发光组件以及发光组件的制造方法与流程

文档序号:13809727阅读:210来源:国知局
发光组件以及发光组件的制造方法与流程

本发明涉及一种发光组件以及发光组件的制造方法,特别是关于在基板上通过磊晶成长而形成一第一半导体层、一活性层、一第二半导体层以及一窗层兼支持基板并在除去基板后经形成电极的发光组件施以表面粗糙化处理的发光组件以及其制造方法。



背景技术:

将发光组件芯片予以封装之时,以往于封装体设置反射膜而于其底部安装芯片,并以朝向与安装所使用的粘着剂的相反侧(芯片上方)取出光作为前提而完成芯片设计。

因此,现有技术中,提案有:只在芯片上方或是下方这一类光取出方向实施表面粗糙化(磨砂(frost)、凹凸形状)。此种类型的状况,以非光取出面所反射出的光在自光取出面发出光之前而必定通过活性层重复多次的多重反射。由于活性层为发光层也同时是光吸收层,因此重复多重反射的发光组件在原理上并无法提升其光取出效率(外部量子效率)。因此在理想的情况下预先在发光组件全面上实施表面粗糙化处理对于外部量子效率的提升来说是重要的。

作为algainp系材料的表面粗糙化处理的习知技术,专利文献1中揭示有于披覆层表面通过反应速度慢的rie法而形成粗糙面的方法。湿式法对于披覆层来说蚀刻速度太快,因此难以表面粗糙化。因此,在所揭示的技术中只有使用rie(icp)。专利文献2中揭示有通过微影法而形成光阻图案,且使用湿式蚀刻的方法。此方法中,由于进行蚀刻的区域限定于光阻开口部,因此容易控制蚀刻速度。

但是,以黄色~红色发光的发光组件中,比较普通的是以algainp系材料组成发光部,并以gaasp系材料组成窗层部。gaasp对于湿蚀刻来说是难以蚀刻的材料,algainp为容易蚀刻的材料。因此,一般能对algainp系发光部进行湿蚀刻的材料无法对gaasp系窗层进行蚀刻,而一般能对gaasp系窗层进行湿蚀刻的蚀刻材料则会对algainp系发光部过度蚀刻。另外,虽于专利文献3中揭示有只对gaasp系实施粗糙化,而不会蚀刻algainp系的方法,但以所揭示的方法并不能同时对发光部与窗层表面粗糙化。因此,以往对algainp系发光部与gaasp系窗层的双方实施表面粗糙化是困难的。

[现有技术文献]

[专利文献]

[专利文献1]日本特开2010-251531号公报

[专利文献2]日本特许第5245529号

[专利文献2]日本特许第4154731号



技术实现要素:

有鉴于上述问题点,本发明的目的为提供一种发光组件,于具有发光部与窗层兼支持基板的发光组件中,能以将发光部与窗层兼支持基板的较多的区域予以表面粗糙化来提升发光组件的外部量子效率。

为了达成上述目的,本发明提供一种发光组件,具有一窗层兼支持基板及设置于该窗层兼支持基板之表面上的一发光部,该发光部依序包含有至少包含al的第二导电型的一第二半导体层、一活性层及第一导电型的一第一半导体层,其中该发光组件具有经除去该发光部的一除去部、该除去部以外的一非除去部、设置于该非除去部的该第一半导体层之表面上的一第一欧姆电极、以及设置于该除去部的该窗层兼支持基板之表面上的一第二欧姆电极,该第一半导体层之表面以及该发光部之侧面的至少一部分以绝缘保护膜所覆盖,该第一半导体层之表面上的该第一欧姆电极之形成部以外、该窗层兼支持基板的表面上的该除去部中的该第二欧姆电极的形成部以外、以及该窗层兼支持基板的侧面及内面经表面粗糙化。

通过此种发光组件,由于能对第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面进行表面粗糙化,因而能使之为经提升外部量子效率的发光组件。

此时,较佳地,该第一半导体层由至少二层以上的结构所构成,经施以表面粗糙化处理侧的层在与活性层侧的层相比,由al成分较少的材料所构成。通过此种发光组件,能在维持披覆层的载子局限效果的同时,抑制必要的蚀刻深度来获得所期望的粗糙面形状,抑制在引线接合时所产生的芯片破损。

另外此时,较佳地,该第一半导体层的经施以表面粗糙化处理侧的层由(alxgal-x)yin1-yp(0≦x<0.6、0.4≦y≦0.6)所构成,或是由alzgal-zas(0≦z≦0.3)所构成,且该第一半导体层的活性层侧的层由(alxgal-x)yin1-yp(0.6≦x≦1、0.4≦y≦0.6)所构成,或是由alzgal-zas(0.3<z≦1)所构成。

通过此种发光组件,能更确实地在维持披覆层的载子局限效果的同时,抑制必要的蚀刻深度来获得所期望的粗糙面形状,抑制在引线接合时所产生的芯片破损。

另外,通过本发明来提供一种发光组件的制造方法,包含:发光部形成步骤,于基板上,以与该基板为晶格匹配系的材料通过依序磊晶成长而成长至少包含al的一第一半导体层、一活性层、一第二半导体层,而形成一发光部;窗层兼支持基板形成步骤,于该发光部之上以对该基板为非晶格匹配系的材料通过磊晶成长而形成一窗层兼支持基板;除去步骤,除去该基板;第一欧姆电极形成步骤,于该第一半导体层的表面上形成一第一欧姆电极;第一表面粗糙化处理步骤,于该第一半导体层的表面上的该第一欧姆电极的形成部以外的至少一部分予以表面粗糙化;组件分离步骤,形成除去该发光部的一部分的一除去部以及其以外的一非除去部;第二欧姆电极形成步骤,于该除去部的该窗层兼支持基板的表面上形成一第二欧姆电极;覆盖步骤,以绝缘保护膜覆盖该第一半导体层的表面以及该发光部的侧面的至少一部分;以及第二表面粗糙化处理步骤,个别或同时地将该窗层兼支持基板之表面上的该除去部中的该第二欧姆电极的形成部以外的区域、以及该窗层兼支持基板的侧面及内面予以表面粗糙化。

通过此种发光组件的制造方法,由于能对第一半导体层的表面上的第一欧姆电极之形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面予以表面粗糙化,因而能制造经提升外部量子效率的发光组件。

此时,于该第二表面粗糙化处理步骤中,在个别地将该窗层兼支持基板的表面上的该除去部中的该第二欧姆电极的形成部以外的区域、以及该窗层兼支持基板的侧面及内面予以表面粗糙化的状况下,该窗层兼支持基板的表面上的该除去部中的该第二欧姆电极的形成部以外的表面粗糙化的进行,能在该第二欧姆电极形成步骤之前进行。

以这种方式,例如在形成除去部之时,由于能同时进行窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外的表面粗糙化,因此可使作业更有效率。

另外此时,较佳地,该发光部形成步骤中,该第一半导体层由至少二层以上的结构所构成,经施以表面粗糙化处理侧的层与活性层侧的层相比,由al成分较少的材料构成而形成。

以这种方式,能制造出在维持披覆层的载子局限效果的同时,抑制必要的蚀刻深度来获得所期望的粗糙面形状,抑制在引线接合时所产生的芯片破损的发光组件。

具体来说,能将经施以该第一半导体层的表面粗糙化处理侧的层设为(alxgal-x)yin1-yp(0≦x<0.6、0.4≦y≦0.6),或是alzgal-zas(0≦z≦0.3);以及该第一半导体层的活性层侧的层设为(alxgal-x)yin1-yp(0.6≦x≦1、0.4≦y≦0.6),或是alzgal-zas(0.3<z≦1)。

通过此种制造方法,能更确实地制造出在维持披覆层的载子局限效果的同时,抑制必要的蚀刻深度来获得所期望的粗糙面形状,抑制在引线接合时所产生的芯片破损的发光组件。

另外此时,较佳地,该第一表面粗糙化处理步骤使用有机酸与无机酸的混合液而进行,该有机酸包含:柠檬酸、丙二酸、甲酸、乙酸及酒石酸中的任一种以上,该无机酸包含:盐酸、硫酸、硝酸及氢氟酸中的任一种以上;以及在该第二表面粗糙化处理步骤中,该窗层兼支持基板的表面上的该除去部中的该第二欧姆电极的形成部以外、以及该窗层兼支持基板的侧面及内面的表面粗糙化,使用包含有机酸与无机酸的混合液而进行,该有机酸包含:柠檬酸、丙二酸、甲酸、乙酸及酒石酸的有机酸中的任一种以上,且该无机酸包含:盐酸、硫酸、硝酸及氢氟酸中的任一种以上,且该混合液的溶液包含碘。

以这种方式,能确实地制造具有要求的凹凸尺寸大小的粗糙面的发光组件。

另外此时,较佳地,该第一表面粗糙化处理步骤使用有机酸与无机酸的混合液而进行,该有机酸包含:柠檬酸、丙二酸、甲酸、乙酸及酒石酸中的任一种以上,该无机酸包含:盐酸、硫酸、硝酸及氢氟酸中的任一种以上;以及在该第二表面粗糙化处理步骤中,该窗层兼支持基板的表面上的该除去部中的该第二欧姆电极的形成部以外的表面粗糙化,通过包含氯化氢气体的icp等离子体蚀刻的干蚀刻而进行,该窗层兼支持基板的侧面及内面的表面粗糙化,使用包含有机酸与无机酸的混合液而进行,该有机酸包含:柠檬酸、丙二酸、甲酸、乙酸和酒石酸的有机酸中的任一种以上,且该无机酸包含:盐酸、硫酸、硝酸和氢氟酸之中的任一种以上,且该混合液的溶液中包含碘。

即使是以这种方式,也能确实地制造具有要求的凹凸尺寸大小的粗糙面的发光组件。

通过本发明的发光组件以及发光组件的制造方法,由于能对第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外的区域、以及窗层兼支持基板的侧面及内面予以表面粗糙化,因而能实现经提升外部量子效率的发光组件。

附图说明

图1是显示本发明的发光组件的一例的概略图。

图2是显示本发明的发光组件的制造方法的第一实施态样的步骤图。

图3是显示本发明的发光组件的制造方法的第一实施态样的制造过程中于基板上成长选择蚀刻层与发光部与窗层兼支持基板的磊晶基板的概略图。

图4是显示本发明的发光组件的制造方法的第一实施态样的制造过程中自磊晶基板经除去基板以及第二选择蚀刻层的发光组件基板的概略图。

图5是本发明的发光组件的制造方法的第一实施态样的制造过程中经形成第一欧姆电极的发光组件基板的概略图。

图6是本发明的发光组件的制造方法的第一实施态样的制造过程中经进行第一表面粗糙化处理的发光组件基板的概略图。

图7是本发明的发光组件的制造方法的第一实施态样的制造过程中经进行组件分离步骤的发光组件基板的概略图。

图8是本发明的发光组件的制造方法的第一实施态样的制造过程中形成第二欧姆电极,以及经形成绝缘保护膜的发光组件基板的概略图。

图9是显示本发明的发光组件的制造方法的第二实施态样的步骤图。

图10是本发明的发光组件的制造方法的第二实施态样的制造过程中经进行第一表面粗糙化处理的发光组件基板的概略图。

图11是本发明的发光组件的制造方法的第二实施态样的制造过程中进行组件分离步骤,以及经形成第二欧姆电极的发光组件基板的概略图。

图12是本发明的发光组件的制造方法的第二实施态样的制造过程中经形成绝缘保护膜的发光组件基板的概略图。

图13是显示通过本发明的发光组件的制造方法的第二实施态样所制造出的发光组件的概略图。

图14是使用以实施例1、实施例2以及比较例所制造出的发光组件而制作出的灯泡,并对其灯泡的亮度特性进行比较的图表。

图15是使用以实施例1、实施例2以及比较例所制造出的发光组件而制作出的灯泡,并对其灯泡的外部量子效率予以比较的图表。

具体实施方式

以下,说明本发明的实施态样,但本发明并不限定于此。如上所述,在具有发光部与窗层兼支持基板的发光组件中,会希望有通过将发光部与窗层兼支持基板的表面的较多的区域表面粗糙化,而经提升外部量子效率的发光组件。因此,本申请发明人为了解决此类问题进行了深入研究。其结果发现,如果是第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面经表面粗糙化而成的发光组件,则能使其成为经提升外部量子效率的发光组件。并且对为了实施此些内容的最佳的态样进行了详细的调查,从而完成本发明。

首先参考图1说明本发明的发光组件。如图1所示,本发明的发光组件1,具有一窗层兼支持基板107及设置于窗层兼支持基板107的表面上的一发光部108,发光部108依序包含有至少包含al的第二导电型的一第二半导体层105、一活性层104及第一导电型的一第一半导体层103。

发光组件1具有经除去发光部108的一除去部170、除去部170以外的一非除去部180。并且,具有设置于非除去部180的第一半导体层103的表面上的一第一欧姆电极121、以及设置于除去部170的窗层兼支持基板107之表面上的一第二欧姆电极122。

如图1所示,第一欧姆电极121亦可透过第一选择蚀刻层102b而设置于第一半导体层103上。

第一半导体层103的表面以及发光部108的侧面的至少一部分以绝缘保护膜150所覆盖。

第一半导体层103的表面上的第一欧姆电极121的形成部以外、窗层兼支持基板107的表面上的除去部170中的第二欧姆电极122的形成部以外、以及窗层兼支持基板107的侧面及内面经表面粗糙化。

在此,较佳地,第一半导体层103由至少二层以上的结构所构成,其中经施以表面粗糙化处理侧的层(以下称为低al成分层103a)相较于活性层104侧的层(以下称为高al成分层103b),由al成分较少的材料所构成。

通过此种发光组件,能维持披覆层的载子局限效果的同时,抑制由于过度的蚀刻所造成的焊垫电极部的机械强度降低以及在引线接合时的芯片破损的产生,进而获得具有要求的凹凸尺寸大小的粗糙面的发光组件。

具体来说,低al成分层103a能由(alxgal-x)yin1-yp(0≦x<0.6、0.4≦y≦0.6)所构成,或是由alzgal-zas(0≦z≦0.3)所构成,且高al成分层103b能由(alxgal-x)yin1-yp(0.6≦x≦1、0.4≦y≦0.6)所构成,或是由alzgal-zas(0.3<z≦1)所构成。

通过此种发光组件,能确实维持披覆层的载子局限效果的同时,抑制由于过度的蚀刻所造成的焊垫电极部的机械强度降低以及在引线接合时的芯片破损的产生,进而获得要求的凹凸尺寸大小的粗糙面的发光组件。

通过本发明的发光组件,由于对第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面予以表面粗糙化,因而能使之为经提升外部量子效率的发光组件。

(发光组件的制造方法的第一实施态样)

接下来,参考图1~图8说明本发明的发光组件的制造方法的第一实施态样。

首先,作为如图3所示的起始基板,准备基板101(图2的sp1)。

作为基板101,以使用结晶轴自﹝001﹞方向朝﹝110﹞方向倾斜的基板(起始基板)101为较佳。另外,作为基板101能够适合使用gaas或ge。以这种方式,由于后述的活性层104的材料能以晶格匹配进行磊晶成长,可轻易使活性层104的质量提升,而得到亮度上升或寿命特性的提升。

接下来,亦可于基板101上形成选择蚀刻层102(图2的sp2)。选择蚀刻层102能通过例如movpe法(有机金属气相成长法)或mbe(分子束磊晶法)、cbe(化学束磊晶法)而形成于基板101上。

较佳地,选择蚀刻层102由二层以上的层结构所构成,并至少具有与基板101相接的第二选择蚀刻层102a、以及与后述的第一半导体层103相接的第一选择蚀刻层102b。第二选择蚀刻层102a与第一选择蚀刻层102b亦可由相异的材料或结构而构成。

接下来,通过依序磊晶成长而成长与基板101为晶格匹配系的第一导电型的第一半导体层103、活性层104、及第二导电型的第二半导体层105而形成发光部108(图2的sp3)。

接下来,发光部108之上以对基板101为非晶格匹配系的材料通过磊晶成长而形成窗层兼支持基板107,而制作出磊晶基板109(图2的sp4)。

上述sp3、4中,具体来说,如图3所示,能够制作出在由第一导电型的第一半导体层103、活性层104、第二导电型的第二半导体层105所组成的发光部108之上,经依缓冲层106、窗层兼支持基板107的顺序而磊晶成长的磊晶基板109。

活性层104因应发光波长而能以(alxgal-x)yin1-yp(0≦x≦1、0.4≦y≦0.6)或alzgal-zas(0≦z≦0.45)来形成。例如应用于可见光照明的状况下,适合选择algainp,应用于红外照明的状况下,适合选择algaas。但是,关于活性层104的设计,由于通过利用超晶格等,波长可调整至因材料组成所致的波长以外,因此不限于上述的材料。

第一半导体层103、第二半导体层105可自algainp或algaas中选择,即使没有选择与活性层104为相同的材料也可以。

本实施态样中,虽是以最单纯的结构的第一半导体层103、活性层104、第二半导体层105皆为同样的材料的algainp的状况来作为例示,但第一半导体层103或第二半导体层105为了提升特性,各层内一般包含多层,也就是说第一半导体层103或第二半导体层105并不限定于为单一层。

此时,较佳地,使第一半导体层103由二层以上的结构所构成。第一半导体层103的被施以表面粗糙化处理之侧的低al成分层103a相较于活性层侧的高al成分层103b,以al成分较少的材料所构成之物而形成。

以这种方式,能在维持披覆层的载子局限效果的同时,抑制由于过度的蚀刻所造成的焊垫电极部的机械强度降低以及在引线接合时的芯片破损的产生,进而制造获得要求的凹凸尺寸大小的粗糙面的发光组件。

例如低al成分层103a的厚度能设为0.3μm以上。在此,高al成分层103b为具有披覆层功能的功能层,并不限定于单一成分或单一条件层。

具体来说,能将低al成分层103a设为(alxgal-x)yin1-yp(0≦x<0.6、0.4≦y≦0.6),或是设为alzgal-zas(0≦z≦0.3),以及能将高al成分层103b设为(alxgal-x)yin1-yp(0.6≦x≦1、0.4≦y≦0.6),或是设为alzgal-zas(0.3<z≦1)。

以这种方式,能在通过高al成分层103b确实地维持披覆层的载子局限效果的同时,抑制由于过度的蚀刻所造成的焊垫电极部的机械强度降低以及在引线接合时的芯片破损的产生,同时通过低al成分层103a获得具有要求的凹凸尺寸大小的粗糙面。

作为窗层兼支持基板107,能够适合使用gaasp或gap。以gaasp或gap形成窗层兼支持基板107的状况下,虽以gainp来形成缓冲层106最为适合,但缓冲层106只要是具有缓冲功能的材料,自任一种材料选择皆可,自不待言,缓冲层的材料并不限定于此。另外,窗层兼支持基板107也可选择为晶格匹配系的材料的algaas来形成。另外,作为窗层兼支持基板107,选择gaasp,则耐候性良好。然而,由于与gaasp、algainp系材料或algaas系材料之间存在有大的晶格不匹配,因此gaasp里会有高密度的应变或贯穿式差排。其结果导致磊晶基板109具有大的翘曲。

在此,较佳地,为了防止因自然超晶格的形成所导致的波长漂移,发光部108相对于成长面以结晶学上12度以上的倾斜来进行成长。此倾斜方向虽能选择任何方向,于采用以切划线裂片步骤来分离组件的步骤的状况下,如果切划线的其中一侧选择结晶轴不倾斜而正交的方向,而切划线的另一侧选择结晶轴倾斜的方向,即能减少组件侧面相对于组件表面以及内面倾斜的面。因此,一般切划线的其中一侧虽选择不倾斜的方向,20度左右的组件侧面的倾斜在组件上不会有太大的问题。因此,上述正交方向并不须严密的一致,较正交方向为±20度左右的角度范围概念上包含于正交方向。

接下来,自磊晶基板109除去基板101以及第二选择蚀刻层102a,而如图4所示,使第一选择蚀刻层102b单独残留于发光组件基板110的第一半导体层103的表面(图2的sp5)。具体来说,通过湿式蚀刻法并使用第二选择蚀刻层102a自磊晶基板109除去基板101,能使第一选择蚀刻层102b单独残留于第一半导体层103的表面。

接下来,如图5所示,于第一半导体层103上的第一选择蚀刻层102b的表面,形成供给电位至发光组件的第一欧姆电极121(图2的sp6)。

接下来,如图5所示,除去第一欧姆电极121的下部以外的区域的第一选择蚀刻层102b(图2的sp7)。具体来说,将第一欧姆电极121设为蚀刻屏蔽,而能通过蚀刻而除去第一欧姆电极121的下部以外的区域的第一选择蚀刻层102b。

再者,通过以对于第一表面粗糙剂具有选择蚀刻性的材料构成第一选择蚀刻层102b,第一表面粗糙剂沿着第一欧姆电极的形状形成刻面。以此方式,通过将第一选择蚀刻层102b设置于第一欧姆电极121的下部,因而能防止第一欧姆电极121的下部的过蚀刻的发生。

接下来,如图6所示,进行于第一半导体层103的表面上的第一欧姆电极121的形成部以外的至少一部分予以表面粗糙化的第一表面粗糙化处理步骤(图2的sp8)。

具体来说,通过微影法,于第二欧姆电极形成预定区域122a设置光阻屏蔽123,并使用由有机酸与无机酸的混合液组成的第一表面粗糙剂,于第一半导体层103的表面上的第一欧姆电极121的形成部、以及第二欧姆电极形成预定区域122a除外的部分进行第一表面粗糙化处理。

第一表面粗糙化处理步骤,使用有机酸与无机酸的混合液,而能够使用含有羧酸,特别是:柠檬酸、丙二酸、甲酸、乙酸及酒石酸中的任一种类以上作为该有机酸,且含有该无机酸为盐酸、硫酸、硝酸及氢氟酸中的任一种类以上的溶液(以下也称为第一表面粗糙剂)而进行。

此时,较佳地,以第一表面粗糙剂为主而对低al成分层103a实施第一表面粗糙化处理。低al成分层103a与高al成分层103b以同系统的材料,例如,两者皆以algainp系材料形成的状况下,由于高al成分层103b之方面的蚀刻速度快于低al成分层103a,对高al成分层103b的蚀刻较为不佳的状况下,使低al成分层103a的厚度形成为厚于蚀刻预定宽度为较佳。另一方面,以低al成分层103a所产生的凹凸作为蚀刻用图案对高al成分层103b的一部分进行蚀刻,在想要让凹凸大一点的状况下,以较蚀刻预定宽度为薄来形成低al成分层103a为较佳。

如此一来,能通过将表面粗糙化处理的层设为低al成分层,而容易进行表面粗糙化处理。另一方面,能通过将下部层侧的al成分设为较表面粗糙化处理层为高的al成分,而容易提高载子局限效果。因此,能实现具有效果好的粗糙面的同时,其载子局限效果也高的发光组件。

较佳地,第一表面粗糙化处理步骤中,将粗糙面的凹凸的大小rz(最大减去最小的高低差)设为rz≧0.02μm,更佳地设为rz≧0.2μm的范围。另外,能通过rz≦2.5μm以下,可防止于之后所进行的转印至承载胶带时的表面破损。

于第一表面粗糙化处理步骤后,除去设置于第二欧姆电极形成预定区域122a的光阻屏蔽123。

接下来,如图7所示,进行形成除去发光部108的一部分的除去部170及其以外的非除去部180的组件分离步骤。在此同时,进行窗层兼支持基板107的表面上的除去部170中第二欧姆电极的形成部141以外的第二表面粗糙化处理(图2的sp9)。

具体来说,例如通过微影法,于图6中形成第一半导体层103上的预定的区域140被开口的图案,通过含有氯化氢气体的icp等离子体蚀刻法蚀刻区域140的发光部108,如图7所示,形成露出窗层兼支持基板107的部分(除去部170)。虽除去部170是继承以第一表面粗糙化处理步骤所形成的粗糙面图案,但第二欧姆电极的形成部141的部分并不以第一表面粗糙化处理步骤形成粗糙面,不成为粗糙面图案而被形成为平坦面。

以这种方式,由于形成除去部170的蚀刻,以及窗层兼支持基板107的表面上的除去部170中的第二欧姆电极的形成部141以外的第二表面粗糙化处理能同时进行,因此可使作业更有效率。

接下来,如图8所示,在除去部170的窗层兼支持基板107的表面上形成第二欧姆电极122(图2的sp10)。第二欧姆电极122能形成如图7所显示的未形成粗糙面的平坦面的第二欧姆电极的形成部141。

接下来,如图8所示,以绝缘保护膜150覆盖第一半导体层103表面以及发光部108的侧面的至少一部分(图2的sp11)。绝缘保护膜150只要为透明且具有绝缘性的材料,任何一种材料皆可。作为绝缘保护膜150能够适合使用例如sio2或sinx。通过此种之物,能通过微影法与含有氢氟酸的蚀刻液,而容易对第一欧姆电极121以及第二欧姆电极122的上部进行开口加工。

接下来,如图1所示,进行对窗层兼支持基板107的侧面以及内面予以表面粗糙化的第二表面粗糙化处理步骤(图2的sp12)。

在进行第二表面粗糙化处理前,较佳地,首先沿着切划线区域142(参考图8)划切划线,通过进行裂片来分离发光组件而形成发光组件晶粒。发光组件晶粒形成后,较佳地,使发光组件晶粒转印至承载胶带而移至窗层兼支持基板107的上表面后,进行下述的第二表面粗糙化处理。

第二表面粗糙化处理步骤中,窗层兼支持基板107的侧面及内面的表面粗糙化,能使用含有有机酸与无机酸的混合液,而能够使用含有该有机酸为柠檬酸、丙二酸、甲酸、乙酸及酒石酸中的任一种以上,且含有该无机酸为盐酸、硫酸、硝酸及氢氟酸中的任一种以上,且含有碘的溶液(以下也称为第二表面粗糙剂)而进行。

在上述提到的第一表面粗糙化处理步骤中所使用的实施于第一半导体层103的第一表面粗糙剂,以及在第二表面粗糙化处理步骤中实施于窗层兼支持基板107的侧面及内面的第二表面粗糙剂,这些液体成分相异。因此,由于蚀刻特性相异的缘故,而必然会使第一半导体层103与窗层兼支持基板107所具有的粗糙面的形状以及ra变为相异。

如此,发光组件的制造方法的第一实施态样为各别对窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面予以表面粗糙化的方法。

通过此种发光组件的制造方法,由于于具有设置于除去部且与窗层兼支持基板相接的第二欧姆电极的发光组件中,对第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面予以表面粗糙化,因此与以往相比能容易制造经提升外部量子效率的发光组件。

(发光组件的制造方法的第二实施态样)

接下来,参考图9~图13说明本发明的发光组件的制造方法的第二实施态样。

图9是发光组件的制造方法的第二实施态样的步骤图。如图9所示,由于自sp1至sp7为止与上述的第一实施态样相同因此省略其说明。

如图10所示,进行于第一半导体层103的表面上的第一欧姆电极形成部以外的至少一部分予以表面粗糙化的第一表面粗糙化处理步骤(图9的sp13)。

具体来说,通过微影法,于组件分离预定区域240设置光阻屏蔽(未图示),并使用由有机酸与无机酸的混合液组成的第一表面粗糙剂,于第一半导体层103的表面上的第一欧姆电极121的形成部,以及组件分离预定区域240除外的部分进行第一表面粗糙化处理。

第一表面粗糙化处理步骤(sp13),能使用上述第一表面粗糙剂来进行。此时,较佳地,以第一表面粗糙剂为主而对低al成分层103a实施第一表面粗糙化处理。低al成分层103a与高al成分层103b以同系统的材料,例如,两者皆以algainp系材料形成的状况下,由于高al成分层103b的一侧的蚀刻速度快于低al成分层103a,对高al成分层103b的蚀刻较为不佳的状况下,使低al成分层103a的厚度形成为厚于蚀刻预定宽度为较佳。另一方面,以低al成分层103a所产生的凹凸作为蚀刻用图案对高al成分层103b的一部分进行蚀刻,在想要让凹凸大一点的状况下,以较蚀刻预定宽度为薄来形成低al成分层103a为较佳。

如此一来,能通过将表面粗糙化处理的层设为低al成分层,而容易进行表面粗糙化处理。另一方面,能通过将下部层侧的al成分设为较表面粗糙化处理层高的al成分而容易提高载子局限效果。因此,能实现具有效果好的粗糙面的同时,其载子局限效果也高的发光组件。

于第一表面粗糙化处理步骤后,除去设置于组件分离预定区域240的光阻屏蔽。

接下来,如图11所示,进行形成除去发光部108的一部分的除去部270及其以外的非除去部280的组件分离步骤(图9的sp14)。

具体来说,例如通过微影法,于图10中形成第一半导体层103上的预定的组件分离预定区域240被开口的图案,通过含有氯化氢气体的icp等离子体蚀刻法蚀刻组件分离预定区域240的发光部108,如图11所示,形成露出窗层兼支持基板107的部分(除去部270)。蚀刻时,较佳地,蚀刻成将除去部270的窗层兼支持基板107予以设置为深度2μm以上的段差,更佳地是设置为5μm以上的段差。第一半导体层103至缓冲层106的厚度是配合该蚀刻步骤的深度来设计厚度。

接下来,如图11所示,在除去部270的窗层兼支持基板107的表面上形成第二欧姆电极222(图9的sp15)。

接下来,如图12所示,以绝缘保护膜250覆盖第一半导体层103表面以及发光部108的侧面的至少一部分(图9的sp16)。绝缘保护膜250只要为透明且具有绝缘性的材料,任何一种材料皆可。作为绝缘保护膜250能够适合使用例如sio2或sinx。通过此种之物,能通过微影法与含有氢氟酸的蚀刻液,而容易对第一欧姆电极121以及第二欧姆电极222的上部进行开口加工。

接下来,如图13所示,进行对窗层兼支持基板107的表面上的除去部270中的第二欧姆电极222的形成部以外、以及对窗层兼支持基板107的侧面以及内面予以表面粗糙化的第二表面粗糙化处理步骤(图9的sp17)。

在进行第二表面粗糙化处理前,较佳地,首先沿着切划线区域242划切划线,通过进行裂片来分离发光组件而形成发光组件晶粒。发光组件晶粒形成后,较佳地,使发光组件晶粒转印至承载胶带而移至窗层兼支持基板107的上表面后,进行下述的第二表面粗糙化处理。

第二表面粗糙化处理步骤(sp17),能使用上述之第二表面粗糙剂来进行。

如上所述,较佳地,组件分离步骤中,如图12所示,只要将除去部270的窗层兼支持基板107的段差设为2μm以上,更佳地是设为5μm以上,则第二表面粗糙剂能由侧边侵入,并确实的在窗层兼支持基板107的表面上的除去部270中的第二欧姆电极222的形成部以外的区域、以及在窗层兼支持基板107的侧面以及内面形成同样的粗糙面。

如此,发光组件的制造方法的第二实施态样为同时对窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面予以表面粗糙化的方法。

通过此种发光组件的制造方法,由于于具有设置于除去部且与窗层兼支持基板相接的第二欧姆电极的发光组件中,对第一半导体层的表面上的第一欧姆电极的形成部以外、窗层兼支持基板的表面上的除去部中的第二欧姆电极的形成部以外、以及窗层兼支持基板的侧面及内面进行表面粗糙化,因此与以往相比能容易制造经提升外部量子效率的发光组件。

〔实施例〕

以下,显示本发明的实施例及比较例而更为具体的说明本发明,但本发明并未被限定于此。

(实施例1)

以第一实施态样的方法,结晶轴自﹝001﹞方向朝﹝110﹞方向倾斜15°的由厚度280μm的n型gaas所构成的基板101上使n型gaas缓冲层(未图示)成长0.5μm,以及使由n型alinp层所构成的第二选择蚀刻层102a成长1μm,以及使由n型gaas层所构成的第一选择蚀刻层102b成长1μm后,以movpe法形成由algainp所组成的n型披覆层(第一半导体层103)、活性层104、p型披覆层(第二半导体层105)所构成的5.5μm的发光部108,并且形成由p型gainp所组成的0.3μm的缓冲层106,以及形成作为gap窗层兼支持基板107的一部分的由p型gap所组成的1μm的层。接下来,移至hvpe炉使由p型gap组成的窗层兼支持基板107成长120μm而得到磊晶基板109(参考图3)。

活性层104设为由algainp所构成的多层结构。第一半导体层103设为由低al成分层103a、高al成分层103b所构成的二层结构。高al成分层103b设为由厚度2.0μm的(alxgal-x)0.5in0.5p(0.70≦x≦1)所构成的多层结构,低al成分层103a则设为厚度0.6μm的(al0.4ga0.6)0.5in0.5p。第二半导体层105设为厚度1.5μm的(alxgal-x)0.5in0.5p(0.3≦x≦1)的多层结构。

接下来,蚀刻除去基板101、gaas缓冲层及第二选择蚀刻层102a,而制作出残留有第一选择蚀刻层102b的发光组件基板110(参考图4)。

接下来,对在发光组件基板110的第一选择蚀刻层102b上形成第一欧姆电极121(参考图5),以第一欧姆电极121作为屏蔽经spm处理选择性地除去第一选择蚀刻层102b。

接下来于位于第一半导体层103的最上面的层的低al成分层103a表面实施第一表面粗糙化处理步骤(参考图6)。第一表面粗糙剂是由乙酸和盐酸所制作出的混合液,以常温下1分钟蚀刻而实现表面粗糙化处理。对此时的第一半导体层103表面的粗糙面的粗糙度ra进行测定。其结果为ra=0.32μm。另外,为了实现此粗糙度的第一表面粗糙化处理的蚀刻深度的平均为0.41μm。

接下来,通过微影法,以光阻剂覆盖区域140(参考图6)以外的区域,通过含有氯化氢气体的icp等离子体蚀刻法实施组件分离步骤,而形成除去发光部108并使窗层兼支持基板107露出的除去部170、以及其以外的非除去部180(参考图7)。虽除去部170是继承以第一表面粗糙化处理步骤所形成的粗糙面图案,但第二欧姆电极的形成部141的部分并不以第一表面粗糙化处理步骤形成粗糙面,不成为粗糙面图案而被形成为平坦面。

接下来,于图7的第二欧姆电极的形成部141形成第二欧姆电极122(参考图8)。接下来,层叠由sio2所组成的绝缘保护膜150,以绝缘保护膜150覆盖第一半导体层103表面以及发光部108的侧面。并且,第一欧姆电极121以及第二欧姆电极122的部分通过微影法与氢氟酸蚀刻而于绝缘保护膜150形成开口部。

接下来,沿着切划区域142划切划线,沿着切划线延伸裂痕线,之后,通过进行切裂而分离组件,而形成发光组件晶粒。

发光组件晶粒形成后,转印发光组件晶粒至承载胶带,使设置有第一欧姆电极的面成为胶带面侧,之后,实施窗层兼支持基板107的侧面以及内面予以表面粗糙化的第二表面粗糙化处理步骤(参考图1)。在第二表面粗糙化处理步骤中进行窗层兼支持基板107的侧面以及内面表面粗糙化时所使用的表面粗糙剂,是由乙酸与氢氟酸、碘所制作出的混合液。并且,以常温下1分钟蚀刻来进行第二表面粗糙化处理。对此时的窗层兼支持基板107的表面以及侧面的粗糙面的粗糙度进行测定,ra=0.5μm。以此制造出发光组件1。

(实施例2)

以第二实施态样的方法通过图10所显示的微影法,于组件分离预定区域240设置光阻屏蔽(未图示),并使用由乙酸和盐酸的混合液组成的第一表面粗糙剂,进行第一表面粗糙化处理,如图11所示,通过微影法于第一半导体层103上的预定的组件分离预定区域240形成被开口的图案,通过含有氯化氢气体的icp等离子体蚀刻法蚀刻组件分离预定区域240的发光部108,如图11所示,形成露出窗层兼支持基板107的部分(除去部270)。于制作除去部270的蚀刻时,蚀刻成将除去部270的窗层兼支持基板107予以设置深度3μm的段差,于最后以乙酸与氢氟酸、碘的混合液进行窗层兼支持基板107额表面上的除去部170中第二欧姆电极222的形成部以外,以及窗层兼支持基板107的侧面及内面的第二表面粗糙化处理,而制造出发光组件11(参考图13)

(比较例)

虽与实施例1的图3至图5为止的形成方法相同,但不设置图6中的第二欧姆电极形成预定区域122a,且不使用设置图7的除去部170的步骤中的icp等离子体蚀刻法,通过湿蚀刻的选择性露出除去部170的窗层兼支持基板107表面,而形成第二欧姆电极122。也就是说,比较例中除去部170不继承以第一表面粗糙化处理步骤所形成的粗糙面图案,而是形成为平坦面。之后实施与实施例1同样的步骤而制作出发光组件。亦即,比较例中所制作出的发光组件,为以实施例1所制作出的图1的发光组件1的,窗层兼支持基板107的表面上的除去部170中的第二欧姆电极222的形成部以外的部分的未经表面粗糙化。

图14是使用以实施例1、实施例2以及比较例所制造出的发光组件的芯片而制作出的灯泡,并比较亮度(power)特性的图表。与比较例相比,得知实施例1中的亮度上升了约16%,而实施例2中的亮度上升了约12%。

图15则非亮度,而是进行比较上述的灯泡的外部量子效率的图表。得知实施例1中的外部量子效率上升了约4%,而实施例2中的外部量子效率上升了约3%。

此外,本发明并未被限定于上述实施例,上述实施例为例示,凡具有与本发明的申请专利范围所记载的技术思想实质上相同的构成,能得到同样的作用效果者,皆被包含在本发明的技术范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1