管芯接合器及其使用方法与流程

文档序号:13708060阅读:273来源:国知局
优先权声明和交叉引用本申请要求以下于2014年12月26日临时提交的标题为“管芯接合器及其使用方法”的美国专利申请第62/096,979号的优先权,其全部内容通过引用结合于此作为参考。技术领域本发明实施例涉及管芯接合器及其使用方法。

背景技术:
随着半导体技术的发展,半导体芯片/管芯变得越来越小。与此同时,更多的功能需要集成到半导体管芯内。因此,半导体管芯需要具有封装在更小的区域内的越来越大的数量的I/O焊盘,并且I/O焊盘的密度随着时间快速增加。因此,半导体管芯的封装变得更加困难,这不利地影响封装的产量。传统的封装技术可以分为两类。在第一类中,在锯切晶圆上管芯之前,封装晶圆上管芯。这种封装技术具有一些有利特征,诸如更高的生产量和更低的成本。此外,需要较少的底部填充物或模塑料。然而,这种封装技术也存在弊端。由于管芯的尺寸变得越来越小,并且相应的封装件可能为扇入型封装件,其中,将每个管芯的I/O焊盘限制于直接位于相应的管芯的表面上方的区域。在管芯的区域受到限制的情况下,由于I/O焊盘的间距的限制,I/O焊盘的数量受到限制。如果焊盘的间距将要下降,可能会发生焊桥。此外,在固定的球尺寸需求下,焊料球必须具有特定的尺寸,这进而限制了可以封装到管芯的表面上的焊料球的数量。在其他的封装类型中,在封装管芯之前,从晶圆锯切管芯。这种封装技术的有利特征是形成扇出封装件的可能性,这意味着管芯上的I/O焊盘可以重新分配至比管芯更大的区域,并且因此可以增加封装在管芯的表面上的I/O焊盘的数量。这种封装技术的其他有利特征是封装“已知良好管芯”,而丢弃有缺陷的管芯,并且因此成本和精力不浪费在有缺陷的管芯上。

技术实现要素:
根据本发明的一个实施例,提供了一种方法,包括:使多个管芯和管芯附接膜的相应第一侧与载体晶圆的主要表面接触;以及同时地加热所述管芯附接膜的接触所述多个管芯的部分,以同时地将所述多个管芯接合至所述管芯附接膜。根据本发明的另一实施例,还提供了一种方法,包括:将多个管芯放置为具有所述多个管芯的彼此共面的第一表面;使用热板加热所述多个管芯或管芯附接膜,其中,所述热板按压在所述多个管芯上,从而使得所述多个管芯的第二侧接合至所述管芯附接膜;以及在将所述多个管芯的第二侧接合至所述管芯附接膜之后,从所述多个管芯和所述管芯附接膜移走所述热板。根据本发明的又一实施例,还提供了一种用于将多个管芯接合至管芯附接膜的装置,所述装置包括:拾取和放置单元,用于放置所述多个管芯;以及加热单元,配置为通过同时地加热所述管芯附接膜的与所述多个管芯接触的部分而同时地将所述多个管芯附接至所述管芯附接膜。附图说明当结合附图进行阅读时,从以下详细描述可最佳理解本发明的各方面。应该注意,根据工业中的标准实践,各个部件未按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任意地增大或减小。图1至图5示出了根据一些实施例的在将管芯接合至管芯附接膜中的中间阶段的截面图;图6和图7示出了根据一些实施例的由接合至管芯附接膜的管芯形成扇出封装件中的中间阶段的截面图;图8示出了根据一些实施例的接合器设计;图9至图12示出了根据一些实施例的接合器的部分和操作;图13至图16示出了根据一些实施例的在将管芯接合至管芯附接膜中的中间阶段的截面图,其中真空管芯保持架用作临时管芯保持架;图17至图19示出了根据一些实施例的在将管芯接合至管芯附接膜中的中间阶段的截面图,其中粘合胶带用作临时管芯保持架;以及图20示出了根据一些实施例的在形成扇出封装件中的工艺流程。具体实施方式以下公开内容提供了许多用于实现所提供主题的不同特征的不同实施例或实例。下面描述了组件和布置的具体实例以简化本发明。当然,这些仅仅是实例,而不旨在限制本发明。例如,在以下描述中,在第二部件上方或者上形成第一部件可以包括第一部件和第二部件形成为直接接触的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。此外,本发明可在各个实例中重复参考标号和/或字母。该重复是为了简单和清楚的目的,并且其本身不指示所讨论的各个实施例和/或配置之间的关系。而且,为便于描述,在此可以使用诸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等的空间相对术语,以便于描述诸如图所示的一个元件或部件与另一个(或另一些)元件或部件的关系。除了图中所示的方位外,空间相对术语旨在包括器件在使用或操作中的不同方位。装置可以以其他方式定向(旋转90度或在其他方位上),而在此使用的空间相对描述符可以同样地作相应的解释。根据各个示例性实施例提供了接合器设计和使用接合器将管芯接合至管芯附接膜(DAF)的方法。基于接合至DAF上的管芯示出了形成封装件的中间阶段。论述了实施例的变化。贯穿各个视图和说明性实施例,相同的参考标号用于代表相同的元件。图1至图7示出了根据一些实施例的在形成扇出封装件中的中间阶段的截面图。也在图20中示出的工艺流程200中示例性地示出了图1至图7中示出的步骤。在随后的论述中,参考图20中的工艺步骤论述在图1至图7中示出的工艺步骤。参考图1,锯切的晶圆24附接至切割带20,切割带20用于粘合至晶圆24中的离散的管芯22。根据本发明的一些实施例,管芯22包括诸如晶体管、二极管、电阻器、电容器(未示出)等的集成电路器件。管芯22可以包括半导体衬底(未标出),诸如硅衬底、III-V族化合物半导体衬底、锗衬底、硅锗衬底等。应当理解,虽然为了清楚起见,将管芯22示出为彼此远离分离,但是管芯22实际上彼此紧邻地定位,在锯切工艺中产生切缝以使管芯22彼此分离。此外,如图8所示,晶圆24从顶部观察为圆形晶圆。参考图2A,从切割带20拾取管芯22并且将管芯22转移到载体晶圆28上方以及上面的DAF30上方。相应的步骤示出为图20中示出的工艺流程200中的步骤202。根据本发明的一些实施例,载体晶圆28是玻璃载体晶圆,或可以由其他透明材料形成,例如,透明材料可以对紫外(UV)光是透明的。也可以使用诸如有机材料、陶瓷等的其他材料。DAF30附接至载体晶圆28,并且可以例如通过层压或涂覆来形成/附接。DAF30具有当被加热时变得具有足够的粘性并且因此管芯22可以附接在其上的特性,这将在随后的段落中论述。载体晶圆28和DAF30可以具有典型晶圆的顶视图,例如,具有圆形的顶视图形状。在一些示例性实施例中,DAF30是由光热转换(LTHC)材料形成的。如图2A,通过拾取头32A来拾取管芯22,拾取头32A可以是能够通过真空拾取管芯22的真空头。根据本发明的一些实施例,不加热(并且也不冷却)真空头32A。因此,真空头32A的温度等于其中设置有晶圆24的周围环境(诸如图8中示出的接合器120的内部环境)的环境温度。例如,真空头32A的温度可以等于室温,其可以在约18℃和约25℃之间的范围内。此外,例如,真空头32A的温度可接近晶圆24的温度,其中真空头32A的温度与晶圆24的温度之间的差值可以小于约5℃。根据本发明的一些实施例,拾取的管芯22被转交给放置头32B,放置头32B也能够通过真空吸起管芯22。根据本发明的一些实施例,将放置头32B加热至高于其中设置有晶圆24的环境的环境温度的温度。例如,放置头32B的温度可以比晶圆24和环境温度的温度高出大于约25度的差值。根据本发明的一些实施例,放置头32B的温度在约50℃和约200℃之间的范围内。根据本发明的可选实施例,不加热(并且也不冷却)放置头32B。因此,放置头32B的温度等于其中设置有晶圆24的环境的环境温度,并且可接近晶圆24的温度,其中放置头32B的温度与晶圆24的温度之间的差值可以小于约5℃。如图2A所示,放置头32B用于将管芯22放置在DAF30上。根据一些实施例,施加低压以将管芯22按压在DAF30上。根据可选实施例,在不施加压力的情况下,将管芯22放置在DAF30上。通过对准工艺确定管芯22的位置,并且因此,将管芯22精确地放置于期望的位置。贯穿说明书,拾取头32A和放置头32B共同地称为拾取和放置头32。图2B示出了根据可选实施例的管芯22的拾取和放置,其中,相同的拾取和放置头32用于从切割带20拾取管芯22和将管芯22放置于DAF30上。因此,在将管芯22从切割带20转移至DAF30的过程中,不发生转交。在这些实施例中,不加热拾取和放置头32。例如,拾取和放置头32可以具有室温。根据本发明的一些实施例,管芯22放置为面向上。例如,示意性地示出了电连接件23,电连接件23的一侧为正侧,其面向上。电连接件23可以是金属柱、焊料区、金属焊盘或其他导电部件。相对侧(与DAF30接触的一侧)是管芯22的背侧。在一些实施例中,管芯22的背侧也是管芯22中的半导体衬底(未示出)的背侧,在管芯22的背侧上形成集成电路器件。因此,在一些实施例中,半导体衬底的背侧与DAF30物理接触。接下来,参考图3,重复如图1和图2A(或图1和图2B)所示的工艺步骤,并且将更多的管芯22转移至DAF30上。持续该工艺直到DAF30上方的预期被放置管芯的所有位置均已被放置。在管芯22的放置中,在施加或不施加将管芯22按压在DAF30上的压力的情况下,放置管芯22。此外,在拾取和放置管芯22的过程中和之间,在载体晶圆28、DAF30和管芯22上不施加额外的加热工艺。因此,在放置所有的管芯22之后,管芯22放置在DAF30上方但不粘附至DAF30。图4和图5示出了用于加热管芯22和将管芯22按压在DAF30上的工艺,从而使得管芯22通过黏附力粘附至DAF30。相应的步骤示出为图20中示出的工艺流程200中的步骤204。参照图4,热板34移动到管芯22的顶部。热板34可由包括铜、铝、不锈钢、镍等的金属或金属合金形成。热板34也可由诸如陶瓷的其他材料形成。热板34的底面是共平面的,并且可以是诸如相同金属或金属合金的相同材料的表面。示意性地示出了加热单元36。根据本发明的一些实施例,加热单元36包括线圈,当线圈传导电流时,将热板34加热至期望的温度。加热单元36可以嵌入在热板34中。可选地,加热单元36可以放置在热板34上方。根据一些实施例,增加热板34的温度至高于约50℃,并且热板34的温度可以在约50℃和约200℃之间的范围内。接下来,参考图5,使热板34接触管芯22。由此通过热板34加热管芯22。此外,施加压力(用箭头表示)以将管芯22按压在DAF30上。热量通过管芯22传导并且达到管芯22的底面,管芯22的底面与DAF30接触,并且因此DAF膜30的直接位于管芯22下面的部分被加热并且变得具有粘性。管芯22的底面可以加热到温度高于约50℃。该温度也可以在约50℃和约200℃之间的范围内。将热板34按压在管芯22上并且持续特定的时间段,例如,长于约0.5秒或者在约0.5秒和约2秒的范围内。温度和时间段与多种因素相关,并且包括但不限于,管芯22的厚度、管芯22的材料和结构、DAF30的材料等。选择最佳的温度和最佳的时间段以确保管芯22可靠地粘附至DAF30。贯穿说明书,将管芯22粘附至DAF30被称为将管芯22接合至DAF30,并且相应的加热和按压工艺被称为接合工艺。将管芯22接合至DAF30之后,抬起热板34并且移走热板34。相应的步骤被示出为图20中示出的工艺流程200中的步骤206。根据本发明的一些实施例,以上讨论的管芯22的接合包括两个阶段。在第一阶段,将管芯22放置在DAF30上,其中不实施用于将管芯22接合至DAF30的接合工艺,直到放置所有的管芯22。在第二阶段,使用热板以通过同时加热和按压管芯22而同时地将所有的管芯22接合至DAF30。因此,所有的管芯22共享单个接合工艺而不管载体晶圆28上的管芯22的量。接合工艺的产量因此非常高。作为比较,在传统的接合工艺中,将每个管芯拾取和放置在相应的DAF上,接着进行加热和按压工艺,直到将管芯接合至DAF。因此,接合时间与管芯的量成正比。例如,假设接合超过一千个管芯,接合每个管芯需要耗费一秒,则用于接合所有的管芯的总时间长于1000秒。此外,由于热板34具有共面的底面,在将管芯22接合至DAF30后,管芯22的顶面彼此高度共面,这导致在形成随后实施的扇出工艺中的工艺难度的降低。在随后的步骤中,如图6所示,使用模制材料41(其可以是诸如聚合物的模塑料)以将管芯22模制在其中。相应的步骤示出为图20中示出的工艺流程200中的步骤208。然后实施诸如化学机械抛光(CMP)的平坦化步骤以将模制材料41的顶面平坦化为与管芯22的顶面共平面。此外,在平坦化步骤后,暴露管芯22的电连接件23。图6进一步示出了介电层38、重分布线(RDL)40和电连接件42的形成。相应的步骤被示出为图20中示出的工艺流程200中的步骤208。根据本发明的一些实施例,介电层38由聚合物形成,其也可以是诸如聚苯并恶唑(PBO)、聚酰亚胺等的光敏材料,这些光敏材料可以很容易地使用光刻工艺图案化。根据可选实施例,介电层38由诸如氮化硅的氮化物、诸如氧化硅的氧化物、磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼掺杂的磷硅酸盐玻璃(BPSG)等形成。RDL40可以由铝、铜、铝铜、镍、金、钯等形成。电连接件42可以包括焊料区、覆盖有焊料层的金属柱等。RDL40电连接至电连接件23,电连接件23进一步电连接至管芯22中的集成电路器件。图6中示出的结构被称为扇出结构,其中,RDL40和电连接件42延伸超出相应的管芯22的覆盖区。或者说,RDL40和电连接件42延伸至超出相应的管芯22的边缘的区域,从而使得电连接件42可以具有比电连接件23更大的间距。因此包括管芯22的相应封装件的接合比管芯22的直接接合更容易,管芯22的电连接件具有更小的间距。贯穿说明书,将管芯22、模制材料41和上面的介电层38、RDL40和电连接件42共同地称为复合晶圆100。图7示出了将切割带44粘附至电连接件42。例如,通过将光(未示出)投射在DAF30上,从而使得光的热量分解DAF30,并且因此DAF30和载体晶圆28不再粘附至载体晶圆28,然后使图6中示出的DAF30和载体晶圆28从管芯22释放。相应的步骤被示出为图20中示出的工艺流程200中的步骤210。随后,在管芯锯切工艺中锯开复合晶圆100以形成多个扇出封装件102。相应的步骤被示出为图20中的工艺流程200中的步骤212。每个扇出封装件102包括一个管芯22和上面的RDL。根据本发明的一些实施例,可以使用如图8中所示的接合器120来实施在图2A、图2B和图3至图5中示出的接合工艺。参照图8,接合器120包括晶圆加载端口122,其配置为将晶圆24加载至接合器120内。例如,晶圆24可以存储在晶圆盒124中并且使用晶圆盒124运输,晶圆盒124可以存储多个锯切的管芯24。在晶圆盒124连接至接合器120之后,晶圆24通过加载端口122加载至接合器120内。接合器120进一步包括载体加载端口126,载体加载端口126配置为将载体晶圆28和DAF30加载至接合器120内。拾取和放置单元132配置为拾取管芯22(图2A和图2B)和将管芯22放置在载体晶圆28上。如在图2A和图2B中示出的拾取和放置头32/32A/32B是拾取和放置单元130的部分。在图8中,示出虚线框32以表示拾取和放置头32从晶圆24拾取管芯22,并且示出实线框32以表示将管芯22放置在载体晶圆28/DAF30上。在将晶圆24上的所有可使用的管芯22放置在载体晶圆28上之后,卸载下面的胶带20,并且加载另一晶圆24。对准单元134设置在接合器120中,和用于对准管芯22,从而使得管芯22可以准确地放置到它们的预定位置。图9示出了接合器120的部分的简化图,其中,示出了对准元件134和管芯22的传输。对准单元134配置为找到管芯22中的对准标记(未示出),和拾取和放置单元130然后根据对准的结果移动管芯22以将管芯22放置在载体晶圆38/DAF30上。回到图8,根据本发明的一些实施例,热板34设置在接合器120内侧,并且连接至传输臂单元136,传输臂单元136配置为朝向载体晶圆28和上面放置的管芯22移动热板34和远离载体晶圆28和上面放置的管芯22移动热板34。根据本发明的一些实施例,传输臂单元136包括旋转臂138,旋转臂138配置为在其示出的位置和载体晶圆28之间来回地旋转热板34。图10示出了接合器120的部分的简化视图,其中使用箭头示出了旋转臂138的旋转。当将管芯22放置到DAF30上时,热板34位于其在图10中示出的位置。当完成管芯22的放置后,旋转臂138旋转以移动管芯22上方的热板34,从而使得热板34可以与管芯22接触,并且因此管芯22接合至DAF30。在接合之后,旋转臂138旋转以将热板34移动回到图8中所示的位置。图11示出了接合工艺的截面图,其中,旋转臂138和热板34从使用虚线图案示出的位置移动至使用实线图案示出的位置,从而使得管芯22接合至DAF30/载体晶圆28。在可选实施例中,接合器120配置为实施图13至图19中示出的任务,例如,如图15和图18中所示,热板34为配置成拾取和加热载体晶圆28的真空头50。在随后的段落中将详细描述这些细节。在这些实施例中,管芯22将被传输至真空管芯保持架46(图13)或粘合带52(图17)。根据本发明的一些实施例,如图4所示,加热单元36嵌入在热板34中。在这些实施例中,通过加热单元36加热热板34,加热单元36可以在接合工艺期间和接合工艺之间来加热热板34。在可选实施例中,加热单元36(图8)位于热板34外侧,并且热板34放置于加热单元36上以被加热至期望的温度。在接合工艺中,热板34移动至管芯22以接合管芯22,在这期间,加热单元36保持不动,并且因此在接合工艺期间,加热单元36不加热热板34。在接合工艺之后,热板34向回移动以被加热单元36加热。回到图8,在接合之后,例如,通过加载端口126,将接合的管芯22和相应的下面的DAF30和载体晶圆28卸出接合器120。根据本发明的可选实施例,在将所有的管芯22放置在DAF30上之后,但是在通过加热和按压的接合之前,将管芯22和下面的DAF30和载体晶圆28卸出接合器120。通过位于接合器120外侧的外部热板34来实施包括加热和按压的管芯22至DAF30的接合。如图8所示,接合器120包括中央控制单元142,中央控制单元142连接至接合器120,并且中央控制单元142配置为控制和协调接合器120的所有单元的功能,接合器120包括晶圆加载端口122、载体加载端口126、传输臂单元136等。如图12所示,根据本发明的一些实施例,多头拾取和放置单元132可以用于同时地拾取多个管芯22。多头拾取和放置单元132包括多个拾取和放置头32,其可以是真空头。每个拾取和放置头32配置为拾取和放置管芯22的一个。箭头140表示多头拾取和放置单元132作为集成单元移动至对准单元134,和然后将管芯22放置在DAF30/载体晶圆28上。有利的是,由于可以控制通过多头拾取和放置单元132拾取的管芯22的相对位置,因此可以对单个拾取的管芯22而不是所有的拾取的管芯22实施对准。这可以显著地提高产量。可选地,对通过拾取和放置单元132拾取的所有的管芯22实施对准。图13至图16示出了根据可选实施例的在接合工艺的形成中的中间阶段的截面图。除非另有明确描述,否则在这些实施例中的组件的材料和形成方法可以与相同组件基本相同,相同的组件以图1至图8中示出的实施例中的相同的标号表示。因此,与在图13至图16(以及图17至图19)中示出的组件的工艺和材料相关的细节可以在图1至图12中示出的实施例的论述中找到。参考图13,将管芯22从锯切的晶圆24传输至真空管芯保持架46,真空管芯保持架46用作临时的管芯保持架。真空管芯保持架46可以由诸如铝、铜、不锈钢等的金属形成或者诸如陶瓷的其他材料形成。设置多个通孔48以穿透真空管芯保持架46的底板。每个管芯22在被放置在真空管芯保持架46上之后,可以与多个通孔48的一个或多个对准。参考图14,通孔48可以连接到泵144。在放置所有的管芯22之后,通过泵144对通孔48中的内部空间抽真空以产生吸力,并且因此管芯22通过吸力固定至真空管芯保持架46。在这些实施例中,管芯22的正面朝向真空管芯保持架46。接下来,也参考图14,真空头50用于拾取载体晶圆28和DAF30,DAF30面向管芯22。真空头50也是加热载体晶圆28和DAF30的热板,所以DAF30被加热到理想的温度,其可以高于约50℃,并且可以在约50℃和约200℃之间的范围内。管芯22可以或可以不被真空管芯保持件46加热。然后,如图15所示,DAF30与管芯22的背面接触。例如,也可以施加压力并且持续约0.5秒至约2秒之间的时间段,从而使得管芯22接合至DAF30。接下来,停止通孔48的抽真空,从而使得管芯22从真空管芯保持架46释放。如图16所示,然后真空头50可以拾取附接在其上的载体晶圆28、DAF30和管芯22。在随后的步骤中,可以实施在图6和图7中示出的工艺。图17到图19示出了根据又一些其他实施例的在接合管芯中的中间阶段的截面图。参考图17,将管芯22从锯切的晶圆24传输至粘附膜52(其可以是UV胶带),粘附膜52粘附至临时衬底54。临时衬底54也可以是例如由玻璃形成的载体晶圆。管芯22的正侧粘附至UV胶带52。可以通过拾取和放置头32来进行管芯22的传输,根据本发明的一些实施例不加热管芯22。接下来,参考图18,真空头50用于拾取载体晶圆28和DAF30,DAF30面向管芯22。真空头50也是加热载体晶圆28和DAF30的热板,所以DAF30被加热到理想的温度,其可以高于约50℃,并且可以在约50℃和约200℃之间的范围内。DAF30与管芯22的背面接触。例如,也可以施加压力并且持续约0.5秒至约2秒之间的时间段,从而使得管芯22接合至DAF30。接下来,例如,通过在粘附带52上投射UV光从而使得粘附带52失去粘附性,并且因此管芯22从粘附带52释放来从管芯22去除粘附带52和载体晶圆54。真空头50可以然后拾取附接至其上的载体晶圆28、DAF30和管芯22。在随后的步骤中,可以实施在图6和图7中示出的工艺。本发明的实施例具有一些有利的特征。通过同时地将管芯接合至DAF,与拾取和放置管芯并且将每个管芯单独地接合至DAF相比,显著地减少了接合时间。接合工艺的产量由此显著提高。根据本发明的一些实施例,一种方法包括使多个管芯和管芯附接膜的相应第一侧与载体晶圆的主要表面接触;以及同时地加热管芯附接膜的接触多个管芯的部分,以同时将多个管芯接合至管芯附接膜。根据本发明的可选实施例,一种方法包括:将多个管芯放置为具有多个管芯的彼此共面的第一表面;和使用热板加热多个管芯或管芯附接膜,其中,热板按压在多个管芯上,从而使得多个管芯的第二侧接合至管芯附接膜。在将多个管芯的第二侧接合至管芯附接膜之后,从多个管芯和管芯附接膜移走热板。根据本发明的又一些可选实施例,一种用于将多个管芯接合至管芯附接膜的装置包括:拾取和放置单元,用于放置多个管芯;以及加热单元,配置为通过同时地加热管芯附接膜的与多个管芯接触的部分而同时地将多个管芯附接至管芯附接膜。根据本发明的一个实施例,提供了一种方法,包括:使多个管芯和管芯附接膜的相应第一侧与载体晶圆的主要表面接触;以及同时地加热所述管芯附接膜的接触所述多个管芯的部分,以同时地将所述多个管芯接合至所述管芯附接膜。在上述方法中,所述同时地加热包括同时地加热所述多个管芯的第二侧以使热量传导至所述管芯附接膜的所述部分。在上述方法中,所述同时地加热包括通过加热所述载体晶圆来加热所述管芯附接膜的全部。在上述方法中,还包括:在所述接触之前,将所述多个管芯放置在所述管芯附接膜上,其中,所述多个管芯的背面与所述管芯附接膜接触。在上述方法中,还包括:在所述接触之前,将所述多个管芯放置在真空管芯保持架上;通过抽真空将所述多个管芯固定至所述真空管芯保持架,其中,所述管芯附接膜与固定至所述真空管芯保持架的所述多个管芯接触;以及从所述真空管芯保持架释放所述多个管芯和所述管芯附接膜。在上述方法中,还包括:在所述接触之前,将所述多个管芯放置在粘附带上,其中,所述管芯附接膜与固定至所述粘附带的所述多个管芯接触;以及从所述粘附带释放所述多个管芯和所述管芯附接膜。在上述方法中,还包括:将在所述多个管芯接合至所述载体晶圆之后,用模制材料模制所述多个管芯;形成重分布线以电连接至所述多个管芯;以及从所述管芯附接膜释放所述多个管芯、所述模制材料和所述重分布线。根据本发明的另一实施例,还提供了一种方法,包括:将多个管芯放置为具有所述多个管芯的彼此共面的第一表面;使用热板加热所述多个管芯或管芯附接膜,其中,所述热板按压在所述多个管芯上,从而使得所述多个管芯的第二侧接合至所述管芯附接膜;以及在将所述多个管芯的第二侧接合至所述管芯附接膜之后,从所述多个管芯和所述管芯附接膜移走所述热板。在上述方法中,在所述加热中,所述热板与所述多个管芯物理接触。在上述方法中,在所述加热中,所述热板与载体晶圆物理接触,其中,所述管芯附接膜位于所述载体晶圆和所述多个管芯之间并且与所述载体晶圆和所述多个管芯接触。在上述方法中,还包括:旋转所述热板以加热所述多个管芯;以及在将所述多个管芯接合至所述管芯附接膜之后,将所述热板旋转为远离所述多个管芯。在上述方法中,放置所述多个管芯包括:将所述多个管芯直接地放置在所述管芯附接膜上。在上述方法中,放置所述多个管芯包括:将所述多个管芯放置在真空管芯保持架上;以及产生真空以将所述多个管芯固定至所述真空管芯保持架上。在上述方法中,放置所述多个管芯包括:将所述多个管芯放置在粘附带上。根据本发明的又一实施例,还提供了一种用于将多个管芯接合至管芯附接膜的装置,所述装置包括:拾取和放置单元,用于放置所述多个管芯;以及加热单元,配置为通过同时地加热所述管芯附接膜的与所述多个管芯接触的部分而同时地将所述多个管芯附接至所述管芯附接膜。在上述装置中,所述加热单元包括热板,所述热板包括配置为同时地接触所述多个管芯的平坦表面。在上述装置中,所述加热单元包括热板,所述热板配置为接触载体晶圆的背面,并且其中,所述多个管芯安装至所述载体晶圆的正侧。在上述装置中,还包括:对准单元,配置为对准所述多个管芯。在上述装置中,还包括:多头拾取和放置单元,配置为同时地拾取和放置所述多个管芯的不止一个。在上述装置中,还包括:旋转臂,连接至所述加热单元,其中,所述旋转臂配置为朝向所述多个管芯旋转所述加热单元和远离所述多个管芯旋转所述加热单元。上面概述了若干实施例的部件,使得本领域技术人员可以更好地理解本发明的方面。本领域技术人员应该理解,他们可以容易地使用本发明作为基础来设计或修改用于实现与在此所介绍实施例相同的目的和/或实现相同优势的其他工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,在此他们可以做出多种变化、替换以及改变。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1