以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料及在锂硫电池中的应用的制作方法

文档序号:12737622阅读:484来源:国知局
以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料及在锂硫电池中的应用的制作方法与工艺

本发明是一种以夏威夷果壳为原料制备多级孔结构纳米碳硫复合材料的方法及锂硫电池正极材料的应用。具体地说就是将夏威夷果壳在一系列温度及惰性气氛下可控烧蚀,得到具有多级孔结构的纳米碳材料,并采用熔融扩散法与单质硫复合得到多级孔结构纳米碳/硫复合材料,这种材料将应用在锂硫电池中,属于储能材料技术领域。



背景技术:

锂离子电池作为一种能量储存装置,具有工作电压高,比能量大,循环寿命长,安全性好,自放电小,工作温度范围宽和充放电快的特点。目前,锂离子电池已被广泛应用于电动汽车,电气设备以及后备电源等领域。目前,市场化的锂离子电池体系容量已接近其理论容量,难以有突破性进展,因此开发新型的锂离子电池体系具有重要意义。

锂/硫电池是一种新型的锂离子电池体系,它具有极高的理论容量(1672m Ah/g)和能量密度(2600Wh/kg),远高于目前商用的锂离子电池正极材料。此外,它还具有来源广泛,价格低廉,环境友好等特点,具有广阔的应用前景。通常,锂硫电池的正极材料为单质硫的复合材料,负极材料为金属锂。

然而,目前的锂硫电池仍具有循环寿命短,库伦效率低,安全性较差,自放电大,容量保持差等缺点,这主要是由于硫的电子电导率(10-30S/m)极低,而且在充放电过程中会生成一系列可溶性的多硫化物(Li2Sn),这些可溶的多硫化物会在电场的作用下在负极表面沉积,产生穿梭效应,使得负极材料的利用率降低。将硫与具有多孔结构的碳材料复合可以有效地抑制锂硫电池的穿梭效应,提高库伦效率和循环稳定性,介孔还能够提高电解液的浸润效果。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供了一种兼具微孔和介孔的多级孔结构纳米碳/硫复合材料的制备方法。原料选择夏威夷果壳,其属于一种生物废料衍生的碳,导电性好且价格低廉。同时该方法操作简单,快速环保。该复合材料抑制了多硫化物的溶解和穿梭效应,提高了硫的利用效率和电池的循环效率。

本发明的技术方案如下:

以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料的方法;步骤如下:

(1)将夏威夷果壳在球磨机中磨为细粉,得到夏威夷果壳粉末;

(2)将步骤(1)得到的粉末用KOH水溶液进行浸泡,然后过滤烘干,得到预处理后的夏威夷果壳粉末;

(3)将步骤(2)得到的粉末在惰性气体的保护下碳化,得到碳粉末;

(4)将步骤(3)得到的碳材料粉末用盐酸清洗并烘干,得到以微孔为主,同时兼具介孔的多级孔结构纳米碳材料;

(5)称取多孔纳米碳材料,与升华硫在玛瑙研钵中研磨混合均匀;

(6)将步骤(5)得到的粉末混合体封装入有氩气的玻璃管中,升温至155℃,然后保温15-20h,以得到硫与多孔碳材料的分子级均匀复合的纳米碳/硫复合材料。

所述步骤(1)中,在球磨机中的球磨机转速为400-550rmp,球磨时间为2-4h。

所述步骤(2)中,KOH水溶液进行浸泡3-5h,KOH溶液浓度为1-2mol/L。

所述步骤(3)中,惰性气体为氮气或氩气。

所述步骤(3)中,碳化条件是:升温速度为5-10℃/min,碳化温度为700-1000℃,保温时间为1-3h,后自然冷却至室温。

所述步骤(5)中,纳米碳材料与升华硫质量比为1:2-5。

所述步骤(6)中,升温速率是0.5-2℃/min。

本发明制备的多级孔结构纳米碳/硫复合材料应用于电极。

所述的应用步骤如下:

(1)将得到的复合材料与乙炔黑,聚偏氟乙烯按照8:1:1的质量比混合在10-20ml的N-甲基吡咯烷酮中得到混合匀浆;

(2)将得到的混合匀浆均匀涂布在铝箔上,100-120℃下真空干燥5-8h,后裁剪为直径与扣式电池相似的圆片。

本发明操作方便,成本低,产量高,而且后处理简单,不需要特殊的反应仪器。可以通过简单地调控碳化温度来获得不同孔径分布的纳米碳材料;另外,所制备的电极在锂硫电池中具有优异的电化学性能。将硫与具有多孔结构的碳材料复合,由制备的多孔纳米碳材料的DFT孔径分布图可以得知碳材料中的微孔平均孔径且同时存在部分孔径在几至几十纳米的介孔,得以达到提高电解液的浸润效果。由碳元素和硫元素的面扫描分布可见硫元素分布均匀,从而有效地抑制锂硫电池的穿梭效应。由多孔碳/硫复合材料和单质硫的循环曲线可以看出提高了库伦效率和循环稳定性。

附图说明

图1(a):多孔纳米碳材料的扫描电子显微镜照片;

图1(b):多孔纳米碳材料的透射电子显微镜照片;

图2:多孔纳米碳材料的DFT孔径分布图;

图3(a):多孔纳米碳/硫复合材料的扫描电子显微镜照片;

图3(b):多孔纳米碳/硫复合材料的碳元素的面扫描分布;

图3(c):多孔纳米碳/硫复合材料的硫元素的面扫描分布;

图4:多孔碳/硫复合材料和单质硫的循环曲线。

具体实施方式

以下通过具体的实施例对本发明技术方案进行说明。

实例1

以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料的方法;步骤如下:

(1)将夏威夷果壳在球磨机中磨为细粉,得到夏威夷果壳粉末;

(2)将步骤(1)得到的粉末用KOH水溶液进行浸泡,然后过滤烘干,得到预处理后的夏威夷果壳粉末;

(3)将步骤(2)得到的粉末在惰性气体的保护下碳化,得到碳粉末;

(4)将步骤(3)得到的碳材料粉末用盐酸清洗并烘干,得到以微孔为主,同时兼具介孔的多级孔结构纳米碳材料;

(5)称取多孔纳米碳材料,与升华硫在玛瑙研钵中研磨混合均匀;

(6)将步骤(5)得到的粉末混合体封装入有氩气的玻璃管中,升温至155℃,然后保温15-20h,以得到硫与多孔碳材料的分子级均匀复合的纳米碳/硫复合材料。

所述步骤(1)中,在球磨机中的球磨机转速为400rmp,球磨时间为2h。

所述步骤(2)中,KOH水溶液进行浸泡3h,KOH溶液浓度为1mol/L。

所述步骤(3)中,惰性气体为氮气或氩气。

所述步骤(3)中,碳化条件是:升温速度为5℃/min,碳化温度为700℃,保温时间为1h,后自然冷却至室温。

所述步骤(5)中,纳米碳材料与升华硫质量比为1:2。

所述步骤(6)中,升温速率是0.5℃/min。

本发明制备的多级孔结构纳米碳/硫复合材料应用于电极。

所述的应用步骤如下:

(1)将得到的复合材料与乙炔黑,聚偏氟乙烯按照8:1:1的质量比混合在10ml的N-甲基吡咯烷酮中得到混合匀浆;

(2)将得到的混合匀浆均匀涂布在铝箔上,100℃下真空干燥5h,后裁剪为直径与扣式电池相似的圆片。

实例1中制备的多孔纳米碳材料的扫描电子显微镜(如图1(a)所示)和透射电子显微镜照片(如图1(b)所示),可以看到多孔碳在微观下为不具备结晶性的无定形状,粗略可以看出孔径大多在1nm以下。

实例1中制备的多孔纳米碳材料的DFT孔径分布图(如图2所示),经分析可以知道碳材料中的微孔平均孔径为0.518nm,同时存在部分孔径在2nm-50nm的介孔。

实例1中制备的多孔纳米碳/硫复合材料的扫描电子显微镜(如图3(a)所示),碳元素的面扫描分布(如图3(b)所示),硫元素的面扫描分布(如图3(c)所示),由图可见硫元素分布均匀。

实例1中制备的多孔碳/硫复合材料和单质硫的循环曲线(如图4所示),放电电流为0.1C,初次的放电比容量就可达1350mAh/g,循环100圈后比容量仍可保持在850mAh/g,远高于单质硫。

实例2

以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料的方法;步骤如下:

(1)将夏威夷果壳在球磨机中磨为细粉,得到夏威夷果壳粉末;

(2)将步骤(1)得到的粉末用KOH水溶液进行浸泡,然后过滤烘干,得到预处理后的夏威夷果壳粉末;

(3)将步骤(2)得到的粉末在惰性气体的保护下碳化,得到碳粉末;

(4)将步骤(3)得到的碳材料粉末用盐酸清洗并烘干,得到以微孔为主,同时兼具介孔的多级孔结构纳米碳材料;

(5)称取多孔纳米碳材料,与升华硫在玛瑙研钵中研磨混合均匀;

(6)将步骤(5)得到的粉末混合体封装入有氩气的玻璃管中,升温至155℃,然后保温15-20h,以得到硫与多孔碳材料的分子级均匀复合的纳米碳/硫复合材料。

所述步骤(1)中,在球磨机中的球磨机转速为550rmp,球磨时间为4h。

所述步骤(2)中,KOH水溶液进行浸泡5h,KOH溶液浓度为2mol/L。

所述步骤(3)中,惰性气体为氮气或氩气。

所述步骤(3)中,碳化条件是:升温速度为10℃/min,碳化温度为1000℃,保温时间为3h,后自然冷却至室温。

所述步骤(5)中,纳米碳材料与升华硫质量比为1:5。

所述步骤(6)中,升温速率是2℃/min。

本发明制备的多级孔结构纳米碳/硫复合材料应用于电极。

所述的应用步骤如下:

(1)将得到的复合材料与乙炔黑,聚偏氟乙烯按照8:1:1的质量比混合在20ml的N-甲基吡咯烷酮中得到混合匀浆;

(2)将得到的混合匀浆均匀涂布在铝箔上,120℃下真空干燥8h,后裁剪为直径与扣式电池相似的圆片。

实例3

以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料的方法;步骤如下:

(1)将夏威夷果壳在球磨机中磨为细粉,得到夏威夷果壳粉末;

(2)将步骤(1)得到的粉末用KOH水溶液进行浸泡,然后过滤烘干,得到预处理后的夏威夷果壳粉末;

(3)将步骤(2)得到的粉末在惰性气体的保护下碳化,得到碳粉末;

(4)将步骤(3)得到的碳材料粉末用盐酸清洗并烘干,得到以微孔为主,同时兼具介孔的多级孔结构纳米碳材料;

(5)称取多孔纳米碳材料,与升华硫在玛瑙研钵中研磨混合均匀;

(6)将步骤(5)得到的粉末混合体封装入有氩气的玻璃管中,升温至155℃,然后保温15-20h,以得到硫与多孔碳材料的分子级均匀复合的纳米碳/硫复合材料。

所述步骤(1)中,在球磨机中的球磨机转速为450rmp,球磨时间为3h。

所述步骤(2)中,KOH水溶液进行浸泡4h,KOH溶液浓度为1.5mol/L。

所述步骤(3)中,惰性气体为氮气或氩气。

所述步骤(3)中,碳化条件是:升温速度为7℃/min,碳化温度为800℃,保温时间为2h,后自然冷却至室温。

所述步骤(5)中,纳米碳材料与升华硫质量比为1:3。

所述步骤(6)中,升温速率是1℃/min。

本发明制备的多级孔结构纳米碳/硫复合材料应用于电极。

所述的应用步骤如下:

(1)将得到的复合材料与乙炔黑,聚偏氟乙烯按照8:1:1的质量比混合在15ml的N-甲基吡咯烷酮中得到混合匀浆;

(2)将得到的混合匀浆均匀涂布在铝箔上,105℃下真空干燥6h,后裁剪为直径与扣式电池相似的圆片。

实例4

以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料的方法;步骤如下:

(1)将夏威夷果壳在球磨机中磨为细粉,得到夏威夷果壳粉末;

(2)将步骤(1)得到的粉末用KOH水溶液进行浸泡,然后过滤烘干,得到预处理后的夏威夷果壳粉末;

(3)将步骤(2)得到的粉末在惰性气体的保护下碳化,得到碳粉末;

(4)将步骤(3)得到的碳材料粉末用盐酸清洗并烘干,得到以微孔为主,同时兼具介孔的多级孔结构纳米碳材料;

(5)称取多孔纳米碳材料,与升华硫在玛瑙研钵中研磨混合均匀;

(6)将步骤(5)得到的粉末混合体封装入有氩气的玻璃管中,升温至155℃,然后保温15-20h,以得到硫与多孔碳材料的分子级均匀复合的纳米碳/硫复合材料。

所述步骤(1)中,在球磨机中的球磨机转速为500rmp,球磨时间为3h。

所述步骤(2)中,KOH水溶液进行浸泡4h,KOH溶液浓度为2mol/L。

所述步骤(3)中,惰性气体为氮气或氩气。

所述步骤(3)中,碳化条件是:升温速度为8℃/min,碳化温度为900℃,保温时间为2h,后自然冷却至室温。

所述步骤(5)中,纳米碳材料与升华硫质量比为1:4。

所述步骤(6)中,升温速率是1.5℃/min。

本发明制备的多级孔结构纳米碳/硫复合材料应用于电极。

所述的应用步骤如下:

(1)将得到的复合材料与乙炔黑,聚偏氟乙烯按照8:1:1的质量比混合在15ml的N-甲基吡咯烷酮中得到混合匀浆;

(2)将得到的混合匀浆均匀涂布在铝箔上,110℃下真空干燥7h,后裁剪为直径与扣式电池相似的圆片。

本发明公开和提出以夏威夷果壳为原料制备多级孔结构纳米碳/硫复合材料及在锂硫电池中的应用,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1