丙烯酰胺溶液10ml,搅拌下缓缓加入3mol.じ1的氢氧化锂溶液至反应液的pH为7,然后加热至溶液沸点(108°C)反应池,生成物经过滤、分別用去离子水和无水乙醇洗涤,100°C 真空干燥10h,即得到纯相纳米磷酸铁锂粉体。将所得粉体与20%葡萄糖混合后置于管式炉内,在氮气保护下600°C碳化和球化;Bh,冷却后得到本发明产品,所得产品形貌为球形, 粒径为50-200nm(图1),经XRD粉末衍射检测为橄榄石结构纯相LiFePO4 (图2)。将Li!^eP04/C,乙炔黑,PVDF按85 10 5的质量比混合均勻,加入一定量的NMP 混合制成浆料,将浆料均勻涂布于铝箔上,在真空干燥箱内120°C干燥12小时后,锟压制成正极片,以金属锂片作为负极,聚丙烯微孔膜作为隔膜,lmol/L LiPF6/DEC+DMC+EC(体积比 1:1: 1)作为电解液,在充满氩气的手套箱内装成CR2016型纽扣电池。使用LAND电池测试系统进行电性能测试,起止电压为2. 3-4. 2V。0. 2C,1C,5C和IOC放电容量分别为157. 7, 142. 5,126. 5和104mAh/g(图3),在5C和IOC充放电循环200次容量无明显衰减(图4), 表现出优异的高倍率循环性能。实例2按Fe P摩尔比为1 1配制lmol.じ1的硫酸亚铁盐和磷酸混合水溶液100ml, 将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入ニ甲亚砜200ml和Ig 十二烷基苯磺酸钠,搅拌下缓缓加入2mol.じ1的氢氧化锂溶液至反应液的pH为7,然后加热至溶液沸点(115°C)反应lh,生成物经过滤、分別用去离子水和无水乙醇洗涤,100°C真空干燥10h,即得到纳米磷酸铁锂粉体,将得到的纳米粉体与将所得粉体与15%蔗糖混合后置于管式炉内,在95N2和5%吐混合气体的保护下在600°C高温晶化2h,冷却粉碎后得到本发明产品。所得样品形貌为球形,粒径为80-250nm。IC和IOC放电容量分别为140. 8 和 103. 6mAh/g实例3
按Fe P摩尔比为1 1配制lmol.じ1的氯亚铁盐和磷酸混合水溶液100ml,将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入乙ニ醇IOOml和0. 5g十六烷基三甲基溴化铵,搅拌下缓缓加入2mol.じ1的氢氧化锂溶液至反应液的pH为6. 5,然后加热至溶液沸点(106°C)反应池,生成物经过滤、分別用去离子水和无水乙醇洗涤,100°C 真空干燥10h,即得到纳米磷酸铁锂粉体。将得到的纳米粉体与10%葡萄糖混合,置于管式炉内在95 和5% H2混合气体的保护下在550°C碳化合球化池,冷却粉碎后得到本发明产品。所得样品形貌为球形,粒径为50-200nm,样品经XRD粉末衍射检测为橄榄石结构纯相 LiFePO40 IC 和 IOC 放电容量分别为 141. 5 和 103. 8mAh/g.实例 4按Fe P摩尔比为1 1配制2mol/じ1的醋酸亚铁盐和磷酸混合水溶液100ml, 将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入ニ甘醇IOOml和1. 5g 蔗糖,搅拌下缓缓加入3mol.じ1的氢氧化锂溶液至反应液的pH为7,然后加热至溶液沸点 (109°C )反应2h,生成物经过滤、分別用去离子水和无水乙醇洗涤,80°C真空干燥15h,即得到纳米磷酸铁锂粉体。将得到的纳米粉体置于管式炉内在95N2和5% H2混合气体的保护下在550°C高温晶化3h,即得到纳米磷酸铁锂粉体,将得到的纳米粉体与将所得粉体与15% 蔗糖混合后置于管式炉内,在95 和5 %吐混合气体的保护下在600°C高温晶化池,冷却粉碎后得到本发明产品。所得样品形貌为球形,粒径为80-250nm。IC和IOC放电容量分別为 140. 8 禾ロ 103. 6mAh/g实例5按Fe P摩尔比为1 1配制0. 5mol.じ1的硫酸亚铁盐和磷酸混合水溶液IOOml, 将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入四甘醇IOOml和5%羧甲基纤维素水溶液10ml,搅拌下缓缓加入3mol.じ1的氢氧化锂溶液至反应液的pH为7,然后加热至溶液沸点(118°C)反应池,生成物经过滤、分別用去离子水和无水乙醇洗涤,80°C真空干燥20h,即得到纳米磷酸铁锂粉体,将得到的纳米粉体与将所得粉体与15%蔗糖混合后置于管式炉内,在95N2和5% H2混合气体的保护下在600°C高温晶化池,冷却粉碎后得到本发明产品。所得样品形貌为球形,粒径为80-250nm。IC和IOC放电容量分别为140. 8 和 103. 6mAh/g实例6按Fe P摩尔比为1 1配制lmol.じ1的硫酸亚铁盐和磷酸混合水溶液100ml, 将混合溶液置于带有回流冷凝管装置的500ml反应容器,先后加入ニ甲基甲酰胺IOOml和 0. 5g十二烷基硫酸钠,搅拌下缓缓加入3mol.じ1的氢氧化锂溶液至反应液的pH为7,然后加热至溶液沸点(105°C)反应池,生成物经过滤、分別用去离子水和无水乙醇洗涤,80°C真空干燥20h,即得到纳米磷酸铁锂粉体。将得到的纳米粉体与15%酚醛树脂混合后置于管式炉内,在95 和5% H2混合气体的保护下在600°C高温晶化池,冷却粉碎后得到本发明产品。所得样品形貌为球形,粒径为80-250nm。IC和IOC放电容量分别为140. 8和103. 6mAh/
权利要求
1.一种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于包括有以下エ序(1)溶液配制,按狗P摩尔比为1 1.配制可溶性ニ价铁盐和磷酸混合水溶液,ニ 价可溶性铁盐选自硝酸盐、硫酸盐和盐酸盐和醋酸盐的任ー种;(2)化学反应,先将上述混合溶液放入有回流装置的反应器中后,加入高沸点极性有机溶剤,加入量与水溶液体积比为0.5-2 1,再加入晶体生长抑制剂,加入量为可溶性ニ价铁盐和磷酸混合水溶液质量的0. 05-3%,搅拌下加入一定浓度的氢氧化锂溶液,至反应液的pH值在6-7,然后加热至溶液沸点反应0. 5-3h,生成物经常规的过滤、洗涤和真空干燥得到纳米磷酸铁锂粉体;(3)将生成的纳米磷酸铁锂粉体与有机碳源混合,置于通有惰性气体保护的高温炉内, 温度控制在500-700°C之间,优选600°C,晶化和球化时间为l_5h,优选2_池,冷却后粉碎即可得本发明产品。
2.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤(1)中所述的ニ价铁盐和磷酸混合水溶液的浓度为0. 1-3. Omol.じ1。
3.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤O)中所述的高沸点有机溶剂为ニ甲亚砜、乙ニ醇,ニ甘醇,四甘醇,ニ甲基甲酰胺的ー种。
4.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤O)中所述的晶体生成抑制剂可选用蔗糖、聚丙烯酰胺、羧甲基纤维素、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵的ー种。
5.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤O)中所述的一定浓度的氢氧化锂溶液浓度为0. 5-3. Omol.じ1。
6.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤O)中所述的加热至溶液沸点为104-120°C
7.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤(2)和步骤(3)中所述的纳米磷酸铁锂粉体为纯相橄榄石结构。
8.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤(3)中所述的有机碳源可选葡萄糖、蔗糖、淀粉、酚醛树脂、聚乙烯醇等,优选葡萄糖, 加入量为最终产物含碳量的1-10%,优选3-5%。
9.根据权利要求1所述的ー种液相制备覆碳球形纳米磷酸铁锂的方法,其特征在于 步骤(3)中所述的惰性气体为氩气、氮气、氩气与氢气的混合气体或氮气与氢气的混合气体之一,其中混合气体中氢气的体积含量为1_10%。
全文摘要
本发明公开了一种液相制备覆碳球形纳米级磷酸铁锂粉体的制备方法。该方法可以在常压液相中快速生成具有橄榄石结构的纳米磷酸铁锂粉体,反应生成的纳米磷酸铁锂粉体与葡萄糖等有机碳源混合后在惰性气氛保护下只需要经很短时间的高温碳化和球化即可形成粒径小而均匀的覆碳球形纳米磷酸铁锂粉体,粒径范围为50-300nm。本发明的技术方案是按等摩尔比配制一定浓度的亚铁盐和磷酸混合水溶液,将混合水溶液放入反应器中,加入与水溶液体积比为0.5-2∶1的二甲亚砜等高沸点极性有机溶剂和0.5-3%的聚丙烯酰胺等晶体生长抑制剂,搅拌下缓慢加入一定浓度的氢氧化锂溶液至反应液的pH值在6-7,然后加热至溶液沸点回流反应0.5-3h,生成物经常规的过滤、洗涤和真空干燥,得到纳米磷酸铁锂粉体;再将生成的纳米磷酸铁锂粉体与葡萄糖等有机碳源混合置于通有惰性气体保护的高温炉内,温度控制在500-700℃,晶化和球化时间为1-5h,冷却后粉碎即可得本发明产品。本发明产品用于锂离子电池正极材料。
文档编号H01M4/1397GK102593427SQ20111000147
公开日2012年7月18日 申请日期2011年1月6日 优先权日2011年1月6日
发明者刘瑶, 常照荣, 李苞, 汤宏伟, 赵海丽, 黄静 申请人:河南师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1