介质谐振天线阵列的制作方法

文档序号:11290133阅读:276来源:国知局
介质谐振天线阵列的制造方法与工艺

相关申请

本专利申请要求于2015年1月27日提交的、发明名称为“介质谐振天线阵列”的14/606,715号美国专利申请的优先权,其全部内容通过引用结合在本申请中。

本公开总体上涉及透镜元件的设计,并且在特定实施例中涉及用于介质谐振天线(dra)阵列的介质透镜元件。



背景技术:

可使用利用约60千兆赫频率的毫米波频段来实现无线设备之间的下一代无线短程高速微波通信链路。毫米波天线阵列需要满足链路预算要求。通过使用用于发送和接收电磁信号的高增益天线阵列可以补偿路径损耗。这种天线元件阵列首先应实现可接受的增益。已提出了各种方法来增加天线元件增益,包括使用附着在每个天线元件上的介质谐振元件。在ieee天线与传播杂志(2010年10月;版次5;卷52;第91-116页)中题为“介质谐振天线:历史回顾与现有技术现状”(佩托萨·a.;伊蒂皮布恩·a.)一文中公开了根据现有技术的一些介质谐振天线(dra)阵列的示例。



技术实现要素:

一方面,本公开提供一种用于具有多个天线元件的介质谐振天线(dra)阵列的介质透镜。所述介质透镜包括大体上为平面薄板形式的单片介质材料。所述薄板基本上与所述dra阵列共同延伸,以便覆盖所有的天线元件。所述单片介质材料包括由穿过所述薄板的多个孔限定的多个介质部。每个介质部位于所述天线元件中的一个之上。邻近的介质部沿其连接边缘部相互连接。单孔通过一组相互邻近的介质部的连接边缘部之间的薄板进行限定。

另一方面,本公开提供一种介质谐振天线(dra)阵列,包括:阵列馈电网络;寄生贴片阵列,具有多个天线元件;和介质透镜,由大体上为平面薄板形式的单片介质材料制成。所述薄板基本上与所述dra阵列共同延伸,以便覆盖所有多个天线元件。所述单片介质材料包括由穿过所述薄板的多个孔限定的多个介质部。每个介质部位于所述天线元件中的一个之上。邻近的介质部沿其连接边缘部相互连接。单孔通过一组相互邻近的介质部的连接边缘部之间的薄板进行限定。

所述多个天线元件和所述多个介质部可以设置成矩形阵列,每个矩形阵列形成由大体上垂直的行和列组成的网格。所述多个天线元件可以设置成多个2×2子阵列,所述多个介质元件可以设置成与所述多个2×2子阵列对应的多个子组。

所述孔可以包括多个第一孔、比所述第一孔大的多个第二孔以及比所述第二孔大的多个第三孔。每个第一孔可以位于单个子组的四个介质元件之间,每个第二孔可以位于两个不同子组的四个介质元件之间,每个第三孔可以位于四个不同子组的四个介质元件之间。

另一方面,本公开提供一种用于制造介质谐振天线(dra)阵列的介质透镜的方法。所述方法包括:提供大体上为平面薄板形式的单片介质材料,所述薄板基本上与所述dra阵列共同延伸,以便覆盖所有多个天线元件;基于所述多个天线元件的位置确定穿过所述薄板的多个孔的位置;以及形成穿过所述薄板的所述多个孔以限定多个介质部,每个介质部设置成位于所述多个天线元件中的一个之上。

在结合附图看过具体实施例的以下描述之后,本发明的其它方面和特征对于本领域普通技术人员来说变得显而易见。

附图说明

现结合所附附图,仅通过示例的方式对本发明实施例进行描述。

图1为根据一实施例的介质谐振天线(dra)阵列示例的分解透视图。

图2为图1所示dra阵列示例的介质薄板的透视图。

图3为各介质元件的现有技术阵列示例的透视图。

图4为图1所示dra阵列示例的介质薄板的俯视图。

图5为图1所示dra阵列示例的2×2子阵列的介质薄板示例的透视图。

图6为示出了根据一实施例的形成dra阵列的介质薄板的示例性方法的步骤的流程图。

图7为根据另一实施例的dra阵列的介质薄板示例的俯视图。

图8为根据另一实施例的dra阵列的介质薄板示例的俯视图。

图9为根据另一实施例的dra阵列的介质薄板示例的俯视图。

图10为根据另一实施例的dra阵列的介质薄板示例的俯视图。

具体实施方式

大体上,本公开涉及一种用在介质谐振阵列中的介质透镜。在一些公开的实施例中,所述透镜为用于介质谐振天线(dra)阵列的介质材料组成的单片介质薄板形式。薄板具有由穿过所述薄板的多个孔限定的多个介质元件。

图1示出了根据一实施例的dra阵列100的示例。所述dra阵列包括阵列馈电网络110、寄生贴片阵列120和单片介质薄板200形式的介质透镜,其在以下进一步详细描述。在所示的示例中,阵列馈电网络110包括用于向寄生贴片阵列120提供信号并从寄生贴片阵列120接收信号的三个层112,114,116。寄生贴片阵列120包括第一和第二层122,124,每个层包括多个天线元件(未列举出)。在所示示例中,寄生贴片阵列120的天线元件被布置成由2×2矩形网格中四个单独天线元件组成的多个子阵列126,每个子阵列126内的邻近的天线元件之间的间隔小于不同子阵列126的邻近的天线元件之间的间隔。在一些实施例中,dra阵列被配置以约57-66千兆赫的频率带宽运行。

如图2和图4所示,图1的薄板200包括单片介质材料202,其大体上是平面的,并且高度h(也称为厚度)基本均匀。在一些实施例中,所述单片介质材料具有基于dra阵列100的信号波长λ所选定的高度h。在一些实施例中,所述单片介质材料的高度h的范围在0.5λ-0.6λ。在一些实施例中,所述单片介质材料的高度h的范围在100-120密耳。在一些实施例中,介质材料的介质常数的范围为2-10,这取决于阵列馈电网络110的介电常数。

单片介质材料202包括由穿过薄板200的多个孔210,212,214所限定的多个介质部204。每个介质部204设置成位于寄生贴片阵列120的天线元件中的一个之上。通过对比,图3示出了现有技术中各单个介质元件12组成的阵列10。每个介质元件12必须单独放置于并安装在相应天线元件上。图2的薄板200有利地消除了介质元件单个对齐的需要,因为只需要单片202与寄生贴片阵列120对齐。

介质部204的每一个通过连接边缘部与邻近的介质部204连接。在所示示例中,介质部204大体上为菱形(例如,正方形),其中连接边缘部包括每个正方形的角部。单孔210/212/214被限定在一组相互邻近的介质部204的连接边缘部之间。术语“相互邻近的介质部”在本文中用于指彼此水平、垂直或对角邻近的一组介质部204(参见图2和图4中所示的方位),并且其环绕单孔210/212/214。在一些实施例中,例如,在底层天线元件都均匀地间隔开的实施例中,所有孔的尺寸可以相同。在其它实施例中,例如,在图2和图4所示实施例中,孔210/212/214的尺寸可以不同,如下所讨论的。

在所示示例中,介质部204设置成子组206,其中,每个子组206配置成位于寄生贴片阵列120的对应子阵列126之上。由于底层天线元件之间的间隔的差异,子组206内邻近介质部204之间的连接边缘部比邻近的子组206的邻近介质部204之间的连接边缘部更大。因此,在所示示例中,子组206内的每个孔210比水平或垂直(参见图2和图4中所示的方位)邻近的子组206之间的每个孔212小。同样地,水平或垂直(参见图2和图4中所示的方位)邻近的子组206之间的每个孔212比对角(参见图2和图4中所示的方位)邻近的子组206之间的每个孔214小。

参见图4,在所示实施例中,介质部204设置成矩形阵列,该矩形阵列包括大体上垂直的行208和列(未列举出)组成的网格。孔210,212,214也设置成互补的网格,具有交替类型的行216/218和列(未列举出)。穿过子组206的行216包括交替的孔210和212,而穿过邻近的子组216之间的行218包括交替的孔212和214。

图5示出了孤立的示例性子组216。子组206的每个介质部204大体上为正方形,其中,该正方形的每个边具有长度l1。每个介质部204的角部与水平和垂直邻近的介质部204相重叠,从而形成连接边缘部。从一个介质部204的外侧到角部与邻近介质部204相重叠的位置的距离为w1,其小于l1。子组中心的孔210的边的长度为l2和w2。在一些实施例中,孔210为正方形,并且l2=w2。

利用类似于图2和图4所示示例的包含由16×16介质部组成的阵列的单片介质薄板所得到的实验结果表明:在61千兆赫,14.7%带宽的情况下,峰值增益为3db。参见图5所示尺寸,在实验性实施例中,l1=3.6毫米;w1=2.89毫米,并且l2=w2=1.58毫米。在实验性实施例中,薄板的高度h为120密耳,并且该材料的介电常数为2.94。一旦形成孔210/212/214,则有效介电常数降低。

上述所讨论的示例大体上考虑正方形的介质部204和孔210/212/214。然而,应理解,其它实施例中也可以使用介质部和孔的不同尺寸及形状。参见图7-图10,下文中对不同形状的介质部和孔的一些实例进行讨论。

孔210/212/214的尺寸可以基于介质部的尺寸进行选择。在一些实施例中,每个孔的最小尺寸为介质部最小尺寸的至少一半。在一些实施例中,穿过介质材料薄板的每个孔具有范围为0.5-2毫米的最小尺寸。本文中所用的术语“最小尺寸”是指从介质部或孔的一侧,穿过介质部或孔的中心,到介质部或孔的相对侧的最短距离。例如,对于正方形孔,最小尺寸是该正方形的边中一个的长度。对于矩形孔,最小尺寸是该矩形的较短边中一个的长度。对于圆形孔,最小尺寸是该圆的直径。如上所讨论的以及图中所示出的,孔210/212/214的尺寸可以不同。孔210/212/214的形状也可以不同。

图6为示出了根据一实施例的用于制造dra阵列的介质透镜的示例性方法300的步骤的流程图。在310中,提供了大体上为平面薄板形式的单片介质材料。该薄板可以与dra阵列基本上共同延伸,使得该薄板足够大以便覆盖所有的多个天线元件。

在320中,确定穿过介质材料薄板的多个孔的位置。可以基于dra阵列的多个天线元件的位置来确定这些位置。对于每个确定出的孔位置,也可以确定孔尺寸和孔形状。如上所述,在一些实施例中,这些孔的尺寸可以全部相同,在其它实施例中,孔的尺寸可以不同,这取决于天线元件是否规则间隔或设置成子阵列。

在330中,形成穿过介质材料薄板的孔。在一些实施例中,形成该孔可以包括用高功率激光钻透介质材料薄板。取决于所使用的激光类型和薄板厚度,高功率激光可以利用多种途径来穿过介质材料薄板钻单孔。在一些实施例中,形成该孔可以包括用水射流切割器切割穿透介质材料薄板。在提供薄板时或者在形成孔时,还可将薄板的边缘成形为符合孔和介质部的图案。在一些实施例中,形成薄板和孔可以包括基于确定出的孔位置、尺寸和形状限定掩模,以及采用3d印刷技术形成薄板。

图7示出了根据另一实施例的介质透镜的示例性2×2子组206a。在图7所示实施例中,每个介质部204a大体上为矩形形状,子组206a内的孔210a大体上为正方形形状。图8示出了根据另一实施例的介质透镜的示例性2×2子组206b。在图8所示实施例中,每个介质部204b大体上为圆角矩形形状(即,带有圆角的矩形),子组206b内的孔210b大体上为圆角正方形形状。图9示出了根据另一实施例的介质透镜的示例性2×2子组206c。在图9所示实施例中,每个介质部204c大体上为圆形形状,子组206c内的孔210c大体上为带有内向弧形侧边的伪正方形形状。其它形状也可用于介质部。如上所讨论的以及图中所示的,孔2101a-c/212a-c/214a-c的尺寸可以不同。孔210a-c/212a-c/214a-c的形状也可以不同。

图7-图9所示子组206a-c中的任一个可用于形成较大的介质透镜。例如,图10示出了以单片介质薄板200c形式存在的介质透镜,包括按照图9中所示类型的子组而设置的圆形介质部204c所构成的8×8阵列。与图2和图4的实施例相类似,子组206c内的每个孔210c小于水平或垂直(参见图10中所示的方位)邻近的子组206c之间的每个孔212c。类似地,水平或垂直(参见图10中所示的方位)邻近的子组206c之间的每个孔212c小于对角(参见图10中所示的方位)邻近的子组206c之间的每个孔214c。

在上述所讨论的示例中,将介质透镜提供为尺寸设置成覆盖dra阵列所有天线元件的单片薄板形式。在其它实施例中,可使用多于一个介质薄板覆盖dra阵列,例如,通过将介质透镜提供为两个薄板的形式,其中,一个薄板的尺寸设置成覆盖第一多个天线元件,另一个薄板的尺寸设置成覆盖第二多个天线元件。本领域技术人员应理解,也可以在一些实施例中提供两个以上的薄板。

在前面的描述中,出于解释的目的,阐述了许多细节以便全面理解各实施例。然而,对于本领域技术人员而言,不需要这些具体细节是显而易见的。在其它实例中,为了不妨碍理解,示意性地示出了公知电结构和电路。例如,并未提供阵列馈电网络110和寄生贴片阵列120的特定结构以及操作模式的具体细节。

上述实施例仅用于示例。本领域技术人员可以对具体实施例做出改变、修改和变化。权利要求范围不应受本文所阐述的具体实施例的限制,而应该以作为整体与说明书相一致的方式进行解释。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1