电介质膜和电子部件的制作方法

文档序号:11202694阅读:479来源:国知局
电介质膜和电子部件的制造方法与工艺

本发明涉及一种电介质膜以及电子部件。



背景技术:

为了应对以智能手机和平板电脑为代表的移动通信设备的进一步高速大容量通信化而开始进行同时使用多个频带的mimo技术(多输入多输出,multi-inputmulti-output)的实用化。如果通信中使用的频带增大,则每个频带需要各自的高频部件,为了维持设备尺寸地增加部件数量,寻求各部件的进一步小型化、高功能化。

作为这样的对应高频的电子部件,例如有双工器或带通滤波器等。这些均由担负电容的电介质和担负电感的磁性体的组合构成,但为了得到良好的高频特性,寻求抑制分别在高频区域的损耗。

如果着眼于电介质,则(1)作为对于小型化要求的应对,为了减小电容部的面积而要求相对介电常数(εr)高;(2)为了使频率的选择性良好而要求介电损耗小、即q值高;(3)要求绝缘击穿电压高等。

例如,通常非晶sinx膜由于高频(2ghz)下的q值高达500左右,绝缘击穿电压也高达500v/μm~700v/μm左右,因此,广泛地用于对应高频的电子部件中,但是由于相对介电常数低至7左右,因此,为了具有目标的功能而需要大的电极面积,从而难以响应小型化的要求。另外,近年来伴随着通信技术的进步,期望高频部件特性的进一步提高,即寻求具有高的q值以及高的绝缘击穿电压的电介质。为了响应这样的要求,近年来开始研究将以mgo或cao等为代表的nacl型的碱土金属为主成分的电介质膜。作为其理由,是由于在1μm以上的厚膜下具有超过所述非晶sinx膜的特性的特性,即,具有高的相对介电常数(>7)、高的q值(>500)以及绝缘击穿电压(>700v/μm)。

在非专利文献1中,公开了将具有nacl型晶体结构的mgo厚膜制成小于1μm的薄膜的技术。报道了制得的mgo薄膜其厚度为260nm,在测定频率1khz下显示εr=7、q=20,绝缘击穿电压(vbd)为80v/μm。

现有技术文献

非专利文献

非专利文献1:journalofsol-gelscienceandtechnology9,295-301(1997)“electricalandopticalpropertiesofmgothinfilmpreparedbysol-geltechnique”



技术实现要素:

发明所要解决的技术问题

如观察非专利文献1中得到的电介质膜的特性可知,一直以来mgo厚膜下得到的高的相对介电常数和高的q值以及绝缘击穿电压由于进行薄膜化而急剧地降低。即使观察得到的电介质膜的特性值,降低所述非晶sinx膜的特性,当然对于用于高频部件来说也不充分。这样,以nacl型的碱土金属为主成分的电介质膜存在薄膜时难以显示良好的特性的技术问题。目前,作为其原因之一认为是电介质膜的膜结构没有被最优化。

用于解决技术问题的技术手段

本发明鉴于这样的实际情况,其目的在于提供一种在以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜中,即使将膜厚制成1μm以下的情况下也具有高的相对介电常数、高的q值、以及高的绝缘击穿电压的电介质膜、以及使用该电介质膜的电子部件。

为了达成上述目的,本发明所涉及的电介质膜其特征在于,所述电介质膜以具有nacl型晶体结构的碱土金属氧化物为主成分,

所述电介质膜在法线方向具有(111)取向的柱状结构,

在所述电介质膜的cu-kαx射线衍射图中,(111)的衍射峰的半峰宽为0.3°~2.0°。

以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜通过具有上述的特征,即使在将膜厚制成1μm以下的情况下也可以制作显示高的相对介电常数、高的q值、以及高的绝缘击穿电压的电介质膜、以及使用了该电介质膜的电子部件。

另外,通过使用上述本发明所涉及的电介质膜,与用于现有对应高频的电子部件中的电介质膜相比较,由于得到了高的相对介电常数,因此,能够对应小型化。另外,相比现有的电介质膜,q值更高,即显示更高的s/n比,进一步,绝缘击穿电压更高,即可以提供具有高的esd特性的电介质共振器或电介质滤波器等的电子部件。

发明的效果

本发明可以提供一种在以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜中,即使在将膜厚制成1μm以下的情况下也可以具有高的相对介电常数、高的q值、以及高的绝缘击穿电压的电介质膜、以及使用了该电介质膜的电子部件。

附图说明

图1是本发明的一个实施方式所涉及的薄膜电容器的截面图。

图2是表示本发明的一个实施方式所涉及的电介质膜的柱状结构的图。

图3是本发明的一个实施方式所涉及的电介质膜的cu-kαx射线衍射图。

符号的说明:

1…支撑基板、2…基底层、3…下部电极、4…上部电极、5…电介质膜、6…微晶、10…薄膜电容器。

具体实施方式

以下,对于本发明的优选的实施方式,根据情况参照附图进行说明。

<薄膜电容器10>

图1是使用了本发明的一个实施方式所涉及的电介质膜的电子部件的一个例子即薄膜电容器10的截面图。薄膜电容器10具备层叠于支撑基板1的表面的下部电极3、上部电极4以及设置于下部电极3和上部电极4之间的电介质膜5。在支撑基板1和下部电极3之间为了提高支撑基板1与下部电极3的附着性而具备基底层2。支撑基板1具有确保薄膜电容器10整体的机械强度的功能。

对于薄膜电容器的形状没有特别地限制,通常制成长方体形状。另外,对于其尺寸也没有特别地限制,厚度和长度只要根据用途设定为适当的尺寸即可。

<支撑基板1>

用于形成图1所示的支撑基板1的材料没有特别地限定,可以利用作为单晶的si单晶、sige单晶、gaas单晶、inp单晶、srtio3单晶、mgo单晶、laalo3单晶、zro2单晶、mgal2o4单晶、ndgao3单晶,或者作为陶瓷多晶基板的al2o3多晶、zno多晶、sio2多晶,或者ni、cu、ti、w、mo、al、pt等的金属,或者这些的合金的基板等来形成支撑基板1,但没有特别地限定,这些中,从低成本、加工性出发,通常使用si单晶作为支撑基板1。支撑基板1根据基板的材质而其电阻率不同。在使用电阻率低的材料作为支撑基板1的情况下,如果直接使用,则电流向支撑基板1侧泄漏有时会对薄膜电容器10的电特性产生影响。因此,也有对支撑基板1的表面实施绝缘处理以不使使用时的电流向支撑基板1流通的情况。例如,在使用si单晶作为支撑基板1的情况下,可以使支撑基板1表面氧化来进行sio2绝缘层的形成,或在支撑基板1表面形成al2o3、sio2、sinx等的绝缘层,只要能确保对支撑基板1的绝缘,该绝缘层的材料或膜厚就没有限定,但优选为0.01μm以上。在小于0.01μm时,由于不能确保绝缘性,因此,作为绝缘层的厚度不优选。支撑基板1的厚度只要能够确保薄膜电容器整体的机械强度就没有特别地限定,例如可以设定为10μm~5000μm。在小于10μm的情况下,不能确保机械强度;如果超过5000μm,则存在产生不能有助于电子部件的小型化的问题的情况。

<基底层2>

在本实施方式中,优选在实施过绝缘处理的支撑基板1表面具备基底层2。以提高支撑基板1与下部电极3的附着性为目的而插入基底层2。作为一个例子,在将cu用于下部电极3的情况下,通常将cr作为基底层2插入;在将pt用于下部电极3的情况下,通常将ti作为基底层2插入。

所述基底层2由于以提高支撑基板1与下部电极3的附着性为目的,因此,不限定于作为所述一个例子列举的材料。另外,只要能够确保支撑基板1与下部电极3的附着性,也可以省略基底层2。

<下部电极3>

用于形成下部电极3的材料只要具有导电性即可,例如可以利用pt、ru、rh、pd、ir、au、ag、cu、ni等的金属或这些的合金、或者导电性氧化物等形成。因此,只要选择对应于成本或对电介质膜5进行热处理时的气氛的材料即可。电介质膜5可以在大气中,另外,作为惰性气体的n2或ar、或者o2、惰性气体与作为还原性气体的h2的混合气体中进行热处理。下部电极3的膜厚只要能作为电极起作用即可,优选为10nm以上。在小于10nm的情况下,由于导电性变差,因此,不优选。另外,在支撑基板1使用利用了能够用作电极的cu或ni、pt等或氧化物导电性材料等的基板的情况下,可以省略上述的基底层2和下部电极3。

在下部电极3形成之后进行热处理,可以谋求基底层2与下部电极3的附着性的提高和下部电极3的稳定性的提高。在进行热处理的情况下,升温速度优选为10℃/分钟~2000℃/分钟,进一步优选为100℃/分钟~1000℃/分钟。热处理时的保持温度优选为100℃~800℃,其保持时间优选为0.1小时~4.0小时。如果超过上述范围,则容易附着不良或在下部电极3表面产生凹凸,从而电介质膜5的介电特性容易降低。

<电介质膜5>

电介质膜5其特征在于,以具有nacl型晶体结构的碱土金属氧化物为主成分,在法线方向具有(111)取向的柱状结构,在电介质膜的cu-kαx射线衍射图中,(111)的衍射峰的半峰宽为0.3°~2.0°。

具有上述的特征的电介质膜即使在将膜厚制成1μm以下的情况下也能够具有高的相对介电常数、高的q值以及高的绝缘击穿电压。

本发明者们对可以得到这样的效果的主要原因认为如下。首先,对于能够实现高的相对介电常数和高的q值的主要因素进行说明。通常已知在结晶的对称性良好,原子或分子规则地排列的状态下,即结晶性良好的情况下,具有高的相对介电常数和q值。在将结晶性良好的电介质制成薄膜时,由于现有的晶体结构容易崩溃,结晶的对称性混乱,不能维持原子或分子的排列,即结晶性降低,因此,成为相对介电常数和q值容易降低的趋势。

在以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜中也有如上述所示的高的结晶性,因此,认为在进行了薄膜化时,在现有技术中结晶性降低,得不到高的相对介电常数和高的q值。因此,在进行了薄膜化时,需要维持现有的高的结晶性,在以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜中,通过在电介质膜内具备在电介质膜的法线方向上(111)取向的柱状结构,从而能够抑制晶体结构的混乱、即结晶性的降低,其结果,认为即使进行薄膜化也可以得到高的相对介电常数和高的q值。另一方面,在不具备(111)取向的柱状结构的情况下,进行了薄膜化时结晶性降低,从而难以得到高的相对介电常数和高的q值。

对上述所示的本发明的特征之一的柱状结构进行说明。

如图2所示,本发明的柱状结构是指在电介质膜的垂直方向的截面进行观察的情况下,具备在电介质膜的厚度方向上长的微晶6。本发明的柱状结构成为由在电介质膜整体上沿着支撑基板表面的法线方向或±5°延伸,并且图2中记载的h与l的比,即纵横比满足(h/l)≥2的微晶构成的结构。

接着,对可以实现高的绝缘击穿电压的主要原因进行说明。通常具有取向的柱状结构的电介质膜由于是晶界大量存在于膜厚方向的结构,因此,可以说绝缘击穿电压低。因此,较多的情况下,通过将构成电介质膜的晶粒的形状球状化,在膜厚方向以外也形成许多晶界,从而使传导路径复杂化,改善绝缘击穿电压。然而,在该方法中,由于在膜厚方向以外形成有许多晶界,因此,存在q值容易降低的课题。因此,在本发明中,不形成球状的晶粒而通过维持构成作为本发明的特征的柱状结构的微晶的纵横比地将微晶的尺寸微细化,从而不使q值降低而实现了高的绝缘击穿电压。

如上所述,在减小了构成柱状结构的微晶的尺寸的情况下,在使用cukα射线进行测定的情况下,所述微晶的存在可以用如图3所示的x射线衍射图中得到的衍射峰的半峰宽来确认,如果在本发明中说明,则用(111)的衍射峰的半峰宽可以确认微晶的尺寸。所述半峰宽的值越小,则意味着微晶的尺寸越大;半峰宽的值越大,则意味着微晶的尺寸越小。

本发明的实施方式所涉及的电介质膜5通过在电介质膜的cu-kαx射线衍射图中(111)的衍射峰的半峰宽为0.3°~2.0°,从而柱状结构由小的微晶构成,因此,可以维持高的相对介电常数和高的q值,并且可以得到更高的绝缘击穿电压。在所述半峰宽小于0.3°的情况下,构成柱状结构的微晶的尺寸过大,有难以得到高的绝缘击穿电压的趋势。另一方面,如果半峰宽超过2.0°,则微晶的尺寸过小,结晶性降低,难以得到高的相对介电常数和高的q值。

如上所述,以具有有高的结晶性的nacl型晶体结构的碱土金属氧化物为主成分的电介质膜通过在法线方向具备(111)取向的柱状结构,并且在cu-kαx射线衍射图中将(111)的衍射峰的半峰宽设定为0.3°~2.0°,从而可以得到高的相对介电常数、高的q值、以及高的绝缘击穿电压。

另外,作为本发明的优选的实施方式,电介质膜5除了以具有nacl型晶体结构的碱土金属氧化物作为主成分以外,优选作为副成分含有ta、nb、v、hf、zr、ti、zn中的至少一种的元素。

通过作为副成分含有ta、nb、v、hf、zr、ti、zn中的至少一种的元素,容易控制构成柱状结构的微晶的尺寸,并且提高柱状结构自身的绝缘电阻的效果变得更强。其结果,与不含副成分的情况相比较,通过含有副成分可以得到更高的绝缘击穿电压。

另外,在将所述副成分的总含量记为x的情况下,所述总含量x相对于所述主成分优选为0mol%<x≤20mol%的范围。

通过将所述副成分的总含量x设定为上述的范围,从而容易控制构成柱状结构的微晶的尺寸的作用、提高柱状结构自身的绝缘电阻的作用、以及提高以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜所具有的结晶性的作用变强。其结果,可以维持高的绝缘击穿电压,并且可以进一步提高q值。

电介质膜5的厚度优选为10nm~2000nm,进一步优选为50nm~1000nm。在小于10nm时,容易发生绝缘击穿;在超过2000nm的情况下,为了增大电容器的静电容量而需要扩大电极面积,存在难以通过电子部件的设计来小型化的情况。电介质膜厚的测量只要利用fib(聚焦离子束)加工装置挖掘,用sim(扫描型离子显微镜)等观察得到的截面并测长即可。

电介质膜5优选使用真空沉积法、溅射法、pld(脉冲激光沉积法)、mbe(分子束外延法)、mo-cvd(有机金属化学气相生长法)、mod(有机金属分解法)、溶胶-凝胶法、csd(化学溶液堆积法)等各种薄膜形成法来形成。此时使用的原料(沉积材料、各种靶材或有机金属材料等)中有时含有微量的杂质或副成分,但是只要不是会大幅度地降低绝缘性的杂质,就没有特别的问题。

另外,本发明所涉及的电介质膜5只要不使本发明的效果即相对介电常数、q值、绝缘击穿电压大大劣化,也可以含有微量的杂质或副成分。因此,作为剩余部分的主成分的含量没有特别地限定,例如,相对于含有所述主成分的电介质膜整体为80%以上且100%以下。

另外,电介质膜5通常仅由本发明的电介质膜构成,但是也可以是与其它电介质膜组合而成的层叠结构。例如,通过制成与现有的si3nx、siox、al2ox、zrox、ta2ox等非晶电介质膜或结晶膜的层叠结构,可以调整电介质膜5的阻抗或相对介电常数的温度变化。另外,通过制成所述层叠结构,也可以抑制电介质膜5的大气暴露。

<上部电极4>

在本实施方式的一个例子中,薄膜电容器10在电介质膜5的表面具备作为薄膜电容器10的另一个电极起作用的上部电极4。用于形成上部电极4的材料只要具有导电性,就没有特别地限定,可以利用与下部电极3同样的材料形成上部电极4。上部电极4的膜厚只要作为电极起作用即可,优选为10nm以上。在膜厚为10nm以下的情况下,由于导电性恶化,因此,作为上部电极4不优选。

在上述的实施方式中,例示了作为使用了本发明的一个实施方式所涉及的电介质膜的电子部件的一个例子的薄膜电容器,但是作为使用了本发明的电介质膜的电子部件,不限定于薄膜电容器,只要是例如双工器、带通滤波器、平衡转换器或耦合器等具有电介质膜的电子部件都可以。

实施例

以下,基于更详细的实施例来说明本发明,但是本发明不限定于这些实施例。

<实施例1><比较例1>

首先,在350μm厚的si的表面具有6μm厚的sio2绝缘层的10mm×10mm见方的支撑基板的表面上,利用溅射法以成为20nm的厚度的方式形成作为基底层的cr薄膜。

接着,在上述中形成的cr薄膜的基底层上,利用溅射法以成为100nm的厚度的方式形成作为下部电极的cu薄膜。

对于形成的cr/cu薄膜,将升温速度设定为10℃/分钟、将保持温度设定为150℃、将温度保持时间设定为0.5小时、将气氛设定为氮气氛,在常压下进行热处理。

在电介质膜的形成中使用了溅射法。形成电介质膜所需的靶材如下进行制作。

首先,以成为表1所示的样品no.1~样品no.47的mg、ca、sr、ba、ta、nb、v、hf、zr、ti、zn的量的方式进行mgco3、caco3、srco3、baco3、ta2o5、nb2o5、v2o5、hfo2、zro2、tio2、zno的称量,在1l的广口塑料罐中加入称量后的原料粉末、无水乙醇以及φ2mm的zro2珠,进行20小时的湿式混合。其后,在100℃下使混合粉末浆料干燥20小时,将得到的混合粉末放入al2o3坩埚中,在大气中1250℃下保持5小时,得到煅烧粉末。

对得到的煅烧粉末,使用单轴加压挤出机得到成型体。成型条件设定为,压力:2.0×108pa、温度:室温。

其后,对于得到的成型体,将升温速度设定为200℃/小时、将保持温度设定为1600℃~1700℃、将温度保持时间设定为12小时,气氛为常压的大气中进行烧成。

以得到的烧结体的厚度成为4mm的方式用滚筒研磨机对两面进行研磨,得到形成电介质膜所需要的溅射用靶材。

使用由此得到的溅射用靶材,在下部电极上以成为800nm的厚度的方式在表1所示的成膜条件下使用溅射法形成电介质膜。另外,为了使一部分下部电极露出,使用金属掩膜,形成电介质膜部分没有成膜的区域。

[表1]

0≦x≦20

另外,表中的“-”是指不含有。

电介质膜厚的测量利用fib挖掘,用sim对得到的截面进行观察并测长。

成膜后的电介质膜的组成,对于全部的样品使用xrf(荧光x射线元素分析)进行分析,确认为表1所记载的组成。

进一步,对于得到的全部电介质膜,分别通过下述所示的方法进行晶体结构和结晶性的确认。

<柱状结构>

柱状结构通过对电介质膜的截面进行tem观察来确认。在暗视场图像中测量微晶的纵横比,对于由该纵横比为2以上的微晶构成的电介质膜,定义为具有柱状结构的膜。

<结晶取向和结晶性>

对于电介质膜,进行利用x射线衍射(平行法)的测定,得到衍射图案。作为x射线源使用cu-kα射线,其测定条件设定为,电压45kv、200ma、2θ=20°~80°的范围。对于电介质膜的取向,比较得到的衍射图案中(111)的峰与(200)的峰的强度比,对于该比((111)的峰强度/(200)的峰强度)显示1.5以上的情况定义为(111)取向。另外,作为表示结晶性的指标,测定取向的面的半峰宽。在图3中表示根据得到的衍射图案测定半峰宽的一个例子。(实施例1样品no.1)

接着,在得到的上述电介质膜上使用沉积装置形成作为上部电极的ag薄膜。通过使用金属掩模以直径成为100μm、厚度成为100nm的方式形成上部电极的形状,得到了图1所示的结构的样品no.1~样品no.47。

对于得到的全部薄膜电容器样品,分别通过下述所示的方法进行相对介电常数、q值、绝缘击穿电压的测定。

<相对介电常数、q值>

相对介电常数、q值是通过对于薄膜电容器样品,在基准温度25℃下利用rf阻抗/材料分析仪(agilent公司制造的4991a),在频率2ghz、输入信号电平(测定电压)0.5vrms的条件下测定静电容量、介电损耗(tanδ),根据测定的静电容量和膜厚的测定的结果算出相对介电常数,根据介电损耗的倒数(1/tanδ)算出q值(没有单位)。由于非晶sinx膜的相对介电常数为7左右,因此在本发明中,将比其高的相对介电常数作为良好。另外,非晶sinx膜的q值为约500左右,但由于近年来寻求高频特性良好的部件,因此,将q值为850以上作为良好。

<绝缘击穿电压>

绝缘击穿电压是通过对薄膜电容器样品,在下部电极露出的区域和上部电极连接数字超高电阻/微电流计(advantestr8340),以5v/秒的步调施加电压进行测量,根据初期电阻值读取降低2位数时的电压值,将该值作为样品的击穿电压值(v)。将得到的击穿电压值(v)除以电介质膜厚得到的数值作为绝缘击穿电压(vbd)(v/μm)。在表2中记载了n=5的平均值。非晶sinx的绝缘击穿电压为500v/μm~700v/μm左右,由于近年来寻求esd特性良好的部件,因此,将绝缘击穿电压为1250v/μm以上作为良好。

[表2]

另外,表中的○是指在有(111)取向的柱状结构的情况,×是指不含所述结构的情况。

样品no.1~样品no.14

根据表2可以确认,是以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜,并且所述电介质膜在法线方向具有(111)取向的柱状结构,在所述电介质膜的cu-kαx射线衍射图中(111)的衍射峰的半峰宽为0.3°~2.0°的样品no.1~样品no.14即使制成800nm的薄膜,特性也良好,q值为850以上,并且绝缘击穿电压为1250v/μm以上。

样品no.15~样品no.35

根据表2可以确认,是以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜,并且所述电介质膜在法线方向具有(111)取向的柱状结构,在所述电介质膜的cu-kαx射线衍射图中(111)的衍射峰的半峰宽为0.3°~2.0°,并且作为副成分含有ta、nb、v、hf、zr、ti、zn中的至少一种元素的样品no.15~样品no.35相比不含副成分的样品no.1~样品no.14,具有更高的绝缘击穿电压。进一步,可以确认,相对于主成分以0mol%<x≤20mol%的范围含有副成分的样品no.15~样品no.29特性特别良好,q值为1050以上,并且绝缘击穿电压为1350v/μm以上。

样品no.36~样品no.47

根据表2,作为比较例的样品no.36~样品no.39由于不具备(111)取向的柱状结构,因此,进行了薄膜化时结晶性降低,q值为低至850以下的值。作为比较例的样品no.40和样品no.41虽然具有(111)取向的柱状结构,但是由于半峰宽为0.2°,因此,不能对绝缘击穿电压有贡献,绝缘击穿电压为1240v/μm以下。另外,作为比较例的样品no.42和样品no.43虽然具有(111)取向的柱状结构,半峰宽为2.1°,绝缘击穿电压良好,但是由于微晶尺寸过小,因此,q值为850以下。另外,可以确认作为比较例的样品no.44~样品no.47不具备(111)取向的柱状结构,另外,半峰宽在本发明的范围外,因此,不能维持高的q值和高的绝缘击穿电压。

根据以上可以确认,在以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜中,电介质膜在法线方向具有(111)取向的柱状结构,在电介质膜的cu-kαx射线衍射图中(111)的衍射峰的半峰宽为0.3°~2.0°的情况下,可以维持高的相对介电常数、高的q值以及高的绝缘击穿电压。

接着,对确认了具有本发明的特征的电介质膜在各种膜厚下有效的实施例进行说明。

<实施例2>

除了变更电介质膜的厚度以外,用与实施例1的样品no.29同样的方法制作样品,进行与实施例1同样的评价。将结果示于表3中。

[表3]

样品no.48~样品no.50

根据表3可以确认,即使电介质膜的膜厚不同,只要是具有以具有nacl型晶体结构的碱土金属氧化物为主成分的电介质膜,并且所述电介质膜是在法线方向具有(111)取向的柱状结构,在所述电介质膜的cu-kαx射线衍射图中(111)的衍射峰的半峰宽为0.3°~2.0°的特征的电介质膜,即使薄膜化至50nm也显示大致同样的特性。也就是说,可以确认只要是具有本发明的特征的电介质膜,即使进行薄膜化,也几乎没有特性的降低,具有高的相对介电常数、高的q值以及高的绝缘击穿电压。

工业上利用的可能性

如以上所说明,本发明涉及一种电介质膜和电子部件,本发明提供一种具有高的相对介电常数、高的q值以及高的绝缘击穿电压的电介质膜以及使用了该电介质膜的电子部件。由此,在使用电介质膜的电子部件中,可以实现小型化、高功能化。本发明对于例如使用电介质膜的双工器或带通滤波器等薄膜高频部件等提供广泛的新技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1