一种硅基薄膜太阳能电池组件及其制备方法

文档序号:7260763阅读:240来源:国知局
一种硅基薄膜太阳能电池组件及其制备方法
【专利摘要】本发明涉及太阳能光伏【技术领域】,公开了一种硅基薄膜太阳能电池组件及其制备方法。该制备方法通过在层压后的半成品组件上直接涂覆减反射膜、预固化和高压釜中热固化成功地将减反射膜应用到硅基薄膜太阳能电池组件上,镀膜工艺简单、容易实施且成本低,可实现大量生产。制备的具有减反射膜的硅基薄膜太阳能电池组件包括依次排列的减反射膜、前板玻璃、透明导电膜、硅基薄膜吸收层、背电极、封装胶片和背板玻璃,所述减反射膜可低温固化成膜,其膜厚为90-110nm,折射率为1.35-1.42。通过减反射膜的作用明显提高了硅基薄膜太阳能组件的透光率,进而提高了硅基薄膜太阳能组件的光电转换效率。
【专利说明】一种硅基薄膜太阳能电池组件及其制备方法
【技术领域】
[0001]本发明涉及太阳能光伏【技术领域】,特别涉及一种硅基薄膜太阳能电池组件及其制备方法。
【背景技术】
[0002]随着人类对能源需求量的增加,常规能源储量有限并且不可再生,因此开发可再生能源特别是太阳能越来越受到关注,太阳能电池组件的研究开发也越来越广泛。
[0003]国际上太阳能电池组件的研究和生产,大致分为三个阶段,分别为晶硅太阳能电池、薄膜太阳能电池和新型太阳能电池。
[0004]第一阶段的太阳能电池,基本上以单晶硅和多晶硅单一组元的太阳能电池为代表。应用减反射膜是提高太阳能电池及其组件光电转换效率直接而有效的方法。减反射膜也称增透膜,即能够减少反射光,增加透射光的薄膜,用于减反射膜的材料通常有:Si02、Ti02、MgF2> SiNx等。在晶娃太阳能电池组件上应用减反射膜技术比较成熟,已经实现商业化。该技术通过将减反射膜镀在压花盖板玻璃的光入射表面来实现提高太阳能电池组件的光电转换效率。所述盖板玻璃即光伏玻璃,带有减反射膜的光伏玻璃称为抗反射光伏玻璃,该玻璃一般经过钢化,用来保护晶硅太阳能电池组件。抗反射光伏玻璃的制备主要有两种途径:①未钢化玻璃原片——清洗——预热——涂膜——湿膜表干——湿膜热固化和钢化钢化玻璃原片——清洗——预热——涂膜——湿膜表干——湿膜热固化。然后通过乙烯-醋酸乙烯共聚物(EVA)或聚乙烯醇缩丁醛(PVB)等封装胶片将一片抗反射光伏玻璃和一片未镀减反射膜的光伏玻璃与晶硅电池片阵列封装组合为一个整体,抗反射光伏玻璃位于晶硅太阳能电池组件的光入射面,如图1,10为入射光,晶硅太阳能电池组件包括依次排列的减反射膜11、光伏玻璃12、封装胶片13、晶硅电池片阵列14、封装胶片15和光伏玻璃16。使用两片光伏玻璃保护晶硅电池片,使其具备长期的使用寿命。这种方法中减反射膜通过封装胶片组装到晶硅电池片阵列上,所以晶硅电池片阵列性能不受减反射膜的热固化工艺的影响。
[0005]第二阶段的太阳能电池组件为薄膜太阳能电池组件,这类电池组件薄膜高纯硅用量少,生产成本低,能耗小,利于大规模生产。但是现有的抗反射光伏玻璃及其制备工艺不适合在硅基薄膜太阳能电池组件上应用。现有技术中将减反射膜应用到硅基薄膜太阳能电池组件上,需要先将减反射膜镀在超白玻璃上再进行制备电池和组件的各道工序,这种途径使得生产线对减反射膜的耐磨损及硬度等机械性能要求甚高,由于镀减反射膜的玻璃不可钢化,则减反射膜的机械性能难以满足要求,这条途径也难以实现。
[0006]现有技术的缺陷在于,减反射膜难以应用在硅基薄膜太阳能电池的制作工艺中,因此,对于硅基薄膜太阳能电池来说,其透光率较低,因而光电转化率也较低。

【发明内容】

[0007]本发明提供一种具有减反射膜的硅基薄膜太阳能电池组件及其制备方法,用以将减反射膜应用到硅基薄膜太阳能电池组件中,从而提高硅基薄膜太阳能电池组件的透光率,进一步提高了其光电转换效率。
[0008]本发明硅基薄膜太阳能电池组件的制备方法,所述方法包括如下步骤:
[0009]在封装组件的前板玻璃表面涂覆减反射湿膜;
[0010]将所述减反射湿膜预固化,形成具有表干硬度的减反射膜;
[0011]将所述具有表干硬度的减反射膜低温热固化,形成减反射膜。
[0012]所述在封装组件的前板玻璃表面涂覆减反射湿膜具体为:
[0013]采用狭缝涂、辊涂、喷涂或旋涂工艺在封装组件的前板玻璃表面涂覆减反射膜。
[0014]所述减反射湿膜预固化具体为:
[0015]涂覆的减反射湿膜自然干燥5-10分钟,再在80°C下烘干3-5分钟;或,直接在80°C下烘干5-10分钟。
[0016]所述减反射湿膜低温热固化具体为:在高压釜中,在温度140-150°C下保温30-90分钟。
[0017]优选的,所述减反射膜的膜厚为90-110纳米,折射率为1.35-1.42。
[0018]所述方法还包括封装组件的制作,包括如下步骤:
[0019]激光刻划前板玻璃上的透明导电膜;
[0020]在刻划后的透明导电膜上形成硅基薄膜吸收层;
[0021]激光刻划穿硅基薄膜吸收层;
[0022]在刻划后的硅基薄膜吸收层上形成背电极层;
[0023]激光刻划穿背电极层和硅基薄膜吸收层,通过以上步骤形成了前板电池;
[0024]在前板电池上焊接引流条、粘贴汇流条并引出正负极接头;
[0025]将前板电池与背板玻璃进行层压,形成封装组件;或,将前板电池与背板玻璃进行层压后送入高压釜,形成封装组件。
[0026]本发明应用于上述硅基薄膜太阳能电池组件的制备方法制备的硅基薄膜太阳能电池组件,包括依次排列的前板玻璃、透明导电膜,还包括减反射膜,所述减反射膜位于所述前板玻璃的光入射面,减反射膜与所述透明导电膜分别位于前板玻璃的两侧。
[0027]优选的,所述的硅基薄膜太阳能电池组件中,所述减反射膜的铅笔硬度高于3H。
[0028]所述的硅基薄膜太阳能电池组件,还包括依次排列的硅基薄膜吸收层、背电极、封装胶片和背板玻璃,所述硅基薄膜吸收层覆盖所述透明导电膜。
[0029]优选的,所述硅基薄膜吸收层为a_S1:H/y Si = H顶/底叠层结构薄膜。
[0030]本发明还涉及一种太阳能光电系统,包括上述硅基薄膜太阳能电池组件。
[0031]本发明至少实现了以下有益效果:
[0032]本发明提供了一种具有减反射膜的硅基薄膜太阳能电池组件及其制备方法,通过采用低温热固化的方法在前板玻璃的光入射表面涂覆减反射膜,降低了前板玻璃表面对光的反射率,提高了进入组件的光能量,从而提高组件的光电转换效率。此外,该方法镀减反射膜工艺简单,易于实施且成本低,能实现太阳能电池组件的大量生产。
【专利附图】

【附图说明】
[0033]图1为现有技术中减反射膜在晶硅太阳能电池组件上应用的示意图;[0034]图2为本发明硅基薄膜太阳能电池组件的制备方法流程示意图;
[0035]图3为本发明减反射膜应用于硅基薄膜太阳能电池组件的示意图;
[0036]图4为本发明实施例3中玻璃镀减反射膜前后透光率随波长变化的曲线;
[0037]图5为本发明实施例4中玻璃镀减反射膜前后透光率随波长变化的曲线。
[0038]附图标记:
[0039]10-入射光11-减反射膜12-光伏玻璃13-封装胶片
[0040]14-晶硅电池片阵列15-封装胶片16-光伏玻璃20-入射光
[0041]21-减反射膜22-前板玻璃23-透明导电膜24-硅基薄膜吸收层
[0042]25-背电极26-封装胶片27-背板玻璃
【具体实施方式】
[0043]如图2所示,本发明硅基薄膜太阳能电池组件的制备方法,包括如下步骤:
[0044]步骤101、在封装组件的前板玻璃表面涂覆减反射湿膜;
[0045]步骤102、将减反射湿膜预固化,形成具有表干硬度的减反射膜;
[0046]步骤103、将具有表干硬度的减反射膜低温热固化,形成减反射膜。
[0047]在本发明技术方案中,通过低温热固化的方法在太阳能电池组件的前板玻璃上形成减反射膜,增加的减反射膜对太阳光具有减反射的作用,使得更多的光线入射到硅基薄膜太阳能电池组件中,提高了硅基薄膜太阳能电池组件的光电转换效率。并且该减反射膜的制作采用低温热固化的工艺,在制作减反射膜的过程中避免了高温对封装组件的不良影响,保证了产品的性能。此外,该制备减反射膜的工艺方法简单,适合于太阳能电池组件的大规模生产。
[0048]优选的,在封装组件的前板玻璃表面涂覆减反射湿膜具体为:
[0049]采用狭缝涂、辊涂、喷涂或旋涂工艺在封装组件的前板玻璃表面涂覆减反射膜。
[0050]可选取任何一种能够将溶液涂覆成膜的工艺在前板玻璃表面涂覆减反射膜,优选采用棍涂(Roll Coating)、狭缝涂(Slit Coating)、喷涂(Spray Coating)或旋涂(SpinCoating)工艺。
[0051]减反射湿膜预固化具体为:涂覆的减反射湿膜自然干燥5-10分钟,再在80°C下烘干3-5分钟;或,直接在80°C下烘干5-10分钟。
[0052]减反射湿膜低温热固化具体为:在高压釜中,在温度140-150°C下保温30_90分钟。
[0053]减反射湿膜预固化和低温热固化时温度较低,不会对太阳能电池组件的其它部分造成不良的影响。
[0054]优选的,减反射膜的膜厚为90-110纳米,折射率为1.35-1.42。
[0055]优选的,所述的方法还包括封装组件的制作,包括如下步骤:
[0056]激光刻划前板玻璃上的透明导电膜;
[0057]在刻划后的透明导电膜上形成硅基薄膜吸收层;
[0058]激光刻划穿硅基薄膜吸收层;
[0059]在刻划后的硅基薄膜吸收层上形成背电极层;
[0060]激光刻划穿背电极层和硅基薄膜吸收层,通过以上步骤形成了前板电池;[0061]在前板电池上焊接引流条、粘贴汇流条并引出正负极接头;
[0062]将前板电池与背板玻璃进行层压,形成封装组件;或,将前板电池与背板玻璃进行层压后送入高压釜,形成封装组件。
[0063]在本发明的技术方案中,将前板电池与背板玻璃层压形成封装组件通常反应粘结性没有问题,但是将前板电池与背板玻璃层压后送入高压釜,可以对反应的粘结性更有保障。
[0064]本发明还涉及上述硅基薄膜太阳能电池组件的制备方法制备的硅基薄膜太阳能电池组件,包括依次排列的前板玻璃、透明导电膜,还包括减反射膜,所述减反射膜位于所述前板玻璃的光入射面,减反射膜与所述透明导电膜分别位于前板玻璃的两侧。
[0065]分别位于前板玻璃两侧的减反射膜和透明导电膜相互作用,减少太阳能电池组件对光线的反射,增加了光透过率,从而提高了太阳能组件的光转换效率。
[0066]优选的,减反射膜的铅笔硬度高于3H。
[0067]优选的,所述的硅基薄膜太阳能电池组件,还包括依次排列的硅基薄膜吸收层、背电极、封装胶片和背板玻璃,所述硅基薄膜吸收层位于所述透明导电膜背离所述前板玻璃的一面,并覆盖所述透明导电膜。
[0068]较佳的,所述硅基薄膜吸收层为a_S1:H/y Si = H顶/底叠层结构薄膜。
[0069]以下用具体的实施例更好地解释本发明的硅基薄膜太阳能电池组件及其制备方法,但本发明并不限于以下实施例。
[0070]实施例1
[0071]步骤1、准备透明导电玻璃,其尺寸为2200mmX2600mmX3.2mm,该透明导电玻璃包括前板玻璃和透明导电膜,前板玻璃为超白玻璃,透明导电膜可以选为掺氟的氧化锡(Sn02:F)o将透明导电玻璃初步清洗后磨边,随后进入清洗机进行清洗并吹干;
[0072]步骤2、根据生产预定的线宽和线距,用激光将透明导电膜刻划成相互独立的部分,目的是将整个透明导电膜分为若干块,作为若干个单体电池的电极;
[0073]步骤3、将刻划好的透明导电玻璃进行清洗,并吹干,确保透明导电膜的洁净;
[0074]步骤4、在刻划后的透明导电膜上形成硅基薄膜吸收层,优选的可以采用等离子体增强化学气相淀积(PECVD)技术形成p-1-n/p-1-n顶/底叠层结构的a_S1:H/ μ。-S1:H薄膜吸收层;
[0075]步骤5、根据生产预定的线宽以及与透明导电膜刻划线的线间距,用激光将硅基薄膜吸收层刻划穿,目的是让背电极与前电极(即透明导电膜)相连接,形成若干个单体电池的内部连接通道;
[0076]步骤6、在步骤5后的硅基薄膜吸收层上形成复合背电极,优选的可以采用磁控溅射技术,该复合背电极可以选为掺铝的氧化锌(Ζη0:Α1)和金属银;
[0077]步骤7、根据生产预定的线宽以及与硅基薄膜吸收层刻划线的线间距,用激光将硅基薄膜吸收层和复合背电极层刻划穿,目的是将整个背电极分成若干个单体电池的背电极,进而实现整板若干个电池的串联连接,通过以上步骤形成了前板电池,将大尺寸2200mmX2600mm的前板电池切割成四片小尺寸IlOOmmX 1300mm的前板电池;
[0078]步骤8、将切割后的前板电池进行磨边和边绝缘;
[0079]步骤9、将步骤8后的前板电池进行清洗并吹干;[0080]步骤10、在清洗后的前板电池上焊接引流条、粘贴汇流条并引出正负极接头;
[0081]步骤11、使用封装胶片将步骤10后的前板电池与背板玻璃进行层压,形成封装组件,该封装胶片优选为PVB ;
[0082]步骤12、将封装组件进行清洗并吹干;
[0083]步骤13、在封装组件的前板玻璃的光入射面(背离透明导电膜的一面)涂覆减反射湿膜,可选取棍涂(Roll Coating)、狭缝涂(Slit Coating)、喷涂(Spray Coating)、旋涂(Spin Coating)或其它能够将溶液涂覆成膜的任何一种涂膜工艺,本实施例采用狭缝涂工艺;
[0084]步骤14、将减反射湿膜在80°C保温5-10分钟,例如,时间可以为5分钟、8分钟或10分钟,得到具有表干硬度的减反射膜;
[0085]步骤15、将步骤14后的具有表干硬度的减反射膜的半成品组件放进高压釜中,进行生产线常规的高压釜工艺操作,其中在145±5°C下保温60分钟,高压釜中温度降到室温后取出组件,在组件的前板玻璃的表面形成减反射膜,其厚度平均为95±5纳米(例如90nm、95nm、100nm),折射率为 1.36±0.01 (例如 1.35、1.36、1.37),铅笔硬度大于 3H ;
[0086]步骤16、在步骤15后的组件上安装接线盒。
[0087]通过以上步骤制得了具有减反射膜的硅基薄膜太阳能电池组件,如图3所示,包括依次排列的减反射膜21、前板玻璃22、透明导电膜23、硅基薄膜吸收层24、背电极25、封装胶片26和背板玻璃27。入射光20通过减反射膜21射入太阳能电池组件内,通过减反射膜的作用,使入射光更多地进入 到太阳能电池组件中,从而提高其光电转换效率。对具有减反射膜的硅基薄膜太阳能电池组件通过太阳能模拟器测试电流一电压性能,测试结果如表I所示,其中A和B分别为本实施例制作的两块硅基薄膜太阳能电池组件。从表中数据可知,镀减反射膜之后的太阳能电池组件的光电转换效率比未镀减反射膜的太阳能电池组件的光电转换效率有明显的提高,分别提高了 0.24%和0.28%。
[0088]表I镀减反射膜前后太阳能电池组件的性能测试表
[0089]
【权利要求】
1.一种硅基薄膜太阳能电池组件的制备方法,其特征在于,所述方法包括如下步骤: 在封装组件的前板玻璃表面涂覆减反射湿膜; 将所述减反射湿膜预固化,形成具有表干硬度的减反射膜; 将所述具有表干硬度的减反射膜低温热固化,形成减反射膜。
2.如权利要求1所述的方法,其特征在于,所述在封装组件的前板玻璃表面涂覆减反射湿膜具体为: 采用狭缝涂、辊涂、喷涂或旋涂工艺在封装组件的前板玻璃表面涂覆减反射膜。
3.如权利要求1所述的方法,其特征在于,所述减反射湿膜预固化具体为: 涂覆的减反射湿膜自然干燥5-10分钟,再在80°C下烘干3-5分钟;或,直接在80°C下烘干5-10分钟。
4.如权利要求1所述的方法,其特征在于,所述减反射湿膜低温热固化具体为:在高压釜中,在温度140-150°C下保温30-90分钟。
5.如权利要求1所述的方法,其特征在于,所述减反射膜的膜厚为90-110纳米,折射率为 1.35-1.42。
6.如权利要求1所述的方法,其特征在于,所述方法还包括封装组件的制作,包括如下步骤: 激光刻划前板玻璃上的透明导电膜; 在刻划后的透明导电膜上形成硅基薄膜吸收层; 激光刻划穿硅基薄膜吸收层; 在刻划后的硅基薄膜吸收层上形成背电极层; 激光刻划穿背电极层和硅基薄膜吸收层,通过以上步骤形成了前板电池; 在前板电池上焊接引流条、粘贴汇流条并引出正负极接头; 将前板电池与背板玻璃进行层压,形成封装组件;或,将前板电池与背板玻璃进行层压后送入高压釜,形成封装组件。
7.一种应用于权利要求1硅基薄膜太阳能电池组件的制备方法制备的硅基薄膜太阳能电池组件,包括依次排列的前板玻璃、透明导电膜,其特征在于,还包括减反射膜,所述减反射膜位于所述前板玻璃的光入射面,减反射膜与所述透明导电膜分别位于前板玻璃的两侧。
8.如权利要求7所述的硅基薄膜太阳能电池组件,其特征在于,所述减反射膜的铅笔硬度高于3H。
9.如权利要求7所述的硅基薄膜太阳能电池组件,其特征在于,还包括依次排列的硅基薄膜吸收层、背电极、封装胶片和背板玻璃,所述硅基薄膜吸收层覆盖所述透明导电膜。
10.如权利要求9所述的硅基薄膜太阳能电池组件,其特征在于,所述硅基薄膜吸收层为a-S1: H/ μ。-S1: H顶/底叠层结构薄膜。
【文档编号】H01L31/048GK103441167SQ201310303301
【公开日】2013年12月11日 申请日期:2013年7月18日 优先权日:2013年7月18日
【发明者】邸云萍, 郭铁, 李立伟, 杨荣, 赵冠超, 张勇 申请人:新奥光伏能源有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1