经构造用于更低薄膜应力及更低操作温度的3D打印腔室元件的制作方法

文档序号:11289418阅读:273来源:国知局
经构造用于更低薄膜应力及更低操作温度的3D打印腔室元件的制造方法与工艺

本发明的实施方式涉及用于在半导体器件制造中使用的设备的腔室元件。



背景技术:

可靠地制造亚半微米(sub-halfmicron)及更小特征是半导体器件的下一代超大规模集成电路(verylargescaleintegration,vlsi)及特大规模集成电路(ultralarge-scaleintegration,ulsi)的关键技术挑战之一。然而,随着电路技术的限制被推进,缩小的vlsi及ulsi互连技术尺寸已在处理性能上产生了额外的需求。可靠地在基板上形成栅极结构对于vlsi及ulsi的成功及持续努力以增加单个基板及晶片(die)的电路密度及品质而言是重要的。

随着集成电路元件的尺寸减少(例如减少到深度亚微米尺寸),用以制造如此元件的材料必须被小心地选择以获得令人满意的电性性能水准。例如,当相邻金属互连之间的距离及/或隔离互连的介电块绝缘材料的厚度具有亚微米尺寸时,发生在金属互连之间的电容耦合的电位是高的。相邻金属互连之间的电容耦合可能造成串扰(crosstalk)及/或电阻电容(rc)延迟,这降低了集成电路的整体性能并可能使所述电路不可操作。

制造亚半微米及更小的特征依赖各种处理设备,例如物理气相沉积腔室(pvd)等等。沉积腔室使用rf线圈以维持处理腔室中的等离子体。在pvd腔室中所使用的现有腔室元件可具有高温差,这在pvd腔室的操作期间对于附着于元件的材料造成了高膜应力。更高的膜应力可能在膜已到达临界厚度之后在pvd腔室的操作期间造成经沉积材料的剥脱。沉积材料的剥脱造成pvd腔室的内部污染(也就是微粒)的增加,这造成了基板缺陷及低产量。因此,高污染风险不期望地需要更频繁地清洁及维护pvd腔室。

因此,存在着帮助防止处理腔室污染的改良的腔室元件的需要。



技术实现要素:

公开内容是作为腔室元件上的纹理表面的一部分而形成的改造特征的实施方式。

在一个实施方式中,一种用于处理腔室的腔室元件具有主体。所述主体具有单一整体(monolithic)结构。所述主体具有纹理表面。所述纹理表面具有多个独立的改造特征,其中所述改造特征包括宏观特征。所述改造特征经构造以降低膜应力并调整所述腔室元件的热传导性。

在另一个实施方式中,一种用于处理腔室的腔室元件包括:元件部分主体,具有单一整体结构。所述元件部分主体具有纹理表面。所述纹理表面包括:多个独立的改造宏观特征,与所述元件部分主体一体形成。所述改造宏观特征包括从所述纹理表面延伸的宏观特征主体。

在又一实施方式中,一种用于处理腔室的线圈间隔件的杯件包括:主体,具有单一整体结构。所述主体包括:外表面;顶部;底部;开口,所述开口设置于所述顶部中且朝所述底部延伸;内表面,所述内表面设置于所述开口附近;上盖体,所述上盖体位于所述顶部附近,且设置于所述外表面及所述内表面之间;及形成于所述外表面上的多个宏观层面表面特征。

在又一实施方式中,一种用于处理腔室的线圈间隔件的杯件包括:主体,具有由附加式(additive)制造技术所形成的单一整体结构。所述附加式制造技术可为选择性激光烧结、粘合剂喷射、材料喷射、粉末床熔融、片积层、直接能量沉积或任何其他附加式制造工艺。所述主体包括:外表面;顶部;底部;开口,所述开口设置于所述顶部中且朝所述底部延伸;内表面,所述内表面设置于所述开口附近;上盖体,所述上盖体位于所述顶部附近,并设置于所述外表面及所述内表面之间;及多个宏观层面表面特征,形成于所述内表面及所述外表面中的至少一者上。所述表面特征包括改造表面结构的重复性预定图案。

附图说明

可通过参照实施方式(这些实施方式中的一些绘示于所附附图中)来获得以上简要概述的本发明的更具体的描述,以便可以更详细的方式了解本发明的上述特征。然而,应注意的是,所附附图仅绘示本发明的典型实施方式且因此并不视为对本此发明的范围的限制,因为本发明可容许其他等效实施方式。

图1a为处理腔室元件的纹理表面的部分平面图;

图1b为处理腔室元件的纹理表面的替代性图案的部分平面图;

图2为处理腔室元件的纹理曲面的部分等角视图;

图3为沿区段线8--3截取的图6的处理腔室元件的纹理表面特征的部分横截面图;

图4a-4f为处理腔室元件的纹理表面的示例特征的部分平面图;

图5为处理腔室元件的纹理表面的额外示例特征的部分平面图;

图6描绘具有适于纹理表面的元件的处理腔室的一个实施方式的示例横截面图;

图7描绘具有线圈间隔件用于图11中所示的处理腔室的工艺套件;

图8描绘图7中所示的线圈间隔件的横截面图;

图9描绘依据一个实施方式的杯件的横截面图;

图10描绘依据另一实施方式的杯件的横截面图;

图11描绘依据又一实施方式的杯件的横截面图;

为了促进理解,已尽可能使用相同参考标号以指定普遍用于这些附图的相同构件。可预期的是,可有益地将一个实施方式的构件及特征并入其他实施方式而无需赘述。

然而,应注意的是,所附附图仅绘示本发明的示例性实施方式且因此并不视为对本发明的范围的限制,因为所述发明可容许其他等效实施方式。

具体实施方式

3d打印是通过铺设连续的薄材料层来制造三维元件的技术。3d打印也用于半导体工业中以制造半导体处理腔室元件(包括线圈杯件),所述半导体处理腔室元件用于等离子体沉积腔室中而可提供腔室元件表面上的沉积材料的改良附着。在3d打印工艺中,前体的薄层(例如粉末或其他原料材料)被逐步沉积及熔融以形成腔室的完整3维元件。此附加式制造技术允许腔室元件的表面被改造以提供改良的薄膜附着,这抑制了腔室元件的膜剥脱,此处这些剥脱变成工艺污染物。此附加式制造技术可附加性地或替代性地允许腔室元件表面被改造以跨越元件表面在处理期间最小化热温度改变,这反过来对于附着于腔室元件表面的材料造成了更低的膜应力。在某些实施方式中,单一步骤的生产可产生可从一个或多个材料层形成的单块元件。材料层可经最佳化以提供局部强度、成本节省、热传导、光反射性或其他有益的属性。虽然3d打印被描述为有益地允许腔室元件的几何形成,应考虑的是,具有类似几何形状的腔室元件可利用其他制造技术来制造。

如上所介绍的,某些3d打印腔室元件可经设计以在处理腔室操作期间跨越元件促进膜附着并具有更低的温差。例如,具有更低温差的用于pvd腔室中的线圈杯件将反过来帮助降低材料的膜应力,所述材料可在pvd腔室中执行的基板沉积操作期间无意地沉积在线圈杯件上。降低的膜应力增加了pvd膜对于杯件的附着性。对于杯件所增加的膜附着性耐剥脱,并因此降低了pvd腔室中的污染。因为污染的潜在性被降低了,清洁及维护pvd腔室的频率(也称为清洁之间的平均时间(meantimebetweencleaning,mtbc))可被有益地延长。腔室元件表面可具有促进对于杯件的膜附着性的特征。附着特征可包括表面纹理(例如滚花表面)、增加的粗糙度、微坑(dimple)、沟槽、突起或其他附着强化表面特征。

本发明的实施方式可包括以下内容中的一个或多个内容。腔室元件具有外表面,所述外表面形成有改造(engineered)的表面特征,这些改造的表面特征改良了了来自处理腔室的沉积材料的附着,并因此随时间降低了沉积材料剥离的倾向。改造的表面特征大致为凹陷的、凸出的或混合的表面结构的重复性图案,这些重复性图案中断宏观层面(macro-level)的表面轮廓,所述表面轮廓定义了特征形状。此外,宏观层面表面轮廓可具有设置于所述宏观层面表面轮廓上的类似的(尽管在尺寸上是小的)微观表面特征。腔室元件可形成自多个层,其中所述多个层中的各层的厚度可小于66的厚(微米)。当需要时,形成特征的凹陷及突起可以可选地形成于腔室元件的内在部分中。

在腔室元件是使用3d打印来制造的实施方式中,腔室元件打印材料可使用固化处理来固化。腔室元件可由材料前体形成,所述材料前体包括对高温表现出抗性的属性。研磨料或其他微粒可供应至用以制造腔室元件的前体材料中,这强化了腔室元件的表面的变形加工。此外,多个打印前体材料可用于形成腔室元件的不同部分。腔室元件前体材料可替代性地为熔化的材料,所述熔化的材料通过冷却来固化。替代性地,腔室元件可使用与之分离的制造技术来形成,且表面的变形加工可使用后续的附加式制造技术来形成。

本发明的优点可包括以下优点中的一个或多个。腔室元件可被制造在非常严格的容差(即良好的厚度均匀性及控制)内。沟槽及其他几何特征可形成在腔室元件的使用传统制造方法无法到达的部分中。附加式制造允许了使用传统制造方法难以复制或不可能复制的复杂形状及几何结构。此外,3d打印腔室元件相较于类似成形的传统腔室元件可被更快地且更便宜地制造。

图1a是处理腔室元件100的纹理表面102的部分平面图。腔室元件100可具有单一整体结构的元件部分主体140。元件部分主体140具有纹理表面102。替代性地,可使腔室元件100在二次操作中增加纹理表面102。纹理表面102可至少在元件部分主体140的外表面上,所述外表面暴露于处理腔室的处理环境,并且纹理表面102因此经受在纹理表面102上的沉积。纹理表面102可为大尺度(宏观)的纹理,其包括改造特征104的重复预定义图案。用语“改造特征”指的是,利用附加式制造处理(例如3d打印或其他精密制造技术)形成的定义腔室元件表面的特征的一般形状及布置,所述附加式制造处理在腔室元件的表面上产生预定义的几何形状,从而形成高容差结构的预定义图案。改造特征104可在3d打印腔室元件100的下层主体140的同时具有形成的孔的形状及布置。改造特征104可具有仅可通过附加式制造来实现的形状或配置。改造特征104可至少部分地凹陷于纹理表面102之下或纹理表面102之上。改造特征104也可实质上与腔室元件100的纹理表面102共面。改造特征104可以是连贯相连的,或可以是离散的形式。改造特征104经构造以降低膜应力及/或调整下层腔室元件100的热传导性。改造特征104可具有不同于相邻特征104的形状及形式。改造特征104可额外包括形成于改造特征104上的微观特征。形成于改造特征104上的微观特征可被类似地建构为更大的特征(即通过附加式制造技术来进行)。可选地,微观特征可使用传统糙化(例如非改造)技术(例如喷珠(beadblasting)等等)来形成。替代性地,每个改造特征的形状对于该改造特征的位置及功能是唯一的,且可不同于相邻的特征。

作为纹理表面102的一部分而形成的改造特征104可以重复性图案或以随机方式布置。例如,除其他图案外,改造特征可以小环、链甲(chainmail)、鳞片(scale)、波纹、蛋盒(egg-carton)状纹理、滚花钻石形状、紧密堆积(close-packed)形状、微坑(dimple)、树丛(grove)、突起及正弦波状轮廓的重复性图案来布置。在一个实施方式中,改造特征104经布置,以避免产生在改造特征104之间延伸的不间断的平面表面,例如通过以防止跨越纹理表面102在改造特征104之间形成视线表面(lineofsightsurface)的图案或其他布置来布置改造特征104来避免。以跨越纹理表面102在改造特征104之间没有定义视线表面的图案150来布置的改造特征104的示例描绘于图1b中。改造特征104可包括多个尺寸及形状。例如,改造特征104的图案可具有较大特征120及较小特征130两者。在其他实施方式中,可能额外地存在特征104,所述特征104可大于或小于较大特征120或较小特征130。在又一个实施方式中,特征104可被类似地调整尺寸并布置成一定图案(例如图1a中所示的图案110)。图案110可经布置,使得不存在定义于改造特征104之间的视线表面。有益地,具有纹理表面102且所述纹理表面102不具有定义于形成纹理表面102的改造特征104间的视线表面的处理腔室元件100消除了长的不间断的线性表面,所述长的不间断的线性表面易于剥离沉积材料及/或容易脱落的微粒。因此,具有纹理表面102且所述纹理表面102不具有定义于改造特征104间的视线表面的处理腔室元件100在降低沉积膜剥脱风险的情况下允许清洁之间较长的服务间隔,从而改良了生产产量、降低了维护需求及更有利地操作在处理腔室中采用了纹理处理腔室元件100的处理腔室。

可以将宏观尺度的改造特征104应用于处理腔室元件100的容易性允许了纹理表面102形成在对于传统纹理技术来说会是不可能的表面上或传统纹理技术可能潜在损害腔室元件的表面上。用于制造改造特征104的附加式制造技术在工具无法到达的位置中允许形成具有底切(undercut)、交叉孔、微坑及其他表面外形的改造特征104,并因此产生先前无法形成的结构几何形状。并且,改造特征104及纹理表面102可形成在以不锈钢、铝、陶瓷或其他材料制造的处理腔室元件100上。

如以上所讨论,改造特征104可具有任何数量的几何形状,且这些形状不必是跨越纹理表面102均匀的。虽然改造特征104在平面图中表示为圆形,改造特征104可具有复杂的形状,例如多边形或不规则形状等等。此外,跨越纹理表面102的改造特征104分布之间的间隔在形状及尺寸上可为均匀的或不规则的。

简要参照图2,改造特征104可在不扭曲改造特征104的情况下形成于曲面上。图2绘示了腔室元件200的纹理曲面的部分平面图。腔室元件200可为弯曲的、圆柱形的、具有弧的、斜的或其他圆角的表面。例如,腔室元件200可为罩、衬垫基座或其他腔室元件,并可具有内表面210及/或外表面220。内表面210及外表面220可被改造特征104纹理化,以降低膜应力及促进沉积材料的附着。通过附加式制造技术形成改造特征104允许在腔室元件200的内表面210或外表面220上的曲线202处或曲线202附近的改造特征104在层的厚度上具有一致性。此外,改造特征104的形状及尺寸可不被曲线202扭曲,特别是例如当曲线202形成于内侧转角上时。因此,改造特征104可提供均匀的锚点以供沉积材料粘附。

改造特征104的示例实施方式将参照图3、图4a-4f及图5a-5b来进一步描述。图3是通过图1的区段线3-3所截取的图1的处理腔室元件的纹理表面的改造特征的部分横截面图。图4a-4f是处理腔室元件的纹理表面102的示例改造特征104的部分平面图。图5是处理腔室元件的纹理表面的额外示例改造特征的部分平面图。应理解的是,绘示于图4a-4f及图5a-5b中的改造特征104仅是代表性的,且改造特征104可具有适于促进所需性质(例如膜附着及/或热传导性)的材料、形状及尺寸等属性。

图3图示两个相邻的特征104,标识为宏观层面改造特征310及第二宏观层面改造特征320。两个宏观层面的改造特征310、320只是设置于腔室元件100上的多个改造特征104中的两个改造特征104。两个宏观层面的改造特征310、320可具有结构性差异,例如图示于图4a-4f及图5a-5b的示例中的那些差异。宏观层面的改造特征310可实质类似于第二宏观层面改造特征320。替代性地,两个宏观层面特征310、320可为不同的。例如,宏观层面的改造特征310可类似于图4a中的改造特征410,同时第二宏观层面改造特征可类似于图4d中所示的改造特征430。

作为腔室元件100的一部分而形成的改造特征104可具有凹陷、突起或混合凹陷及突起的重复性预定图案,所述图案产生中断宏观层面表面轮廓的改造表面结构(与通过表面喷砂技术所产生的微观层面粗糙度的随机的峰及谷相反),以促进沉积材料的膜附着。

第二宏观层面改造特征320图示为具有可选的外层324。可选外层324也可存在或可不存在于所有改造特征104上,且此处为了易于讨论,仅图示在第二宏观层面特征320上。可选外层324从基材322到外表面332可额外具有层。例如,基材322可为考虑成本、热传输或其他期望属性而选择的合适材料。可选外层324可具有一层或多层堆叠以形成可选外层324。层的堆叠可经布置以从基材322的属性到外表面332促进附着及改变。例如,基材322可为不锈钢材料,且外表面332可由陶瓷材料形成,其中外层324掺合了两个材料之间的过渡物。

跨越腔室元件的离散区域的改造特征104的布置可在腔室元件的局部属性上提供变化。例如,图4a-4f及图5a-5b中所示的各种改造特征104可用于在处理腔室的处理环境的各种区域中调整热传导性、膜应力及其他属性,以促进均匀性及降低环境污染。在某些实施方式中,改造特征104也可跨越腔室元件100的表面随机地布置。改造特征104可提供宏观纹理区域,所述宏观纹理区域促进期望属性(例如沉积材料的附着)。例如,改造特征104可具有宏观层面特征310。

在某些实施方式中,微观层面特征304可形成于宏观层面特征310的外表面332上。在某些实施方式中,微观层面特征304可位于宏观层面特征310、320之间的表面302上。在其他实施方式中,改造宏观层面特征310上可不形成有额外的改造特征。微观层面特征304可实质类似于宏观层面特征310。替代性地,微观层面特征304可在形状上不同于最近的宏观层面特征104。例如,微观层面特征304可为改造特征,且具有如图4a-4f及图5a-5b的示例中所示的那些结构。微观层面特征304可作为改造特征104的一部分而被形成。微观层面特征304可呈一定图案而完全跨越外表面332形成或仅部分地形成于外表面332上。例如,微观层面特征304可存在于改造特征104的顶面312上而不是侧面311上。在其他实施方式中,微观特征可以不是改造特征,且使用传统粗糙化技术(例如喷珠技术等等)来形成。

更小的子特征314可以可选地形成于微观特征304中的一个或多个微观特征上。在某些实施方式中,子特征314直接形成于微观特征304或形成在相邻微观特征304之间的表面上。子特征314可实质类似于宏观特征104或微观特征304。替代性地,子特征314可在形状或尺寸上不同于最近的宏观特征104或微观特征304。在一个实施方式中,子特征314可具有如图4a-4f及图5a-5b的示例中所示的那些结构。子特征314可为改造特征,或可选地,子特征314可使用传统粗糙化技术(例如喷珠技术等等)来形成。此外,可考虑到,甚至更小的额外特征也可形成于子特征314上。

改造特征104(例如可选地具有额外微观特征204及/或子特征314的宏观特征310)可经构造以增加腔室元件100、200的表面区域。增加的表面区域在处理期间帮助增加膜附着。因此,改造特征104促进附着且减轻了附着材料的剥脱及处理腔室的可能污染。改造特征104也可经构造以改变腔室元件100、200的热传导性。

图4a-4f及图5a-5b绘示适用于宏观特征、微观特征及更小特征310、304、314的示例改造特征104。在一个实施方式中,改造特征410(如图4a中所示)可具有改造特征410的外缘411上的底切(undercut)412。底切412有益地提供用于促进强力膜附着的安全锚点。底切412可有益地经调整,以提供用于在隔绝某些腔室元件的同时跨越其他腔室元件使温度变化最小化的热传导。例如,底切412可被制作得更大或更小,以调整膜及腔室元件之间的热传输。简要参照图5a及5b,相较于图5b,在图5a中改造特征410具有更大的底切412。图5a中的更大的底切412造成了具有更小直径530的杆536,所述杆536将上部538附接至纹理表面102。杆536的更小直径530限制了从上部538到纹理表面102的热传输,且如此,杆536充当热壅塞(thermalchoke),所述热壅塞限制改造特征410及元件部分主体140之间的热传输。同样地,图5b中的更小的底切412造成了具有更大直径520的杆526,所述杆526将上部528附接至纹理表面102。杆526的更大直径520促进从上部538到纹理表面102的热传输。有益地,热传输可通过调整用于改造特征410的底切412的尺寸而被调整。

在另一实施方式中,改造特征104可包括改造特征420,所述改造特征420具有设置于改造特征420的内部表面上的底切422,如图4b所示。底切422可具有开口423,所述开口423比内部壁425更窄。有益地,底切422可为沉积膜提供在处理腔室元件时不易损坏的安全锚点。在另一实施方式中,改造特征104可从圆形至三角形、正方形或多边形变化所述改造特征104的形状。所述改造特征104可形成三维(3d)微坑或突起结构,且也可沿着周边具有沟槽。

在又一实施方式中,改造特征104可包括具有内部空隙432的改造特征430,例如图4c所示。内部空隙432可具有上表面433,所述上表面433完全包住(encase)内部空隙432,以最小化热传导并同时额外地最小化膜附着。在某些实施方式中,上表面433提供小的通气孔(未图示)以使内部空隙432通气。替代性地,上表面433可部分地覆盖或桥接内部空隙432。在其他实施方式中,上表面433跨越(span)空隙432且提供二个或更多个开口。有益地,热传导可被调整,同时改造特征430的内部空隙432为强力膜附着提供锚。内部空隙432可以可选地由具有不同于上表面433的材料的热延展系数的材料来填充。

在又一实施方式中,改造特征104可包括具有孔442的改造特征440,如图4d所示。改造特征440可具有圆的、矩形的或任何合适的横截面,以用于调整材料的质量,以用于将热向下传导至纹理表面102。孔442可为通孔或盲孔。孔442可以与纹理表面102平行的方向或以另一角度而被定向。有益地,孔442可降低改造特征440的热质量,同时为沉积膜提供多个锚点以促进膜的强力附着。孔442可替代性地以微坑、沟槽或槽等形状的形式而被形成在改造特征440中。

在又一实施方式中,改造特征104可包括附接至纹理表面102的扭转或螺旋特征450,如图4e所示。螺旋特征450可与孔(例如图4d中所示的孔442)一起形成,或不具有孔。螺旋特征450具有表面451,表面451面向纹理表面102同时被螺旋特征450覆盖。如此,表面451可在暴露表面452上促进膜附着。有益地,螺旋特征450可提供大的热质量,同时仍为沉积膜提供锚点以促进膜的强力附着。

在又一实施方式中,改造特征104可包括钩特征460,如图4f所示。钩特征460可为圆的、矩形的或任何合适的横截面,以调整经构造以向纹理表面102传导热的材料质量。钩特征460可与孔(例如图4d中所示的孔442)一起形成,或不具有孔。钩特征460具有表面462,表面462面向纹理表面102同时被钩特征460的主体462覆盖。如此,表面462可促进膜附着。有益地,钩特征460可提供能够调整的热质量,同时为沉积膜提供锚点以促进膜的强力附着。

应理解的是,关于图4a-4f及5a-5b用于改造特征104所述的形状仅为示例性形状的样本,且改造特征104的其他形状及形状组合是被考虑的。例如,图4a的改造特征410可具有带有第二底切或堆叠肋式效果(stackedribbedeffect)的外缘411,进一步增加表面区域以促进附着。

现参照图6,图6绘示了示例性物理气相沉积(pvd)处理腔室600,所述处理腔室600具有适合于纹理表面102的元件且具有改造表面改造特征104。适合的pvd腔室的示例包括sipencore改造特征处理腔室(可从加州圣克拉拉的应用材料公司购得)。考虑的是,从其他制造商取得的处理腔室也可适于执行本文所述的实施方式。在一个实施方式中,处理腔室600能够在基板618上进行沉积,例如沉积钛、氧化铝、铝、氮化铝、铜、钽、氮化钽、氮化钛、钨或氮化钨。

依据一个实施方式,处理腔室600具有感应线圈642。处理腔室600具有主体605,所述主体605包括侧壁602、底部603及盖体604,以封闭内部容积606。基板支架(例如基座608)设置于处理腔室600的内部容积606中。基板传输接口609形成于侧壁602中,用于将基板传输进入及离开内部容积606。

气体源610耦合至处理腔室600,以将处理气体供应至内部容积606。在一个实施方式中,若必要,处理气体可包括惰性气体、非反应性气体及反应性气体。可由气体源610所提供的处理气体的示例包括(但不限于)氩气(ar)、氦(he)、氖气(ne)、氮气(n2)、氧气(o2)及h2o等等。

抽吸装置612耦合至处理腔室600而与内部容积606连通,以控制内部容积606的压力。在一个实施方式中,处理腔室600的压力可维持在约1托耳(torr)或低于1托耳。在另一个实施方式中,处理腔室600内的压力可维持在约500毫托耳(millitorr)或低于500毫托耳。在又一个实施方式中,处理腔室600内的压力可维持在约1毫托耳和约300毫托耳。

盖体604可支撑溅射源,例如靶材614。靶材614一般提供将沉积于基板618中的材料源。靶材614可由包含以下物质的材料而被制造:钛(ti)金属、钽金属(ta)、钨(w)金属、钴(co)、镍(ni)、铜(cu)、铝(al)、上述物质的合金、上述物质的组合等等。在本文描绘的示例性实施方式中,靶材614可由钛(ti)金属、钽金属(ta)或铝(al)所制造。

靶材614可耦合至dc电源组件616。磁控管619可耦合至靶材614的附近。磁控管619组件的示例包括电磁线性磁控管、蛇纹(serpentine)磁控管、螺旋磁控管、双指(double-digitated)磁控管、矩形化螺旋磁控管等等。替代性地,强力磁体可放置在靶材614的附近。磁体可为稀土磁体,例如用于产生强力磁场的钕或其他合适的材料。磁控管619可约束等离子体以及沿靶材614分布等离子体浓度。

控制器698耦合至处理腔室600。控制器698包括中央处理单元(cpu)660、存储器658及支援电路662。控制器698用于控制工艺序列、调节从气体源610进入处理腔室600的气流及控制靶材614的离子轰击。cpu660可为用于工业设定中的任何形式的一般用途计算机处理器。软件程序可储存在存储器658中,例如随机存取存储器、只读存储器、软盘或硬盘驱动器,或其他形式的数字存储器。支援电路662通常耦合至cpu660,且可包括高速缓存(cache)、时钟电路、输入/输出子系统、电源等等。软件程序当被cpu660执行时,将cpu660转换成特定用途计算机(控制器)698,所述特定用途计算机(控制器)698控制处理腔室600,使得依据本发明来执行工艺。软件程序也可被第二控制器(未图示)储存及/或执行,所述第二控制器相对于处理腔室600位于远程端。

依所需,额外的rf电源680也可通过基座608耦合至处理腔室600,以在靶材614及基座608之间提供偏压电源。在一个实施方式中,rf电源680可向基座608提供电力,以使用约1mhz及约100mhz之间的频率(例如约13.56mhz)来偏压基板618。

基座608可在升起位置及降低位置之间移动,如由箭头682所示的。在降低位置处,基座608的顶面611可与基板传输接口609对准或正好在基板传输接口609之下,以促进将基板618输入进入处理腔室600及从处理腔室600移除基板618。顶面611可具有边缘沉积环636,所述边缘沉积环636经调整尺寸以在边缘沉积环636上接收基板618,同时保护基座608免受等离子体及沉积材料的影响。基座608可移动至靠近靶材614的升起位置,用于在处理腔室600中处理基板618。覆盖环626可在基座608在升起位置处时接合边缘沉积环636。覆盖环626可防止沉积材料在基板618及基座608之间桥接。当基座608是在降低位置时,覆盖环626悬浮于基座608和位于基座608上的基板618的上方,以允许基板传输。

在基板传输期间,机器人叶片(机器人叶片上具有基板618)(未图示)延伸穿过基板传输接口609。升降销(未图示)延伸穿过基座608的顶面611,以从基座608的顶面611升降基板618,因此允许机器人叶片有空间在基板618及基座608之间传送。机器人可接着携基板618通过基板传输接口609离开处理腔室600。升起及降低基座608及/或升降销可由控制器698控制。

在溅射沉积期间,基板618的温度可通过利用设置于基座608中的热控制器638来控制。基板618可被加热至用于工艺的期望的温度。在处理之后,基板618可利用设置于基座608中的热控制器638来快速冷却。热控制器638控制基板618的温度,且可用于在数秒至约一分钟内将基板618的温度从第一温度改变至第二温度。

内罩620可定位在靶材614及基座608之间的内部容积606中。内罩620可由铝或不锈钢等材料形成。在一个实施方式中,内罩620由不锈钢形成。外罩622可形成于内罩620及侧壁602之间。外罩622可由铝或不锈钢等材料形成。外罩622可延伸越过内罩620,且经构造以当基座608在降低位置时支撑覆盖环626。

在一个实施方式中,内罩620包括径向凸缘623,所述径向凸缘623包括内径,所述径向凸缘623的内径大于内罩620的外径。径向凸缘623相对于内罩620的内径表面以大于约九十度(90°)的角度从内罩620延伸。径向凸缘623可为从内罩620的表面延伸的圆形脊,且通常适于与形成于覆盖环626中的凹陷匹配,所述覆盖环626设置于基座608上。凹陷可为形成于覆盖环626中的圆形沟槽,所述圆形沟槽相对于基座608的纵轴围绕(center)覆盖环626。

处理腔室600的感应线圈642可具有一匝(turn)。感应线圈652可正好在内罩620的里面且定位于基座608上。感应线圈642可相较于靶材614定位得更靠近基座608。感应线圈642可由成分上类似于靶材614的材料(例如钽)形成,以充当次要溅射靶材。感应线圈642由多个线圈间隔件640自内罩620而被支撑。线圈间隔件640可从内罩620及其他腔室元件与感应线圈642电性隔离。

感应线圈642可耦合至电源650。电源650可具有电导线,这些电导线贯穿处理腔室600的侧壁602、外罩622、内罩620及线圈间隔件640。电导线在感应线圈642上连接至突片644以向感应线圈642提供电力。突片644可具有多个绝缘的电连接件用于向感应线圈642提供电力。此外,突片644可经构造以与线圈间隔件640接合并支撑感应线圈642。电源650向感应线圈642施加电流,以在处理腔室600内诱发rf场,并将电力耦合至等离子体用于增加等离子体密度(即反应离子浓度)。

图7描绘具有线圈间隔器640的工艺套件700的示意顶视图,工艺套件700用于图6所示的处理腔室600。工艺套件700包括内罩620、外罩622及感应线圈642。工艺套件700可附加性地或替代性地包括:沉积环、覆盖环、阴影环、聚焦环、阴影框等等。工艺套件700具有中心轴701,内罩620、外罩622及感应线圈642围绕在所述中心轴701周围。内罩620具有顶面725、内表面722及外表面724,所有的这些表面可具有改造表面改造特征104。

额外参照图6,内罩620的内表面722暴露于处理腔室600的内部容积606。外表面724设置于侧壁602及外罩622的附近。顶面611设置于处理腔室600的盖体604附近。内罩620沿下顶面721具有多个固定件723,用于将内罩620附接至外罩622。

外罩622沿外表面724而被设置,并在内罩620下方延伸。外罩622具有内径772,所述内径772延伸超出内罩620的内表面722。内径772相较于内表面722更靠近中心轴701。在一个实施方式中,内表面722相较于感应线圈642更靠近中心轴701。

感应线圈642由线圈间隔件640以距离740从内罩620的内表面722隔开。线圈间隔件640具有顶部744及底部746。距离740由线圈间隔件640的顶部744距底部746有多远而被决定。也就是说,线圈间隔件640的高度决定距离740。距离740可经调整用于最佳化等离子体密度,并防止通电的感应线圈642产生电弧。

线圈间隔件640可围绕中心轴701周围圆周隔离。例如,所述多个线圈间隔件640中的每一个可被间隔750隔开。相邻线圈间隔件640的等距间隔750提供感应线圈642的均匀性支撑。

感应线圈642可具有第一端708及第二端706。感应线圈642可具有单一匝,使得在端706、708之间形成间隙742。感应线圈642的端706、708可被支撑。在一个示例中,所述多个线圈间隔件640的第一线圈间隔件780可在第一端708附近与感应线圈642接合,且所述多个线圈间隔件640的第二线圈间隔件760可在第二端706附近与感应线圈642接合,以在间隙742附近向感应线圈提供支撑。替代性地,线圈间隔件640可跨越间隙742,以物理上与感应线圈642的端706、708两者接合,而不电性桥接端706、708。如此,一个线圈间隔件640可支撑第一端708及第二端706两者。

如以上所讨论的,感应线圈642可由多个线圈间隔件640所支撑。例如,感应线圈642可具有三个或更多个线圈间隔件640以支撑感应线圈642。在一个实施方式中,所述多个线圈间隔件640的第一线圈间隔件780可具有电性连接器用于向感应线圈642提供电力。在一个实施方式中,所述多个线圈间隔件640的第二线圈间隔件760可具有电性返回路径用于将感应线圈642耦合接地。替代性地,第一线圈间隔件780可通过第一线圈间隔件780向感应线圈642提供电力及返回路径两者。

现将相对于线圈间隔件640描述具有表面改造特征104的腔室元件100、200的示例性示例。图8描绘图7中绘示的线圈间隔件640的横截面图。线圈间隔件640可包括杯件840。在一个实施方式中,线圈间隔件640仅包括杯件840。线圈间隔件640可以可选地包括至少一个突片接收器842。可使用固定件846一起保持突片接收器842及杯件840以形成线圈间隔件640。在又一实施方式中,突片接收器842且固定件846可整合成线圈间隔件640的组件中的单一工件。

杯件840具有顶部862及底部860。底部860可设置于内罩620的内表面722附近。杯件840、突片接收器842及固定件846可附接在一起以将线圈间隔件640固定至内罩620。在一个实施方式中,杯件840的底部860设置于内罩620的内表面722上的开口820附近。在另一实施方式中,杯件840的底部860设置于内罩620的内表面722附近。例如,开口820可具有通过开口820而延伸的杯件840、突片接收器842或固定件846中的一个。在另一实施方式中,内罩620可具有特征(未图示),所述特征与杯件840的迎受(complimentary)特征相互配合以将线圈间隔件640定位及/或固定至内罩620。例如,线圈间隔件640可具有螺纹、套圈、楔销(taper)或适于将线圈间隔件640附接至内罩620的其他结构。替代性地,底部860可例如利用环氧树脂或其他粘着剂而附着至内表面722。

突片接收器842可充当背衬或结构性构件用于将杯件840附接至内罩620。此外,突片接收器842或固定件846可与感应线圈642的突片644接合。突片接收器842可具有接收特征844用于形成分别与突片644上的迎受突片特征818进行的接合或连接。在一个实施方式中,特征844、818接合以在突片644及线圈间隔件640之间形成结构性连接,用于支撑感应线圈642。特征844、818可为指状接合件、锥形接合件或其他用于在突片644及线圈间隔件640之间形成适于支持感应线圈642的接合的合适的结构。在某些实施方式中,特征844、816可形成上述电性连接的一部分。

线圈间隔件640中的一个或多个线圈间隔件(例如图7所示的所述多个线圈间隔件640的第一线圈间隔件780)可具有通过线圈间隔件640而延伸的电性路径884。电性路径884可在感应线圈642上的突片644及电源650之间提供电性连接,用于将感应线圈642通电。替代性地,线圈间隔件640可不提供电性路径,且用于将感应线圈642通电的电力以另一方式提供而不穿过线圈间隔件640中的一个线圈间隔件。电性路径884可为用于传送电信号的传导性路径。替代性地,电性路径884可为空隙或空间,而在电源650及感应线圈642的突片644之间提供电性连接的接取能力(accessibility)。

杯件840可由热绝缘材料来形成,例如陶瓷。附加性地或替代性地,杯件840可由电性绝缘材料形成。仍然替代性地,杯件840可由金属形成,例如不锈钢。杯件840可自内罩620与感应线圈642电性隔离。杯件840可具有开口872。开口872可经构造以接受突片644。开口872可设置于顶部862中,并朝底部860延伸。在一个实施方式中,开口872具有圆形轮廓,且经构造以接受圆突片644。在另一实施方式中,开口872经调整形状以接收具有迎受的相互配合的形状的突片644。

线圈间隔件640的杯件840可具有表面,这些表面经构造以在处理腔室600的操作期间促进附着并最小化沉积材料的剥脱。图9到11绘示了线圈间隔件640的杯件的各种布置,这些杯件的布置经构造以抑制沉积材料的剥脱。图9描绘了绘示杯件900的杯件840的一个实施方式的横截面图。图10描绘了绘示杯件1000的杯件840的一个实施方式的横截面图。图11描绘了绘示杯件1100的杯件840的又一个实施方式的横截面图。

在某些实施方式中,线圈间隔件640可使用附加式制造方法来形成,例如3d打印。线圈间隔件640的杯件840、900、1000、1100可使用3d打印工艺来制造,所述3d打印工艺例如在熔融成单一整体结构的多个层中从序列的材料沉积形成杯件840、900、1000、1100。用于3d打印杯件840、900、1000、1100的合适技术可通常包括定向能量沉积、粉末床熔融或片积层法等等。例如,聚喷(polyjet)3d技术是层附加式技术,其中层薄达16微米(0.0006″)。聚喷快速成型工艺使用与uv可固化材料结合的高解析度喷墨技术,以在杯件840、900、1000、1100中产生高度细密及准确的层或表面修饰。在另一示例中,3d打印机使用熔融沉积建模(fuseddepositionmodeling,fdm)以附加地逐层铺设材料。线圈杯件材料的纤丝或线从线圈展开且熔融在一起以产生杯件840、900、1000、1100。在又一示例中,3d打印机将粘合剂喷墨进粉末床。此技术称为“粘合剂喷射”或“落在粉末上(drop-on-powder)”。粉末床可包含添加物以及基材,用于在杯件840、900、1000、1100中产生特征及特性。喷墨打印头跨越粉末床移动,选择性地沉积液态粘合材料。粉末薄层跨越完成区段而被扩散,且所述工艺在各层附着到上一层时重复。在另一示例中,杯件840、900、1000、1100可使用选择性激光烧结来进行3d打印。激光或其他合适的电源通过在由3d模型所定义的粉末中的点处自动瞄准激光来烧结粉末化材料。激光将材料结合在一起以产生固态整体结构。当层被完成时,建造平台向下移动,且新的材料层被烧结以形成杯件840、900、1000、1100的下个横截面(或层)。重复此工艺一次一层地建立杯件840、900、1000、1100。选择性激光熔化(selectivelasermelting,slm)使用类似的概念,但在slm中,材料被完全熔化,而不是烧结,允许了不同的晶格结构、多孔性等属性。在另一示例中,杯件840、900、1000、1100使用片积层法来产生。杯件840、900、1000、1100可通过将材料片成层于彼此的顶部,并将它们粘合在一起来制造。3d打印机接着将杯件840、900、1000、1100的轮廓切进结合的材料片。重复此工艺一次一层(片)地建立杯件840、900、1000、1100以形成整体结构。在又另一示例中,杯件840、900、1000、1100使用定向能量沉积(directedenergydeposition,dep)来产生。dep是一种附加式制造工艺,在这种工艺中,使用经聚焦的热能以通过熔化材料来熔融这些材料。材料可被馈送进由电子束所产生的熔池,所述电子束接着被计算机引导以移动一次,以在建造平台上形成杯件840、900、1000、1100的层,以形成整体结构。应理解的是,示例技术适于3d打印杯件840、900、1000、1100,其他3d打印技术也是如此。

应理解的是,添加物可合并进基材,用于在线圈间隔件640中产生表面纹理或其他特征。例如,添加物可用于在杯件840、900、1000、1100的表面中产生多孔性,用于在等离子体处理期间所沉积的材料的更佳的附着。添加物在整个杯件840、900、1000、1100的基材中可具有均一的浓度或可不具有均一的浓度。添加物可在杯件840、900、1000、1100的不同区域中在浓度上逐渐改变。例如,添加物从杯件840、900、1000、1100的边缘到中心而跨越杯件840、900、1000、1100在浓度上可逐渐减少或增加。因此,添加物在杯件840、900、1000、1100的最终表面处或附近可具有较大的浓度。

孔隙或表面特征可使用添加物(例如喷墨气泡)、泡沫uv可固化特征、反应性喷射或用于产生孔隙的其他技术来形成于杯件840、900、1000、1100表面上。可通过快速混合粘滞的配方,接着立刻通过进行uv固化以将气泡捕捉到位,来在最终固化的材料中实现杯件840、900、1000、1100的多孔性。替代性地,惰性气体(例如氮)的小气泡可用作添加物并引入配方、混合及立刻固化。也可通过增加造孔剂(例如直径上约5nm-50例如的聚乙烯二醇(peg)、聚氧化乙烯(peo)、中空微粒或微球体,例如明胶、壳聚糖、si3n4、聚甲基丙烯酸甲酯(pmma)、介孔纳米微粒、羧基甲基纤维素(cmc)、大孔隙水凝胶及乳胶微球体)来实现孔隙。替代性地,可通过结合盐颗粒(nacl)及peg作为联合造孔剂来采用榨取(leeching)技术,其中盐随后被榨取出以形成孔隙。

也可通过增加uv活化物种来实现多孔性,这些uv活化物种产生气体及泡沫(例如在光酸发生器的帮助下),例如增加像是2,2例-偶氮二异丁腈(aibn)的热引发剂。在暴露于uv之后,交联的放热反应使得uv可固化配方加热,这活化了aibn,这也产生了n2气体,所述气体在固化处理期间被困住,留下了孔隙。替代性地,uv可固化的聚氨酯-丙烯酸酯(pua)可具有用于产生微孔隙的中空的纳米微粒。

杯件900、1000、1100具有主体922。主体922可为单一构造的(例如从3d打印而来的构造),且具有内部表面972及外部表面942。内部表面972设置于开口872附近。内部表面972及外部表面942可被隔开以在杯件900、1000、1100的顶部862处形成外盖体962。外盖体962可经构造以刚性地以最小应力支撑感应线圈642。外盖体962可经调整尺寸以促进热散逸。例如,更大的(即更厚的)外盖体962具有更多质量且相较于较薄的盖体散热更佳。外盖体962为了较佳的热性能,可具有约2mm及约8mm之间的厚度924(例如约5mm)。虽然杯件900、1000、1100可在类似条件下并以类似温度在处理腔室中被操作,各杯件900、1000、1100的最大操作温度受到杯件900、1000、1100的属性及几何形状(例如外盖体962的形状及厚度)的影响。当杯件用于在相同温度处理下的相同处理腔室中时,一个实施方式的杯件可具有超过来自其他实施方式的杯件最大温度的最大温度。

杯件900、1000、1100可在外部表面942上具有实质相同的表面区域。例如,外部表面942可具有约9.000平方英尺(in2)至约9.500in2之间的表面区域。在一个实施方式中,杯件900、1000、1100的外部表面上具有约4.2388in2的表面区域。应理解的是,其他参数(例如容积及重量)对于杯件900、1000、1100而言实质上可为不同的,且将在以下与杯件900、1000、1100的各实施方式一起个别讨论。

虽然杯件900、1000、1100图示为围绕中心线975周围而对称,杯件900、1000、1100在形状上可为不规则的或不对称的。杯件900、1000、1100的开口876延伸穿过杯件900、1000、1100的顶部862。在一个实施方式中,开口876可描述为围绕中心线975的圆柱投影(仅由图9中的虚线976所示)。开口876延伸穿过杯件900、1000、1100至内盖体971。内盖体971在杯件900、1000、1100中朝中心线975延伸至底开口946。底开口946可经构造以与处理腔室600的内罩620接合。底开口946也可经构造以在处理腔室600及感应线圈642之间提供电性或其他连接。例如,感应线圈642可具有电导线,这些电导线穿过底开口946至rf电源650,用于将感应线圈642通电。

外部表面942可具有形成于外部表面942上的表面特征990,所述表面特征990促进对于杯件900、1000、1100的附着。类似地,内部表面972可具有形成于内部表面972上的表面特征990。形成于表面972、942上的特征990可实质类似。形成于表面972、942上的表面特征990可为重复性预定图案的凹陷、突起或凹陷及突起的混合,所述图案产生中断表面972、942的宏观层面表面外形的改造表面结构(与通过由表面喷砂技术所产生的微观层面粗糙度的随机的峰及谷相反),以促进沉积材料的膜附着。替代性地,表面特征990的几何形状在表面972、942上可为不同的及/或跨越表面972、942中的一个或多个为不同的。表面特征990可以局部图案形成,使得表面特征990的图案在任何表面972、942上可为不同的。表面特征990也可具有不规则图案或形状,使得跨表面972、942的表面特征990的相似性是不可辨的。表面特征990可提供促进沉积材料附着的宏观纹理区域。在等离子体工艺期间,沉积材料可轻易附着至形成于外部表面942上的表面特征990。沉积材料也可轻易附着至形成于杯件900的内部表面972上的表面特征990。表面特征990可额外经构造以增加杯件900、1000、1100的表面区域。增加的表面区域在处理期间帮助增加膜附着。因此,特征990促进附着且减轻了附着材料的剥脱及处理腔室的可能污染。

表面特征990可为空隙,例如由在3d打印工艺期间所形成的孔隙所产生。表面特征990可为纹理,例如小环、链甲、鳞片、波纹、蛋盒状纹理或用于强化膜附着的其他合适纹理。特征990也可包括滚花钻石形状、紧密堆积形状、微坑、沟槽、突起、正弦波状轮廓或用于增加杯件900、1000、1100的表面区域的其他合适的宏观层面纹理产生结构。表面特征990也可打印于杯件900、1000、1100的顶部862上。顶部862可具有表面轮廓(例如正弦波状轮廓),用于增加表面区域及促进附着。

参照图9,杯件900具有延伸超出开口872外的空隙954。杯件900的顶部862处的开口872向下延伸至内盖体971,如虚线976所示。内部空隙954从虚线976延伸至内部表面972的下部973。空隙954被杯件900的底面952所约束,所述底面952从在内盖体971附近的突起980延伸至内部表面972的下部973。突起980具有顶面982、内表面981及外表面983。外表面983在底面952附近。内表面981可与内部表面972显著对准,使得内表面972、981与由虚线976所绘示的圆柱投影对准。顶面982、内表面981及外表面983可具有形成于顶面982、内表面981及外表面983上的表面特征990,以促进沉积膜的附着。

杯件900的主体922具有壁987。壁987具有由壁987的内部表面972及外部表面942间的距离所定义的厚度。在一个实施方式中,壁987的厚度是实质均匀的。也就是说,外盖体962的厚度924在整个杯件900的壁987的轮廓上是实质相同的。在另一实施方式中,壁987具有不均匀的厚度。例如,外盖体962的厚度924可大于在壁987的底部860处厚度925。

在一个实施方式中,杯件900的主体922可由不锈钢或其他合适材料形成。杯件900可经构造以促进热均匀性,且因此降低附着至杯件900的材料的应力,这预想地减轻了附着材料的剥脱。杯件900的热质量及热散逸属性可降低杯件900的顶部862及底部860之间的热梯度。

参照图10,杯件1000具有延伸超出开口872外的空腔1045。空腔1045可具有顶面1061、底面1062及内壁1063。顶面1061及底面1062可具有深度1047,深度1047由从内壁1063到开口872的表面1061、1062的距离所定义。内壁1063可具有高度1046,高度1046由顶面1061及底面1062间的距离所定义。顶面及底面1061、1062连同内壁1063实质描述空腔1045的范围。在一个实施方式中,空腔1045具有实质矩形的侧轮廓。在另一实施方式中,空腔1045可具有三角形侧轮廓,其中顶面1061及底面1062相交且不存在内壁1063。在又一实施方式中,空腔1045可具有实质梯形的侧轮廓,其中顶面1061的深度不同于底面1062的深度。应理解的是,空腔1045的形状及尺寸可经选择以影响杯件1000的热质量及热散逸特征。

杯件1000的主体922可由不锈钢或其他合适材料形成。杯件1000可通过附加式制造来形成,其中表面特征990形成于主体922上以促进沉积材料的附着。

参照图11,杯件1100具有鳍片1150。线槽1151定义于鳍片1150之间。鳍片1150可具有宽度1052,所述宽度1052可经调整以实现所需的热传输率。线槽1151可具有宽度1054,宽度1054由鳍片1150的数量及鳍片的宽度1052所决定。在一个实施方式中,杯件1100可具有8个等距间隔的鳍片1150。替代性地,杯件1100可具有约4及18个之间的等距间隔的鳍片1150,例如12个鳍片或8个鳍片。杯件1100可在感应线圈642附近额外具有约2mm至约8mm之间(例如约5mm)的凸缘壁厚度1110。鳍片1150及凸缘壁厚度1110帮助跨越杯件1100降低温差。用于杯件1100的鳍片1150更快地将热传开,藉此允许杯件1100相较于无鳍片的杯件1000维持在更低的温度。鳍片1150的宽度1052扮演着降低杯件1100的温度的角色。例如,具有约2mm的宽度1052的8个鳍片1150的杯件可具有略高于具有约3mm的宽度1052的8个鳍片1150的杯件的温度。因此,增加鳍片1150的宽度1052可降低在处理腔室操作期间由杯件1100所经历的温度。

杯件1100可由不锈钢或其他合适的材料通过打印(例如3d打印)来形成。杯件1100的不锈钢材料容许杯件1100良好地经历超过杯件1100在操作期间经历的最大温度的温度。杯件1100可具有二个或更多个固定件以在内罩上将杯件1100固持就位。可增加固定件的数量以改良杯件1100及内罩之间的热传导性。

在一个实施方式中,杯件1100具有8个鳍片及约5mm的凸缘壁厚度1110。杯件1100可在特征990形成于表面上(包括鳍片1150及线槽1151)的情况下由附加式制造所形成,以促进沉积材料的附着。杯件1100可经构造以促进热均匀性,并因此降低应力及减轻附着材料的剥脱。杯件1100的热质量及热散逸特征可降低杯件1100的顶部862及底部860之间的热梯度。

在又一实施方式中,杯件1100具有12个鳍片及约2mm的凸缘壁厚度1110。在另一实施方式中,杯件1100具有12个鳍片及约5mm的凸缘壁厚度1110。在又一实施方式中,杯件1100具有12个鳍片及约7mm的凸缘壁厚度1110。

有益地,3d打印腔室元件(例如线圈间隔件640的杯件)轻易地允许增加在腔室元件上促进沉积材料(也就是膜)附着的表面特征990。3d打印腔室元件也允许形成内部特征,例如杯件840中所示的空隙954、空腔1045及鳍1150,这在杯件840内促进更低的操作温度且造成更低的温度梯度。较低的温度梯度降低了沉积材料中的膜应力并降低了膜剥脱的发生。因此,腔室元件上的特征促进降低了被引进处理环境的微粒的膜剥脱,并降低了处理腔室的清洁及维护之间的频率或平均时间。

虽以上所述针对本发明的实施方式,可在不脱离本发明的基本范围的情况下设计本发明的其他的及进一步的实施方式,且本发明的范围是由随附的权利要求书所决定的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1