外延基环的制作方法

文档序号:13218141阅读:196来源:国知局
本申请是申请日为2014年2月19日、申请号为201480008331.8、发明名称为“外延基环”的发明专利申请的分案申请。技术领域本发明的实施方式大体涉及在基板处理腔室中所使用的基环组件。

背景技术:
半导体基板被处理以用于广泛的应用,包括集成装置和微型装置的制造。一种处理基板的方法包括在基板的上表面上沉积材料,比如介电材料或导电金属。举例而言,外延即为一种沉积处理,外延于基板表面上生长超纯薄层,通常是硅或锗。可通过使处理气体平行于置放在支撑件上的基板的表面流动、并热分解所述处理气体而从气体沉积材料于基板表面上来在横流式腔室中沉积材料。对于使用精确气体流动与准确温度控制的组合的外延生长中的膜质量而言,腔室设计是极重要的。流动控制、腔室容积和腔室加热都仰赖基环的设计,基环一般设置在顶部拱形结构与底部拱形结构(界定基板的处理容积)之间,并且支配处理套件和注入/排放盖体的布局,所述布局续而影响外延沉积的均匀性。传统的外延腔室非常高,导致在顶部拱形结构、底部拱形结构与基板之间存在大距离。这会导致高度不均匀的流动、紊流、涡流以及整体上大的腔室容积。腔室容积限制了系统以瞬态沉积-蚀刻切换模式运行的能力,并且需要长久的腔室稳定化时间,这会因基板之上横截面积的突然变化而限制处理均匀性,基板之上横截面积的突然变化不利地影响流动均匀性、诱发紊流、并且影响基板之上沉积气体浓度的整体均匀性。由于流动特性直接影响基板上的膜性能,因此需要一种于整个处理室中提供平衡与均匀的流场的沉积设备。

技术实现要素:
本文描述的实施方式大体涉及基板处理腔室中使用的基环组件。在一实施方式中,基环组件包括:环形主体,所述环形主体的尺寸被设计以容置在所述基板处理腔室的内周边内,所述环形主体包括装载端口以供所述基板通过、气体入口及气体出口,其中所述气体入口与所述气体出口被设置在所述环形主体的相对端处;上环,所述上环被配置以设置在所述环形主体的顶表面上;以及下环,所述下环被配置以设置在所述环形主体的底表面上,其中所述上环、所述下环与所述环形主体一旦组装即大体上是同心或同轴的。在另一实施方式中,揭露了一种用于基板处理腔室的处理套件。所述处理套件包括:环形主体,所述环形主体的尺寸被设计以容置在所述基板处理腔室的内周边内,所述环形主体包括装载端口以供所述基板通过、气体入口及气体出口,其中所述气体入口与所述气体出口被设置在所述环形主体的相对端处;上环,所述上环被配置以设置在所述环形主体的顶表面上;以及下环,所述下环被配置以设置在所述环形主体的底表面上,其中所述上环、所述下环与所述环形主体一旦组装即大体上是同心或同轴的。附图说明为了能详细理解本发明的上述特征,可通过参照实施方式而获得以上简要概述的本发明的更特定描述,其中一些实施方式被示于附图中。然而,应注意的是,附图仅示出本发明的典型实施方式,因而不应被视为对本发明范围的限制,因为本发明可允许有其他等同有效的实施方式。图1A是根据本发明一实施方式的背面加热处理腔室的示意截面图。图1B示出沿图1A中的线1B-1B截取的处理腔室的示意侧视图。图1C示出基板支撑件的透视图,所述基板支撑件具有三个支撑臂与三个虚拟(dummy)臂设计。图2A示出根据本发明一实施方式的上拱形结构的截面图。图2B示出图2A中所示的上拱形结构的顶视图。图2C为示出接合接头的圆角半径的放大图。图3A示出根据本发明一实施方式的气体入口机构的部分透视截面图,所述气体入口机构可用于图1A的处理腔室中。图3B示出第一入口通道的次级入口,所述次级入口被配置成相对于所述第一入口通道的垂直通路成角度(α)。图3C示出第一入口通道和第二入口通道与处理气体供给源流体连通。图4A示出根据本发明一实施方式的夹环的透视图,所述夹环可用于取代图1A的夹环。图4B示出在下表面中的开口,所述开口与穿过所述夹环而形成的分配气室连通。图5A与图5B示意示出根据一实施方式的一或多个灯组件,所述灯组件包括一或多个弹性间隙器。图6示出了根据本发明一实施方式的衬垫组件的透视图,其可用于取代图1的衬垫组件。图7A与图7B示意示出根据本发明一实施方式的下拱形结构,其可用于取代图1A的下拱形结构。图7C为示出接合接头的圆角半径的放大图。图8A示出示例性基环的透视截面图,所述基环可用于取代图1A与图1B的基环。图8B为从另一角度所视的图8A的基环的透视图,其绘示了根据本发明一实施方式的上环与下环。图8C为图8B的基环的放大部分截面图,其绘示了分别形成于基环的顶表面与底表面中的上沟槽与下沟槽,上沟槽与下沟槽分别用于接收所述上环与所述下环。为了帮助理解,已尽可能使用相同的标记数字来表示各图中共同的相同元件。应知在一实施方式中的元件与特征可有利地并于其他实施方式中,而不需进一步详述。具体实施方式基于解释的目的,在下面的描述中阐述了许多具体细节以提供对本发明的充分理解。在一些例子中,用方块图表的形式来示出习知结构与装置而非详细绘出,以避免混淆本发明。这些实施方式被充分详细描述,以使本领域技术之人员能实施本发明,并应理解也可使用其他的实施方式,且在不背离本发明的范围的情况下可进行逻辑上、机构上、电气上及其他的变化。图1A示出根据本发明一实施方式的背面加热处理腔室100的示意截面图。图1B示出沿着图1A的线1B-1B截取的处理室100的示意侧视图。注意衬垫组件163和圆形屏蔽件167已被省略以求清晰。处理腔室100可用于处理一或多个基板,包括在基板108的上表面上沉积材料。处理室100可包括辐射加热灯102的阵列,以用于在其他部件中加热设置在处理室100内的基板支撑件106的背面104。在一些实施方式中,辐射加热灯的阵列可设置在上拱形结构128之上。基板支撑件106可如图所示是类似盘状的基板支撑件106,或可为不具有中央开口的类似环状的基板支撑件107,如图1B所示,基板支撑件107从基板的边缘支撑基板,以促进基板暴露至灯102的热辐射。示例性基板支撑件在一些实施方式中,基板支撑件106可为多臂式设计,如图1C所示。在图1C所示的实施方式中,基板支撑件190具有三个支撑臂192a、192c与192e以及三个虚拟臂192b、192d与192f,支撑臂和虚拟臂的每一个臂都向外延伸并且围绕延伸通过中心轴194的轴“G”而彼此呈角度地间隔开。可设想到更多或更少的支撑臂或虚拟臂。虚拟臂192b、192d与192f的每一个臂的角部196沿着支撑臂的纵向方向可被倒角(chamfered),以获得较佳的光学效果。支撑臂和虚拟臂192a-192f中的每一个臂可相对于轴“G”成约5°至约15°的角度“A”。在一实例中,角度“A”为约10°。支撑臂192a、192c与192e的端部可向上弯以限制基板,从而避免基板横向移动。虚拟臂192b、192d和192f通常不接触或以其他方式支撑基板。替代地,虚拟臂被设计以提供来自灯102的热的更均匀分布或较佳的传热平衡,由此于处理期间促进基板的精确温度控制。在处理期间,基板支撑件190吸收来自用于加热基板支撑件和/或基板的灯的热能。所吸收的热从基板支撑件190辐射出。由基板支撑件190(特别是支撑臂192a、192c与192e)所辐射的辐射热由基板支撑件190和/或基板吸收。因为支撑臂192a、192c与192e的位置相对靠近基板支撑件190或基板的位置,所以热会容易地辐射至基板支撑件190,而在支撑臂192a、192c和192e的邻近处产生温度升高的区域。然而,虚拟臂192b、192d和192f的使用促进从支撑臂192a、192c与192e至基板支撑件190和/或基板的更为均匀的热辐射,且因此减少热点(hotspot)的产生。举例而言,虚拟臂192b、192d和192f的使用产生基板支撑件的均匀辐射,而非三个与支撑臂192a、192c与192e邻近的局部热点。返参图1A,基板支撑件106位于处理室100内、在上拱形结构128与下拱形结构114之间。上拱形结构128、下拱形结构114和设置在上拱形结构128与下拱形结构114之间的基环136大体界定处理腔室100的内部区域。基板108(非依比例绘制)能通过装载端口103而被带入处理腔室100中并放置在基板支撑件106上,其中装载端口103在图1A中被基板支撑件106挡住,但可见于图1B。基板支撑件106被图示在升高的处理位置,但基板支撑件106可通过致动器(未示)而垂直移动至在处理位置之下的装载位置,以使升降销105接触下拱形结构114、穿过中心轴132与基板支撑件106中的孔、且从基板支撑件106升举基板108。机器手臂(未示)可接着进入处理腔室100以接合于基板108且通过装载端口103从处理腔室100移除基板108。基板支撑件106接着可被致动上升至处理位置以将基板108放置在基板支撑件106的正面110上,其中基板108的装置面116面向上。当基板支撑件106位于处理位置时,基板支撑件106将处理腔室100的内部容积分为在基板之上的处理气体区156以及在基板支撑件106之下的净化气体区158。在处理期间,基板支撑件106通过中心轴132而旋转,以使处理腔室100内的热效应与处理气体流动的空间偏差达到最小,并因而促进基板108的均匀处理。基板支撑件106由中心轴132支撑,在基板108的装载与卸载期间(且在一些实例中,在基板108的处理期间),中心轴132使基板108在上下方向134中移动。基板支撑件106可由碳化硅或涂有碳化硅的石墨形成,以吸收来自灯102的辐射能并将辐射能传导至基板108。一般而言,上拱形结构128的中央窗部和下拱形结构114的底部由光学透明材料形成,比如石英。正如下文中将针对图2A更详细论述的,为了处理腔室中均匀的流动均匀度,上拱形结构128的厚度和弯曲程度可根据本发明而配置以提供更平坦的几何形状。在下拱形结构114的附近与下方,可于中心轴132周围以指定、最佳所需方式来设置一或多个灯(比如灯102的阵列),以于处理气体通过时独立控制在基板108的各区域处的温度,由此促进材料沉积于基板108的上表面上。虽未于本文中详细讨论,然所沉积的材料可包括砷化镓、氮化镓或氮化铝镓。灯102可被配置以包括灯泡141,且可被配置以加热基板108达介于约200摄氏度至约1600摄氏度的范围内的温度。每一灯102耦接至电力分配板(未示),电力通过电力分配板而供给至每一灯102。灯102被置于灯头145内,灯头145于处理期间或处理之后可通过例如冷却流体而加以冷却,其中所述冷却流体被引入位于灯102之间的通道149。灯头145传导地及辐射地冷却下拱形结构114,这部分是由于灯头145紧密接近下拱形结构114。灯头145也可冷却灯壁和灯的周围的反射器(未示)的壁。或者,可通过工业中熟知的对流方式来冷却下拱形结构114。根据应用,灯头145可与下拱形结构114接触或不接触。于下文中关于图5A和图5B来论述灯头145的进一步描述。圆形屏蔽件167可选择性地设置在基板支撑件106周围,且由衬垫组件163围绕。屏蔽件167防止或最小化从灯102到基板108的装置面116的热/光噪声的泄漏,同时提供处理气体的预热区域。屏蔽件167可由化学气相沉积(CVD)的碳化硅(SiC)、涂有SiC的烧结石墨、生长的SiC、不透明石英、涂覆的石英或者可抵抗由处理气体与净化气体引起的化学损坏的任何类似的合适材料制成。衬垫组件163的尺寸被设计以嵌套于基环136的内部圆周内或被基环136的内部圆周围绕。衬垫组件163屏蔽处理容积(亦即处理气体区156与净化气体区域158)免于受到处理腔室100的金属壁的影响。金属壁会与前驱物反应,并导致处理容积中的污染。虽然衬垫组件163被绘示为单一主体,但衬垫组件163可包含一或多个衬垫,如下文中将参照图3A至图3C与图6所论述的。由于从基板支撑件106来背面加热基板108,所以可使用光学高温计118进行基板支撑件上的温度测量/控制。光学高温计118的此温度测量也可于具有未知的发射率的基板装置面116上进行,因为以此方式来加热基板正面110与发射率无关。因此,光学高温计118仅可感测来自热基板108的辐射(该辐射传导自基板支撑件106)而具有极少来自灯102而直接到达光学高温计118的背景辐射。反射器122可选择性地设置于上拱形结构128之外,以将辐射离开基板108的红外光反射回到基板108上。可利用夹环130而将反射器122固定至上拱形结构128。以下参照图4A与图4B进一步论述夹环130的详细描述。反射器122可由金属制成,比如铝或不锈钢。通过对反射器区域涂布高反射性涂层(比如金),能提高反射效率。反射器122可具有连接至冷却源(未示)的一或多个机械加工的通道126。通道126连接至形成于反射器122的一侧上的通路(未示)。所述通路被配置以运送流体(比如水)流,且所述通路可以任何所需图案沿着反射器122的所述侧水平地延伸,其中所述任何所需图案覆盖反射器122的部分或整个表面,以冷却反射器122。由处理气体供给源172供给的处理气体通过形成于基环136的侧壁中的处理气体入口174而注入至处理气体区156。处理气体入口174被配置成以大致径向向内的方向引导处理气体。在膜成形工艺中,基板支撑件106可位于处理位置中,所述处理位置与处理气体入口174相邻且位于大约相同高度,从而使处理气体沿着流动路径173而以层流形式向上流动且在基板108的整个上表面各处流动。处理气体通过位于处理腔室100的与处理气体入口174相对的侧上的气体出口178而离开处理气体区156(沿着流动路径175)。通过与气体出口178耦接的真空泵180可促进处理气体经由气体出口178的移除。由于处理气体入口174和气体出口178是彼此对准的且大致设置在相同高度处,相信这种平行配置在与较平坦的上拱形结构128(将于下文详细论述)结合时,将于基板108上产生大致平坦、均匀的气体流动。通过基板支撑件106来旋转基板108可提供进一步的径向均匀度。具有有角度的注射的示例性气体入口在一些实施方式中,处理气体供给源172可被配置以供应多种处理气体,例如第III族前驱物气体与第V族前驱物气体。多种处理气体可通过同一处理气体入口174、或通过分开的气体入口而引入至处理腔室100中。在需要分开的气体入口的情况中,可采用替代方式来增进处理腔室中处理气体的混合。图3A示出根据本发明一实施方式的气体入口机构300的部分透视截面图,气体入口机构300可使用于图1A与图1B的处理腔室中,以向处理容积(例如处理气体区156与净化气体区158)提供一或多种流体,比如处理气体或气体的等离子体。气体入口机构300可用作为注射器衬垫,比如图6的衬垫组件600的注射器衬垫614,且可设置于与处理气体供给源372(比如图1A的处理供给源172)流体连通的注射嵌入衬垫组件330上或由注射嵌入衬垫组件330支撑。如可在图3C中更容易看到的,注射嵌入衬垫组件330可包括第一组气体通路331a与第二组气体通路331b,第一组气体通路331a与第二组气体通路331b被配置成以受控的方式来输送不同的处理气体。通常,气体入口机构300设置在处理气体将被引入至处理腔室的位置处。气体入口机构300包括主体302,主体302具有第一入口通道304与第二入口通道306。第一入口通道304和第二入口通道306与一或多个处理气体供给源372流体连通。主体302大体上围绕处理腔室100的内部圆周的一部分。主体302包括圆柱形内径,所述圆柱形内径的尺寸被设计成能装配于上衬垫与排气衬垫(例如图6的上衬垫608与排气衬垫612)。因此,主体302可移除地结合于衬垫组件的排气衬垫与上衬垫。以下将关于图6论述衬垫组件的进一步细节。第一入口通道304具有与第一气体通路332的纵向轴实质正交的纵向轴,其中第一气体通路332形成于注射嵌入衬垫组件330内。第一处理气体可从处理气体供给源372流经第一组气体通路331a而至第一入口通道304中,第一入口通道304与第一入口305流体连通。第一入口305被配置以提供第一处理气体至处理腔室中,例如图1A所示的处理气体区156。气体入口机构300可具有一或多个第一入口305,例如约3至20个第一入口305,每个第一入口305连接至分别的第一入口通道和气体通路并进而通向处理气体供给源372。可预期更多或更少的第一入口305。第一处理气体可为特定的处理气体或数种处理气体的混合物。或者,一或多个第一入口305可根据应用而提供不同于至少一个其他第一入口的一或多种处理气体。在一个实施方式中,每一第一入口305被配置成相对于水平平面“P”成角度“θ”,所述水平平面“P”大致平行于基板108的纵向方向,使得第一处理气体在离开第一入口305之后以一角度沿着第一方向307流动,如图所示。在一实例中,第一入口305的纵向方向与水平平面“P”之间的角度“θ”小于约45°,比如约5°至约30°,例如约15°。在图3B所示的实例中,第一入口305被配置成相对于第一入口通道304成约25°至约85°的角度(α),例如约45°至约75°。就气体入口的数量与待引入的处理气体而言,第二入口通道306在设计上与第一入口通道304可实质相似。举例而言,第二入口通道306可与一或多个处理气体供给源372流体连通。第二处理气体(其可为数种处理气体的混合物)可从处理气体供给源372流经第二组气体通路331b而至第二入口通道306中,其中第二入口通道306与第二入口308流体连通。或者,一或多个第二入口308可提供不同于至少一个其他第二入口的一或多种处理气体。第二入口308被配置以提供第二处理气体至处理腔室中,例如,如图1A所示的处理气体区156。特别地,每一个第二入口308被配置成提供在第二处理气体离开第二入口308之后以不同于第一方向307(见图3B)的第二方向309提供第二处理气体。第二方向309大体平行于水平平面“P”,水平平面“P”平行于基板的纵向方向。类似地,气体入口机构300可具有一或多个第二入口308,例如约3至20个第二入口,每一个第二入口连接至分别的第二入口通道与气体通路并进而通向处理气体供给源372。可预期更多或较少的第二入口308。应设想到,在每个第一与第二入口305、308处的流量、处理气体组成及类似者都可被独立控制。举例而言,在一些实例中,一些第一入口305在处理期间可以是闲置的或脉冲式的,已达成与第二入口308所提供的第二处理气体的所需流动相互作用。在第一与第二入口通道304、306仅包括单一次级入口的一些情况中,所述次级入口可因以上论述的类似理由而为脉冲式的。第一入口通道304的第一入口305与第二入口通道306的第二入口308可设置成沿着处理腔室的内部圆周垂直偏离于彼此。或者,第一入口通道304的第一入口305与第二入口通道306的第二入口308可布置为垂直对准于彼此。在任一情况中,第一与第二入口305、308被布置成使得来自第一入口305的第一处理气体与来自第二入口308的第二处理气体适当混合。相信第一与第二处理气体的混合会因为第一入口305的角度设计而得到改良。第一入口通道304的第一入口305可紧邻于第二入口通道306的第二入口308。然而,在某些实施方式中,提供第一与第二入口305与308间的适当距离以避免第一处理气体与第二处理气体在离开入口之后就立即过早混合在一起可能是有利地。气体入口机构300的主体302可具有减小的高度,以匹配于上拱形结构的近乎平坦结构,如以下关于图2A论述的。在一实施方式中,主体302的整体高度可在约2mm至约30mm之间,比如约6mm至约20mm,例如约10mm。在主体302的面向处理气体区156的侧上的高度“H1”可为约2mm至约30mm,例如约5mm至约20mm。由于主体302的高度减小,所以第一入口通道304的高度可相应地减小以维持强度。在一实例中,第一入口通道304的高度“H2”为约1mm至约25mm,例如约6mm至约15mm。降低外部通路310将导致较浅的注射角度。返参图1A,净化气体可通过选择性的净化气体入口164(或通过处理气体入口174)从净化气体源162供给至净化气体区158,净化气体入口164形成于基环136的侧壁中。净化气体入口164被设置在处理气体入口174之下的高度处。若有使用圆形屏蔽件167或预热环(未示),则所述圆形屏蔽件或所述预热环可设置在处理气体入口174与净化气体入口164之间。在任一情况中,净化气体入口164被配置为以大致径向向内的方向引导净化气体。在膜成形处理期间,基板支撑件106可位于一位置而使得净化气体以层流方式沿着流动路径165向下流动且在基板支撑件106的整个背面104各处流动。不受任何特定理论所限,相信净化气体的流动会避免或实质上避免处理气体流动进入净化气体区158,或者减少处理气体扩散进入净化气体区158(亦即在基板支撑件106之下的区域)。净化气体离开净化气体区158(沿着流动路径166),并且通过气体出口178(其位于处理室100的与净化气体入口164相对的侧上)排出处理腔室。同样地,在净化处理期间,基板支撑件106可位于升高的位置以使净化气体横跨基板支撑件106的背面104而横向流动。本领域技术人员应了解到,为了描述的目的而图示处理气体入口、净化气体入口以及气体出口,因为气体入口或出口等的位置、尺寸或数量可经调整以进一步促进在基板108上的材料的均匀沉积。如果需要的话,净化气体入口164可被配置成以向上的方向引导净化气体,以将处理气体限制在处理气体区156中。示例性夹环图4A为根据本发明一实施方式的可用于替代图1A的夹环130的夹环400的透视图。夹环400设置在基环(例如图1A-1B与图8A-8C的基环)的较上方,并且夹环400通过设置在夹环400周围的紧固插孔402而紧固至处理腔室100。紧固件(未示)被设置穿过紧固插孔402并进入处理腔室100的侧壁中的凹槽内,以将夹环400固定至处理腔室100。夹环400可设有冷却特征,比如冷却导管404。冷却导管404使冷却流体(比如水)循环通过夹环400且围绕夹环400循环。冷却流体通过入口408而被引入至冷却导管404,并且循环通过导管404以通过出口410而涌出。冷却导管404可由坡道(ramp)406连接,坡道406使冷却流体可从导管404中的一个导管流到另一导管404。在图4A的实施方式中,一个导管404围绕夹环400的内部设置,而第二导管404围绕夹环400的外部周围设置。冷却流体被引入至围绕夹环400的内部设置的导管404,因为夹环400的内部暴露至最多的热、最靠近处理腔室100的处理环境。冷却流体从夹环400的内部最有效率地吸收热,因为冷却流体是以相对低的温度引入的。当冷却流体到达围绕夹环400的外部设置的导管404时,冷却流体的温度已经升高,但冷却流体仍调节夹环400的外部(比内部加热少)的温度。以此方式,冷却流体以回流(countercurrent)的形式流经夹环400。图4A的夹环400还具有被提供以用于冷却上拱形结构128的气体流动特征。用于冷却气体的入口歧管422供给冷却气体至处理腔室100的上拱形结构128。气体入口412与入口气室414连通,入口气室414沿着入口气室414分配气体。下表面416中的开口(未示出开口)与分配气室418连通,分配气室418通过夹环400而形成,这图示在图4B中。图4B为根据另一实施方式的处理腔室的盖部的截面图。盖部包括夹环400。气体流入分配气室418并且流入在上拱形结构128周边附近的入口气室420。气体沿着上拱形结构128的上表面流动而调节上拱形结构128的温度。再次参见图4A,气体流入出口歧管424,出口歧管424具有与收集气室428和气体出口430连通的出口气室426。调节上拱形结构128的热状态能避免热应力超过容限值,且减少在上拱形结构128的下表面上的沉积。减少在上拱形结构128上的沉积使通过上拱形结构128而至反射器122并返回通过上拱形结构128的能量通量保持在标称水平,从而最小化在处理期间基板108的温度偏差和不均匀。示例性灯头组件图5A与图5B为根据本发明一实施方式的可用于替代图1A的灯头145的一或多个灯组件520的示意图。灯组件520包括一或多个弹性间隙器524。图5A示出根据一实施方式的下拱形结构114的截面图,下拱形结构114具有灯头545与印刷电路板552。如下文将论述的,灯组件520中的每个灯组件可附接于弹性间隙器524,弹性间隙器524根据所使用的下拱形结构114的角度而可具有不同的高度。灯组件520、弹性间隙器524以及灯头545为灯头组件的一部分,并排于其他部件,比如反射器(未示)。图5B示出根据一实施方式的连接至一或多个灯组件520的一或多个弹性间隙器524。如下文中将关于图7A至图7B描述的,下拱形结构114可形成为大体上圆形、具有中心开口702的浅马丁尼玻璃杯杯或漏斗的形状。灯组件520以特定的、最佳所需方式围绕中心轴(例如图1A的中心轴132)而设置于下拱形结构114之下与附近,以独立控制基板各区域的温度。图5A绘示下拱形结构114、印刷电路板(PCB)552以及一或多个灯组件520,在此图示有六个灯组件520。本领域技术人员将清楚,为清楚起见,已在描述中略去某些元件。PCB552可为任何标准电路板,PCB552被设计以控制对一或多个灯组件520的电力分配。PCB552可进一步包括一或多个连接狭槽512(在此图示六个连接狭槽),以连接于一或多个灯组件520。虽然在此描绘的PCB552是平坦的,但也可根据处理腔室的需求来使PCB成形。在一实施方式中,PCB板被定位成与灯头545平行。一或多个灯组件520的每个灯组件通常包括灯泡522与灯座523。灯泡522可为能够加热基板且使基板维持在指定温度的灯,比如卤素灯、红外线灯及被用作为加热装置的类似装置。灯组件520可连接于一或多个弹性间隙器524,如参照图5B更详细描述的。下拱形结构114可由半透明材料(比如石英)组成,且可包含本公开内容中关于下拱形结构描述的一或多个元件。下拱形结构的厚度可在4至6mm之间。灯头545可位于下拱形结构114之下且紧邻下拱形结构114。在一实施方式中,灯头545离下拱形结构114约1mm。灯头545具有多个固定的灯头位置504,灯头位置504确保灯泡522的特定位置与方向。灯头545可具有多达400个或更多的固定的灯头位置504。固定的灯头位置504可在多个同心圆方向中。固定的灯头位置504可随着孔自内径向外径延伸而增加深度。固定的灯头位置504可为灯头545中的镗孔(boredhole)。在一实施方式中,灯座523通过灯头545而固持在固定方向中,且通过灯头545而冷却。灯组件520和连接狭槽512被绘示为一组有六个,此数量并不用于限制。可为维持适当基板温度所需而有更多或较少的灯组件与连接狭槽。此外,重要的是要了解这是一个三维结构的侧视图。因此,虽然部件显现为以线性方式定位,但是任何位置或位置的组合也是可行的。举例而言,在圆形PCB552上,灯可在X与Y轴两轴上以3cm的间隔定位,因而填满该圆。本领域技术人员将理解到,此实施方式有多种变化。图5B描述根据一实施方式的弹性间隙器524。此处所示的弹性间隙器524包括插槽526和接触适配器528。在本文中弹性间隙器524被描述为在插槽526处具有标准mill-max插槽,且在接触适配器528处具有同等的接触适配器,因而产生灯/间隙器接口及间隙器/PCB接口。然而。此设计选择并非用于限制。插槽设计可为能够从电源传送电力至灯522的多种现有设计或还没有产生的设计的一种。在一实施方式中,弹性间隙器永久地附接至PCB545,比如通过焊接方式。弹性间隙器524可由导电与不导电的部件组成,使得灯可从电源接收电力。在一实例中,使用导电金属(比如黄铜或铜)来将电力传送至灯522,且导电金属由不导电的壳体围绕,比如由塑料、弹性玻璃或陶瓷纤维或珠粒所制成的壳体。弹性间隙器524可具有各种长度,只要适合向下拱形结构114进行适当辐射传送。由于弹性间隙器524长度变化,因此灯组件520能沿着下拱形结构114保持大体上相同的尺寸与形状。此外,弹性间隙器524不需要是直的。弹性间隙器524可呈现曲度,使得灯轴不需要与处理腔室的中心轴平行。用另一方式说,弹性间隙器524能允许灯轴呈现所需极角。本文描述的弹性间隙器524可由弹性材料构成,比如具有弹性体的塑料。本文描述的弹性间隙器524能提供互换性与定向两方面的优点。当弹性间隙器524并入弯曲结构或弹性材料时,弹性间隙器524可连接于具有固定的灯头位置504的灯头545,固定的灯头位置504未定向为垂直于PCB552。此外,弹性间隙器524被设计为非消耗性的。当灯组件520出故障时,可用单一尺寸的灯组件520来替换灯组件520,因而使灯组件520可于腔室中互换,而与灯组件520在PCB552上或在灯头545中的位置无关。弹性间隙器524提供固定的灯头位置504(形成于灯头545中)与连接狭槽512(形成于PCB552中)之间的适当定位。灯头545可由导热材料构成,比如铜。在另一实施方式中,灯头545可为铜的圆锥部或旋转的环形物,其具有使灯头545紧邻中心轴132的内径及大致与下拱形结构114的边缘一致的外径。形成在PCB552之上的可为一或多个支撑结构,比如间隔物514。如此实例所示,间隔物514可与PCB552和灯组件520结合作用,以保持灯泡522的特定方向,比如将灯组件520维持在垂直方向。此外,弹性间隙器524可具有与间隔物514互相作用的一或多个结构,比如唇部525。在此实施方式中,唇部525确保弹性间隙器的完全插入,并保持弹性间隙器524和灯泡522两者的方向。示例性衬垫组件图6示出根据本发明一实施方式的衬垫组件的透视图,所述衬垫组件可用于替代图1A的衬垫组件163。衬垫组件600被配置以衬于处理腔室(比如图1A与图1B的处理腔室)内的处理区。衬垫组件600大体提供气体入口端口602、气体出口端口604及装载端口606。衬垫组件600可与图8A至图8C基环结合作用,使得气体入口端口602、气体出口端口604及装载端口606的位置在实质上相同的高度处分别大体上匹配于处理气体入口874、气体出口878及装载端口803。相同水平面的气体入口/出口促成至处理腔室的较短流动路径,从而促成高传导性的排气与注射。因此,层流气体流动与转移更受控制。衬垫组件600可嵌套在设置于处理腔室中的基环(例如图1A-1B与图8A-8C所示的基环)内或由基环围绕。衬垫组件600可形成为整合件,或可包括能组装在一起的多个件。在一实例中,衬垫组件600包括多个件(或衬垫),所述多个件是模块化的且可被单独地或整体地替换,以因模块化设计而提供额外的弹性与成本节省。衬垫组件600的模块化设计提供简单的维护性及提高的功能性(亦即,改变不同的注射器,比如图3A中所示的次级入口305)。在一实施方式中,衬垫组件167包括垂直堆叠的至少上衬垫608与下衬垫610。排气衬垫612可与部分的上衬垫608结合以改良位置稳定性。上衬垫608与排气衬垫612可被切断以接收注射器衬垫614。注射器衬垫614大体上与图3A的主体302相对应,且可包括气体入口机构,比如上文中关于图3A-3C论述的气体入口机构300。上衬垫608、下衬垫610、排气衬垫612以及注射器衬垫614的每一者包括大致圆桶形的外径,所述外径的尺寸被设计以嵌套于基环(未示)内。衬垫608、610、612、614中的每一衬垫可由基环通过重力和/或互锁装置(未示,比如形成于衬垫608、610、612中的一些上或中的突伸部与匹配凹槽)来支撑。上衬垫608与下衬垫610的内部表面603被暴露于处理容积(例如处理气体区156与净化气体区158)。在一实施方式中,上衬垫608可设有凹陷特征616,以于上衬垫608上产生净化能力,由此避免在衬垫组件上的不想要的沉积,同时控制衬垫组件的温度。示例性上拱形结构图2A与图2B为根据本发明一实施方式的可用于替代图1A的上拱形结构128的上拱形结构200的示意图。图2A示出上拱形结构200的截面图。图2B示出上拱形结构200的顶视图。如图2B所示,上拱形结构200具有实质上圆形的形状,且具有稍微成凸形的外侧表面210与稍微成凹形的内侧表面212(图2A)。如在下文中将更详细论述的,凸形的外侧表面210足够弯曲,以在基板处理期间抵抗相对于处理腔室中降低的内部压力的外部大气压的压缩力,同时外侧表面210也足够平坦以促进处理气体的有序流动与反应物材料的均匀沉积。上拱形结构200大体包括使热辐射通过的中心窗部202以及用于支撑中心窗部202的周边凸缘204。中心窗部202被绘示为具有大致圆形的周边。周边凸缘204沿着支撑界面206在中心窗部202的圆周周围接合中心窗部202。在一实施方式中,周边凸缘204由设置在周边凸缘与侧壁之间的O形环(在图1A中标示为184)密封在处理腔室的侧壁内,以提供密封以避免处理腔室内的处理气体逸散至大气环境中。虽然未在此详细论述,但可设想到可利用O形环(在图1A中标示为182)将下拱形结构类似地支撑于处理腔室的侧壁内。可使用较少或更多数量的O形环182、184。周边凸缘204可做成不透明的或由透明石英形成。上拱形结构200的中心窗部可由诸如透明石英之类的材料形成,所述材料对于来自灯的直接辐射大体上是光学透明的而无显著吸收。或者,中心窗部202可由具有窄带滤波能力的材料形成。然而,从加热的基板和基板支撑件再辐射的热辐射的一些辐射可进入中心窗部202中,且由中心窗部202显著吸收。这些再辐射于中心窗部202内产生热,产生热膨胀力。可做成不透明的以保护O形环免于直接暴露至热辐射的周边凸缘204保持比中心窗部202相对较冷,由此使中心窗部202向外弯曲超过初始的室温弯曲。中心窗部202做得薄且具有足够的弹性来容许弯曲,而周边凸缘204是厚的且具有足够的刚性来限制中心窗部202。因此,在中心窗部202内的热膨胀被表示为热补偿弯曲。中心窗部202的热补偿弯曲随处理腔室的温度增加而增加。周边凸缘204和中心窗部202通过焊接接头“B”而在它们的相对端处固定。周边凸缘204被建构为沿着尺寸转变部213具有圆角半径“r”,尺寸转变部213由从中心窗部202的薄度至周边凸缘204的块体的平滑且逐渐的变化界定。图2C示出接合接头“B”的放大图,其示出了周边凸缘204的圆角半径。圆角半径是连续弯曲的凹形,其可被视为三段曲部,三段曲部包括周边凸缘204的内侧底部、转变部213的主体以及与中心窗部202匹配的部分。因此,在这三段曲部中并非皆为同一半径。通常通过确定圆角半径的表面轮廓、然后数学地确定最适于此轮廓的球面而测量所述圆角半径。此最适球面的半径即圆角半径。圆角半径消除了在周边凸缘204与中心窗部202相交的接头的界面处的尖角。尖角的的消除还使得将在设备的接头上沉积的涂层比具有尖角的接头的涂层更为均匀且更厚。圆角半径被选择以提供周边凸缘204的增加的径向厚度,以与中心窗部202的逐渐变化与“接近平坦”的曲率一起提供较佳流动(将于下文中论述),从而导致减少的流动紊流与较佳的均匀性。更重要的,具有圆角半径的接头还降低或消除在接头处的剪力。在各种实施方式中,周边凸缘的圆角半径“r”的范围在约0.1英寸与约5英寸之间,比如在约0.5英寸与约2英寸之间。在一实例中,圆角半径“r”为约1英寸。具有较大圆角半径的周边凸缘204在处理热与大气压力上是理想的。如先前论述的,在基板的处理期间,上拱形结构200会因处理室内降低的内部压力与作用于上拱形结构上的外部大气压力之间的巨大压力差而承载高的张应力。高的张应力会使上拱形结构变形。然而,已经观察到若对周边凸缘204(图2A)的侧部向内施加横向压力“P”,则在处理期间上拱形结构200的张应力会大大减小。施加于周边凸缘204上的横向压力会迫使中心窗部202向外弯曲,并且因而补偿拱形结构的变形。在本文中,横向压力“P”是指施加在周边凸缘204的外周边表面205上的以英镑每平方英寸(poundspersquareinch;psi)为单位的给定大小的加载力。在一实施方式中,横向压力“P”可为约200psi或高于200psi。在另一实施方式中,横向压力“P”可在约45psi与约150psi之间。在一实例中,横向压力“P”为约80psi至约120psi。也已经观察到,在对周边凸缘204施加横向压力时,周边凸缘204的张应力会从没有横向压力“P”时的1300psi至2000psi减小至低于1000psi。结合先前提到的较大的圆角半径“r”,当对周边凸缘204施加约80psi的横向压力“P”时,周边凸缘204的张应力会大大减小。若横向压力“P”增加至约150psi,则可进一步减小张应力。中心窗部202的厚度与向外弯曲被选择以确保可解决热补偿弯曲。在图2A的实施方式中,中心窗部202的内弯被图示为球形,其由具有沿轴“A”的中心“C”及大的曲率半径“R”的球体的一部分形成。中心窗部202可具有约1122mm加或减300mm的曲率半径“R”,以提供足够的弯曲来承受基板温度在室温与约1200℃或更高的处理温度之间时的零与一个大气压之间的压力差。应设想到,曲率半径的范围仅作为示例之用,因为曲率半径可根据上拱形结构角度(θ)、直径与厚度、周边凸缘厚度或宽度、以及作用在上拱形结构200的表面210、212上的压力差等而改变。在各实例中,曲率半径“R”可为约900mm至约2500mm。参见图2A,在一实施方式中,上拱形结构200以此方式建构:中心窗部202相对于水平平面“E”倾斜角度(θ)。水平平面“E”大体平行于基板(未示,比如图1A中的基板108)的纵向方向。在各种实施方式中,中心窗部202与水平平面“E”之间的角度(θ)通常小于22°。在一实施方式中,角度(θ)为约6°至约21°,比如约8°至约16°。在一实例中,角度(θ)为约10°。倾斜约10°的中心窗部202提供了比传统上拱形结构(通常具有约22°或更大的角度(θ))更为平坦的上拱形结构。相较于传统的上拱形结构,角度(θ)的度数减小将导致上拱形结构200下移约0.05英寸至约0.8英寸,例如约0.3英寸。上拱形结构200可具有约200mm至约500mm的总外径,比如约240mm至约330mm,例如约295mm。中心窗部202可具有约2mm至约10mm的厚度“T1”,例如约3mm至约6mm。在一实例中,中心窗部202的厚度为约4mm。中心窗部202可具有约130mm至约250mm的外径“D1”,例如约160mm至约210mm。在一实例中,中心窗部202的直径为约190mm。周边凸缘204可具有约25mm至约125mm的厚度“T2”,例如约45mm至约90mm。在一实例中,周边凸缘204的厚度为约70mm。周边凸缘204可具有约5mm至约90mm的宽度“W1”,例如约12mm至约60mm,宽度“W1”可随半径而变化。在一实例中,周边凸缘204的宽度为约30mm。若处理腔室中未使用衬垫组件,则周边凸缘204的宽度可增加约50mm至约60mm,而中心窗部202的宽度会减小相同的量。在这样的情况中,周边凸缘204的厚度与拱形结构角度(θ)可相应减小,且本领域技术人员能根据本说明书来计算其减小量。若使用下拱形结构角度,则周边凸缘204会朝向中心窗部202更进来。然而,对中心窗部202直径的限制因素为:反射器(例如图1的反射器122)必须能够将光反射回基板加上预热环(若有使用的话)的区域。因此,将周边凸缘204稍微向内移动、同时能提供具有约130mm至约300mm的直径的中心窗部202会是有利的。上拱形结构200的“接近平坦”的结构在与基环(比如图8A的基环836)和较平坦的下拱形结构(比如图7A与图7B的下拱形结构700)结合时形成浅的、球形的几何形状,其已被证明在抵抗处理腔室的内部与外部之间的压力差上是有效的,特别是在进行降低的压力或低压应用时(比如外延沉积处理)。此外,已经观察到上拱形结构200的“接近平坦”结构在有横向压力施加至周边凸缘204时,会导致在位于周边凸缘204与中心窗部202之间的焊接接头“B”的区域中有较低的剪应力。虽然能通过使用较厚窗部来解决因压力差而导致的中心窗部202的应力,但厚窗部会提供过多的热质量,这会导致稳态处理的时间延迟。因此,整体的生产量减少。另外,具有厚窗部的上拱形结构在处理期间呈现差的弹性,并在中心窗部202径向地包含于周边凸缘204中时在周边凸缘204处产生高剪应力。此外,厚窗部花费较长时间来散热,这会影响基板的稳定性。由于球形几何形状固有地(inherently)有效地处理降低的压力,所以上拱形结构200能使用比传统容器(传统容器在基板上方有突然的大的横截面积变化)更薄的石英壁。上拱形结构200的中心窗部202的厚度在如上所论述的范围中选择,以确保解决在周边凸缘204与中心窗部202之间的界面处所产生的剪应力(图2C)。较薄的石英壁(亦即中心窗部202)是更有效率的热传送媒介,使得石英吸收较少的能量。因此上拱形结构保持相对较冷。较薄壁的拱形结构在温度方面也将更快达到稳定,并且对于对流冷却的反应较快,这是因为较少的能量被储存且到外部表面的传导路径较短。因此,上拱形结构200的温度可更接近地保持在所欲的设定点,以提供横跨中心窗部202的较佳热均匀性。此外,虽然中心窗部202径向传导至周边凸缘204,但较薄的拱形结构壁导致在基板之上的改良的温度均匀性。有利的是,不过度加热周边凸缘204,以保护设置在周边凸缘204周围的O形环。同样有利的是,不在径向方向中过度冷却中心窗部202,因为在径向方向中过度冷却中心窗部202会产生非所欲的温度梯度,此非所欲的温度梯度将反射至正受处理的基板表面上,并使薄膜均匀性变差。下面的表1提供上拱形结构200的非限制性详细说明,所述详细说明仅提供作为根据本发明实施方式的说明性实例。表1角度(θ)(度)8-16中心窗部厚度(mm)2-10圆角半径(英寸)0.5-2中心窗部的外径(mm)130-250总外径(mm)240-360周边凸缘宽度(mm)10-70周边凸缘厚度(mm)25-125周边凸缘上的横向压力(psi)0-150上拱形结构上的外部压力(Torr)760腔室压力(Torr)0.1通过将上拱形结构200变平坦,大大改良处理腔室的辐射热传送特性,同时有较低的寄生性损失、及对温度传感器的较小噪声,这是因为高温计能被放置成尽可能靠近基板表面。改良的上拱形结构与下拱形结构(如下文将关于图7A至图7C进行论述的)也导致减小的整体腔室容积,减小的整体腔室容积改良气体转变时间并减少泵送与排气时间,导致较少的循环时间与提升的基板处理量。此外,上拱形结构的“接近平坦”结构避免或显著最小化在腔室的上处理区中的气体流动紊流或循环,因为上拱形结构的“接近平坦”结构避免现有技术的设计中在基板之上具有横截面积突然改变所牵涉的问题,横截面积突然改变不利地影响流动均匀性。接近平坦且具有增加的凸缘半径还促进横跨腔室截面的固定的排气压力均匀性,而在基板之上产生高度均匀的流动场。示例性下拱形结构图7A与图7B为根据本发明一实施方式的可用于替代图1A的下拱形结构114的下拱形结构700的示意图。图7A示出下拱形结构700的截面图,图7B示出下拱形结构700的顶视图。如图7A所示,下拱形结构700形成为大体上圆形、具有中心开口708的浅马丁尼玻璃杯或漏斗的形状。下拱形结构700绕中心轴“C”(图7B)径向对称。如先前所述,中心开口708于基板的装载与卸载期间提供贯穿其间的轴(比如图1的中心轴132)的自由移动。下拱形结构700通常包括柄部702、周边凸缘704以及径向延伸以连接柄部702与周边凸缘704的底部706。周边凸缘704被配置成围绕底部706的圆周。或者,根据腔室设计,周边凸缘704可至少部分围绕底部706。在与上拱形结构和基环(比如图1的上拱形结构128和基环136)结合时,周边凸缘704和底部706大体上界定处理腔室的内部容积。如将于以下论述,底部706被做成薄的且具有足够的弹性以容许在处理期间弯曲,而周边凸缘704是厚的且具有足够的刚性来限制底部706。周边凸缘704可做成不透明的,以保护O形环(在图1中标示为182)免于直接暴露于热辐射。或者,周边凸缘704可由透明的石英形成。下拱形结构700的底部706可由对于来自灯的直接辐射大体呈光学透明而无显著的吸收的材料形成。周边凸缘704和底部706通过焊接接头“B”而在它们的相对端处固定。周边凸缘704被建构成沿着尺寸转变部713具有圆角半径“r”,尺寸转变部713由从底部706的薄体至周边凸缘704的块体的平滑且逐渐的变化界定。图7C示出接合接头“B”的放大图,其示出了周边凸缘704的圆角半径。圆角半径是连续弯曲的凹形,其可被视为三段曲部,三段曲部包括周边凸缘704的顶部、转变部713的主体、以及与底部706匹配的部分。因此,在这三段曲部中并非皆为同一半径。通常通过确定圆角半径的表面轮廓、然后数学地确定最适于此轮廓的球面而测量所述圆角半径。此最适球面的半径即圆角半径。圆角半径消除了在周边凸缘704与底部706相接的接头的界面处的尖角。尖角的消除还使得将被沉积于设备的接头上的涂层比具有尖角的接头更为均匀且更厚。圆角半径被选择以提供周边凸缘704的增加的径向厚度,以及提供底部706的逐渐变化与“接近平坦”的结构(将于下文中论述),从而提供到基板的均匀辐射热传送,因为灯能设置得更靠近基板。更重要的,具有圆角半径的接头还降低或消除在接头处的剪力。在各种实施方式中,周边凸缘704的圆角半径“r”范围可在约0.1英寸与约5英寸之间,比如在约0.5英寸与约2英寸之间。在一实例中,圆角半径“r”为约1英寸。具有较大圆角半径的周边凸缘704在处理热与大气应力上是理想的。在基板的处理期间,下拱形结构700会因处理腔室内降低的内部压力与作用于下拱形结构上的外部大气压之间的大压力差而加载有高的张应力。高的张应力会使下拱形结构变形。然而,已经观察到若对周边凸缘704(见图7A)的侧部向内施加横向压力“P”,则在处理期间下拱形结构的张应力会大大减小。施加于周边凸缘704上的横向压力会迫使底部706向外弯曲,并且因而补偿拱形结构变形。在本文中,横向压力“P”是指施加在周边凸缘704的外周边表面726上的以英磅/每平方英寸(psi)为单位的给定量的加载力。在一实施方式中,横向压力“P”可为约280psi或高于280psi。在另一实施方式中,横向压力“P”可在约60psi与约250psi之间。在一实例中,横向压力“P”为约80psi。已经观察到在对周边凸缘704施加横向压力时,周边凸缘704的张应力能从没有横向应力“P”时的1300psi至2000psi减少至低于1000psi。结合先前提到的较大的圆角半径“r”,当对周边凸缘704施加约80psi的横向压力“P”时,能大大降低周边凸缘704的张应力。参照图7A,在一实施方式中,下拱形结构700以此方式建构:底部706相对于水平平面“A”倾斜角度(θ)。水平平面“A”大体平行于基板(未示,比如图1A中的基板108)的纵向方向。在各种实施方式中,底部706与水平平面“A”之间的角度(θ)通常小于22°。在一实施方式中,角度(θ)为约6°至约21°,比如约8°至约16°。在另一实施方式中,角度(θ)为约6°至约12°。在一实例中,角度(θ)为约10°。倾斜约10°的底部706提供了比传统下拱形结构(通常具有约22°或更大的角度(θ))更为平坦的下拱形结构700。相较于传统的下拱形结构,角度(θ)的度数的减小将导致下拱形结构700上移约0.3英寸至约1英寸,例如约0.6英寸。下拱形结构700的底部706的厚度被选择,以确保解决在周边凸缘704与底部706(图2C)之间的界面处所产生的剪应力。在本发明的各实施方式中,底部706可具有厚度“T2”,厚度“T2”在从约2mm至约16mm的范围内,比如在约3.5mm与约10mm之间。在一实例中,底部706可具有约6mm的厚度。底部706可具有约300mm至约600mm的外径“D2”,例如约440mm。周边凸缘704可具有厚度“T2”,厚度“T2”在从约20mm至约50mm的范围内,例如约30mm;周边凸缘704可具有约10mm至约90mm的宽度“W2”,例如约50mm至约75mm,宽度“W2”可随半径而变化。在一实例中,下拱形结构700可具有约500mm至约800mm的总外径,例如约600mm。中心开口708可具有约300mm至约500mm的外径,例如约400mm。在另一实施方式中,中心开口708可具有约10mm至约100mm的外径,例如约20mm至约50mm,比如约35mm。应设想到,下拱形结构的尺寸、角度(θ)与厚度皆可根据腔室设计及作用于下拱形结构700的面上的压力差而改变。下拱形结构700的“接近平坦”结构在与基环(比如图8A的基环836)及较平坦的上拱形结构(比如图2A至图2B的上拱形结构200)结合时形成浅的、球形的几何形状,这种几何形状已被证明在承受处理腔室内部与外部压力差方面是有效的,特别是在进行降低的压力或低压应用时(比如外延沉积处理)。此外,已经观察到下拱形结构700的“接近平坦”结构在有横向压力施加至周边凸缘704时,会导致在位于周边凸缘704与底部706之间的焊接接头“B”的区域中有较低的剪应力。虽然能通过使用较厚的拱形结构壁(亦即底部706)来解决因压力差而导致的底部706的应力,但厚的拱形结构壁会导致过大的热质量,这会导致稳态处理的时间延迟。因此,整体的生产量会减少。同时,厚的拱形结构壁会在处理期间呈现差的弹性,且当底部706被周边凸缘704径向地包纳时在周边凸缘704处产生高剪应力。厚的拱形结构壁还会花费较长时间来散热,这会影响基板的稳定性。由于球形几何形状固有地有效地处理降低的压力,下拱形结构700能使用比传统容器所使用的更薄的拱形结构壁,传统容器所使用的拱形结构壁在基板之下有突然大的横截面积变化。下面的表2提供下拱形结构700的非限制性详细说明,这些详细说明仅提供作为根据本发明实施方式的说明性实例。表2角度(θ)(度)6-16底部厚度(mm)3.5-10圆角半径(英寸)0.5-2底部的外径(mm)300-600总外径(mm)500-800周边凸缘宽度(mm)50-75周边凸缘厚度(mm)25-50周边凸缘上的横向压力(psi)0-150下拱形结构上的外部压力(Torr)760腔室压力(Torr)0.1通过使下拱形结构700与上拱形结构200变平坦(如上面论述的),处理腔室的处理容积减小,续而减少泵送与排气时间。因此,基板生产量提升。改良的下拱形结构还提供了至基座与基板的固定、均匀的辐射热传送,这是因为辐射加热灯可被放置成尽可能靠近基板背面,导致基座的背面(若使用的是平板状的基板支撑件(图1A))上、或基板的背面(若使用的是环形的基板支撑件(图1B))上产生更佳的传输、更完全的区域均匀性,由此减少寄生性损失,这是因为辐射加热灯可被配置成与其上置有基板的基座尽可能平行。如有需要,可沿着流动路径在石英拱形结构之间引入高电阻接触,以减轻串扰。示例性基环图8A示出可用于替代图1A与图1B的基环136的示例性基环的透视截面图。基环836可由铝或任何适当材料(如不锈钢)形成。基环836通常包括装载端口803、处理气体入口874以及气体出口878,且装载端口803、处理气体入口874以及气体出口878以与图1A与图1B所示的装载端口103、处理气体入口174与气体出口178类似的方式作用。基环836包括环形主体,环形主体的尺寸经设计以容置于图1的处理腔室的内圆周内。环形主体可具有大致长椭圆形形状,具有在装载端口803上的长侧以及分别在处理气体入口874和气体出口878上的短侧。装载端口803、处理气体入口874与气体出口878可相对于彼此呈约90°的角度偏移。在一实例中,装载端口803位于基环836的在处理气体入口874与气体出口878之间的一侧上,而处理气体入口874与气体出口878设置在基环836的相对端处。在各实施方式中,装载端口803、处理气体入口874与气体出口878彼此对准且设置在与图1A至图1B的装载端口103、处理气体入口174与气体出口178实质上相同的水平面处。基环836的内圆周817被配置以接收衬垫组件,例如图1A的衬垫组件163或以上关于图6论述的衬垫组件600。基环836的装载端口803、处理气体入口874以及气体出口878被配置以与衬垫组件(图6)及气体入口机构(图3A至图3C)结合作用,以提供一或多种处理/净化气体至处理容积中。虽未图示,但紧固件可设置成穿过形成于基环836的顶表面814上的紧固插孔(未示)并且进入夹环(例如图1A的夹环130或图4A的夹环400)中的凹槽(未示),以将上拱形结构128的周边凸缘固定在基环836与夹环之间。在一实施方式中,装载端口803可具有约0.5英寸至约2英寸的高度“H4”,例如约1.5英寸。基环136可具有约2英寸至约6英寸的高度“H3”,例如约4英寸。基环836的高度被设计以使基环836的整体高度比传统的基环高度小约0.5英寸至约1英寸。因此,基板与光学高温计(未示,比如图1A的高温计118)之间的距离也减小。因此,光学高温计的读取分辨率能大大提高。在一实例中,基板与光学高温计之间的距离为约250mm。通过减小基板与高温计之间、以及上拱形结构与下拱形结构之间的距离,处理腔室的辐射热传送特性大大改良,具有较低的寄生性损失、到达温度传感器的较小噪声,以及从辐射加热灯到基板和从上反射器到基板的具有改良的中心至边缘均匀性的更多的热传送。基环836的减小的高度与以上关于图2A-2B论述的上拱形结构的“接近平坦”结构还使得能够在低于500℃的较低温度下进行可靠与准确的温度测量。处理气体入口874与气体出口878的配置能促成同心的处理套件(例如衬垫组件),这大大增强衬垫的克制(contain)光泄漏的能力,从而使在低于500℃的温度下高温测量更为准确。由于基环836由导热材料形成,且基环836因下拱形结构的接近平坦结构而更靠近辐射加热灯,所以基环836可包括形成于其中的一或多个冷却剂通道,冷却流体(比如水)流经所述一或多个冷却剂通道以冷却基环。冷却剂通道可在靠近O形环(例如图1A的O形环182、184)的区域中设置在基环836的圆周周围。图8B为从另一角度所示的图8A的基环836的透视图,图8B示出根据本发明一实施方式的上环810与下环812。上环810与下环812被配置成分别设置于基环836的顶表面814与底表面816上。上环810与下环812具有环形形状,且在与基环836组装时大体上为同心或共轴的。图8C是图8B的基环836的放大、部分截面图,示出了分别形成于基环836的顶表面814与低表面816(图8B)中的上沟槽818与下沟槽820,上沟槽818与下沟槽820用于接收上环810与下环812。为易于理解,基环836被示意地绘示为两个分离的部分。上沟槽818与下沟槽820可形成为与基环836的内圆周817相邻。上环810可形成为大体“H”形,使得当上环810置于上沟槽818内时,在上环810与上沟槽818之间界定出环形的流体流动路径,且所述流体流动路径形成基环836的上冷却剂通道822。类似地,下环812可形成为大体“H”形,使得当下环812置于下沟槽820内时,在下环812与下沟槽820之间界定出环形的流体流动路径,所述流体流动路径形成基环836的下冷却剂通道824。上环810、下环812与基环836可焊接在一起而形成整合的主体。顶环810与下环812可形成为任何所需形状,只要冷却流体循环通过顶环810和下环812与基环836之间所界定的分别的环形流体流动路径以适当地冷却基环836。在一实施方式中,基环836可包括顶部内壁826,顶部内壁826从基环836的顶表面814向上延伸。顶部内壁826被配置成围绕基环836的内圆周817,使得顶部内壁826的外部部分825与上环810的内部部分827界定出顶部环状沟槽828,顶部环状沟槽828靠近上沟槽818并且供放置O形环(未示,例如图1A的O形环182、184)。类似地,基环836亦可包括底部内壁830,底部内壁830从基环836的底表面816向下延伸。底部内壁830被配置成围绕基环836的内圆周817,使得底部内壁830的外部部分829与下环812的内部部分831界定出底部环状沟槽832,底部环状沟槽832靠近下沟槽820并且供放置O形环(未示,例如图1A的O形环182、184)。在处理期间,冷却流体从冷却源(未示)引入至围绕基环836的内圆周817设置的上冷却剂通道822与下冷却剂通道824,因为基环836的内圆周817暴露于最多的热、最接近处理腔室100的处理环境。因为冷却流体被不断地引入,因此冷却流体最有效率地吸收来自基环836的内圆周817的热。冷却流体以回流方式流经上冷却剂通道822与下冷却剂通道824,以有助于使基环836与O形环维持在相对低的温度。虽然前述内容针对本发明的实施方式,但在不背离本发明的基本范围的情况下可设计出本发明的其他与进一步的实施方式,本发明的范围由后附权利要求书确定。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1