断路器的制作方法

文档序号:16980833发布日期:2019-02-26 19:31阅读:186来源:国知局
断路器的制作方法

本发明涉及电路保护元件技术领域,具体而言,涉及一种断路器。



背景技术:

断路器是指能够关合、承载和开断正常回路条件下的电流,并能关合、在规定的时间内承载和开断异常回路条件下的电流的开关装置,其可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,具有广泛的应用范围。其中,当上述设备发生过载或者短路等故障时能自动切断电路。而且在分断故障电流后一般不需要变更零部件。

参阅图1和图2,其分别示出一种现有电子式断路器100的立体结构示意图和分解示意图,该电子式断路器100通常包括智能脱扣器110、控制处理单元120、机械跳闸装置130和电流互感器140。其中,该电子式断路器100接通电源,电流互感器140测量开关每相的负载电流,并输入控制处理单元120。控制处理单元120接收来自电流互感器140的测量信号,并比较该信号与智能脱扣器110预先设定的电流值,从而判断电路是否发生故障,以此控制机械跳闸装置130的动作,实现断路器的通断。然而,上述现有电子式断路器由于采用电子式的脱扣控制方案,导致其结构复杂、组成元件较多,制造成本较高。



技术实现要素:

本发明的一个主要目的在于克服上述现有技术的至少一种缺陷,提供一种结构简单、组成元件较少且成本较低的断路器。

为实现上述目的,本发明采用如下技术方案:

根据本发明的一个方面,提供一种断路器,用以设置在电路中,其中,所述断路器包括壳体、导热块、拨杆、双金属片以及机械跳闸装置;所述壳体具有第一侧和第二侧,所述第一侧设有连接所述电路的复合端子;所述导热块设于所述壳体的第一侧,且连接于所述复合端子;所述拨杆可转动地设于所述壳体的第二侧;所述双金属片具有定位端和自由端,所述定位端连接于所述导热块,所述自由端穿过所述壳体向所述拨杆延伸;所述机械跳闸装置安装于所述壳体的第二侧;其中,所述导热块能够将所述复合端子的热量传导至所述双金属片,所述电路的电流过载时,所述热量增大使所述双金属片弯曲,所述双金属片带动所述拨杆转动,所述拨杆转动至一触发角度时触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述壳体上开设有开槽,以供所述双金属片穿过。

根据本发明的其中一个实施方式,所述拨杆包括杆体以及第一触头;所述杆体可转动地设于所述壳体;所述第一触头一端固定于所述杆体,另一端向所述机械跳闸装置延伸;其中,所述拨杆转动至所述触发角度时,所述第一触头触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述双金属片的自由端延伸至所述第一触头下方的位置;其中,所述电路过载时,所述双金属片推动所述第一触头而带动所述拨杆转动,所述拨杆转动至所述触发角度时触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述第一触头包括定位部、弯折部以及接触部;所述定位部一端连接于所述杆体,另一端向所述机械跳闸装置延伸;所述弯折部连接于所述定位部的另一端且向下弯折延伸;所述接触部一端连接于所述弯折部,另一端向所述机械跳闸装置延伸;其中,所述拨杆转动至所述触发角度时,所述接触部触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述双金属片的自由端延伸至所述定位部下方的位置;其中,所述电路过载时,所述双金属片推动所述定位部而带动所述拨杆转动,所述拨杆转动至所述触发角度时,所述接触部触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述拨杆包括多个第一触头,相邻所述第一触头之间连接有筋板。

根据本发明的其中一个实施方式,所述双金属片为多层结构,且所述多层结构中包括至少一主动层和至少一被动层,所述主动层的热膨胀系数大于所述被动层的热膨胀系数。

根据本发明的其中一个实施方式,所述主动层的材质为锰镍铜合金、镍铬铁合金或镍锰铁合金。

根据本发明的其中一个实施方式,所述被动层的材质为镍铁合金。

根据本发明的其中一个实施方式,所述断路器还包括电磁块以及瞬时衔铁;所述电磁块设于所述壳体的第一侧,且连接于所述复合端子;所述瞬时衔铁可转动地设于所述壳体的第二侧,且对应于所述电磁块;其中,所述电磁块在所述电路的电流作用下产生磁场,所述磁场作用于所述瞬时衔铁,所述电路短路时,所述磁场增大使所述瞬时衔铁转动,所述瞬时衔铁带动所述拨杆转动,所述拨杆转动至所述触发角度时触发所述机械跳闸装置动作。

根据本发明的其中一个实施方式,所述拨杆还包括第二触头;所述第二触头一端固定于所述杆体,另一端向所述瞬时磁铁延伸;其中,所述瞬时衔铁在所述磁场中转动时,所述瞬时衔铁推动所述第二触头而带动所述拨杆转动。

根据本发明的其中一个实施方式,所述瞬时衔铁包括枢接部以及推抵部;所述枢接部可转动地设于所述壳体的第二侧;所述推抵部连接于所述枢接部;其中,所述瞬时衔铁在所述磁场中转动时,所述枢接部带动所述推抵部转动,所述推抵部推抵所述第二触头而带动所述拨杆转动。

根据本发明的其中一个实施方式,所述断路器还包括衔铁支架;所述衔铁支架通过固定部安装于所述壳体的第二侧;其中,所述瞬时衔铁的枢接部可转动地设于所述衔铁支架。

根据本发明的其中一个实施方式,所述电磁块的材质为铜。

根据本发明的其中一个实施方式,所述瞬时衔铁的材质为软铁。

由上述技术方案可知,本发明提出的断路器的优点和积极效果在于:

本发明提出的断路器,利用双金属片的受热弯曲带动拨杆转动,而实现断路器的脱扣。本发明提出的断路器相比于现有电子式断路器,结构更加简单,组成元件较少且制造成本较低,能够满足使用者的不同需求。

进一步地,在本发明提出的断路器中,利用瞬时衔铁在磁场中的动作,而实现断路器的脱扣。通过上述设计,本发明在实现断路器的过载保护的同时,实现了断路器的瞬时保护。

附图说明

通过结合附图考虑以下对本发明的优选实施方式的详细说明,本发明的各种目标、特征和优点将变得更加显而易见。附图仅为本发明的示范性图解,并非一定是按比例绘制。在附图中,同样的附图标记始终表示相同或类似的部件。其中:

图1是一种现有电子式断路器的立体结构示意图;

图2是图1示出的电子式断路器的分解示意图;

图3是根据一示例性实施方式示出的一种断路器的分解示意图;

图4是图3示出的断路器的立体结构示意图;

图5是图3示出的断路器的另一角度的立体结构示意图;

图6是图3示出的断路器的瞬时衔铁的立体结构示意图。

其中,附图标记说明如下:

100.电子式断路器;

110.智能脱扣器;

120.控制处理单元;

130.机械跳闸装置;

140.电流互感器;

200.断路器;

210.壳体;

211.开槽;

220.导热块;

230.双金属片;

231.自由端;

240.拨杆;

241.杆体;

242.第一触头;

2421.定位部;

2422.弯折部;

2423.接触部;

243.第二触头;

244.筋板;

250.机械跳闸装置;

260.瞬时衔铁;

261.枢接部;

262.推抵部;

270.衔铁支架;

271.固定部;

280.电磁块。

具体实施方式

体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及附图在本质上是作说明之用,而非用以限制本发明。

在对本发明的不同示例性实施方式的下面描述中,参照附图进行,所述附图形成本发明的一部分,并且其中以示例方式显示了可实现本发明的多个方面的不同示例性结构、系统和步骤。应理解,可以使用部件、结构、示例性装置、系统和步骤的其他特定方案,并且可在不偏离本发明范围的情况下进行结构和功能性修改。而且,虽然本说明书中可使用术语“端部”、“下”、“之间”、“侧”等来描述本发明的不同示例性特征和元件,但是这些术语用于本文中仅出于方便,例如根据附图中所述的示例的方向。本说明书中的任何内容都不应理解为需要结构的特定三维方向才落入本发明的范围内。

参阅图3,图3中代表性地示出了能够体现本发明的原理的断路器200的分解示意图。在该示例性实施方式中,本发明提出的断路器200是以ac800a~1600a的电路系统为例进行说明的。本领域技术人员容易理解的是,为将该断路器200应用于其他电路系统或设备中,而对下述的具体实施方式做出多种改型、添加、替代、删除或其他变化,这些变化仍在本发明提出的断路器200的原理的范围内。

如图3所示,在本实施方式中,本发明提出的断路器200主要包括壳体210、过载脱扣触发组件、拨杆240以及机械跳闸装置250。配合参阅图4至图6,图4中代表性地示出了该断路器200的立体结构示意图;图5中代表性地示出了该断路器200的另一角度的立体结构示意图;图6中代表性地示出了该断路器200的瞬时衔铁260的立体结构示意图。以下结合上述附图,对本发明提出的断路器200的各主要组成部分进行详细说明。

如图3至图5所示,在本实施方式中,壳体210具有三个复合端子,用以连接电路。其中,壳体210可以采用常规的塑壳材质,并不以此为限。为了便于描述,以下将壳体210的两个相对侧面分别定义为第一侧和第二侧,且定义壳体210的设有复合端子的一侧为第一侧,且壳体210的安装有机械跳闸装置250的一侧为第二侧。

如图4和图5所示,在本实施方式中,拨杆240可转动地设于壳体210的第二侧,且拨杆240的延伸方向与三个导热块220共同界定的直线方向在空间上平行。具体而言,在本实施方式中,拨杆240主要包括杆体241和三个第一触头242,第一触头242与机械跳闸装置250的位置大致对应。其中,杆体241可转动地设置在壳体210的第二侧。每个第一触头242一端固定于杆体241,另一端向机械跳闸装置250(即远离第二侧的方向)延伸。每个第一触头242包括定位部2421、弯折部2422以及接触部2423。定位部2421一端连接于杆体241,另一端向机械跳闸装置250延伸,弯折部2422连接于定位部2421的另一端且向下弯折延伸,接触部2423一端连接于弯折部2422,另一端向机械跳闸装置250延伸。

进一步地,如图3所示,在本实施方式中,拨杆240的相邻的两个第一触头242之间设置有连接这两个第一触头242和杆体241的筋板244,以加强拨杆240的结构强度。

如图3和图5所示,在本实施方式中,过载脱扣触发组件主要包括三个导热块220和三个双金属片230。

如图3和图5所示,在本实施方式中,三个导热块220分别连接在三个复合端子下方,且位于壳体210的第一侧。导热块220可优选为铜,亦可选择为其他导热性能良好的金属或其他导热材料,并不以此为限。其中,本实施方式中是以断路器200具有三个复合端子的结构进行描述,本领域技术人员容易理解的是,在本发明的其他实施方式中,复合端子的数量可以为一个或多个,因此过载脱口触发组件可包括一个或多个导热块220,在此不予赘述。通过上述结构,导热块220能够将复合端子产生的热量传导至双金属片230。

如图5所示,在本实施方式中,壳体210上开设有三个开槽211,以分别供三个双金属片230穿过,当然,在其他实施方式中,双金属片230亦可通过其他结构穿过壳体210,或者直接穿过壳体210,并不以此为限。每个双金属片230的自由端231是延伸至与其对应的第一触头242的定位部2421下方的位置。基于上述结构,当电路过载时,导热块220传导至双金属片230的热量增加,双金属片230受热弯曲并推动第一触头242的定位部2421而带动拨杆240转动,当拨杆240转动至一预先设定的触发角度时,第一触头242的接触部2423触发机械跳闸装置250动作而实现脱扣,提供给断路器200过载保护的功能。在其他实施方式在,拨杆240的第一触头242亦可选择其他形式的结构而不限于本实施方式,双金属片230的自由端231优选为延伸至第一触头242下方的位置。当电路过载时,双金属片230受热弯曲并推动第一触头242而带动拨杆240转动,当拨杆240转动至触发角度时触发机械跳闸装置250动作。再者,拨杆240亦不限于具有第一触头242的结构,双金属片230可与拨杆240上的其他结构配合,使双金属片230受热弯曲时能够推动该其他结构而带动拨杆240转动,以使拨杆240转动至触发角度时触发机械跳闸装置250动作,实现对断路器200的过载保护功能。

如图3所示,在本实施方式中,每个双金属片230具有连接于导热块220的定位端以及穿过壳体210向第一触头242延伸的自由端231。其中,该双金属片230优选为双层结构且包括主动层和被动层。利用主动层和被动层的热膨胀系数不同,当温度变化时,主动层的形变要大于被动层的形变,从而使双金属片230的整体向被动层一侧弯曲,使其曲率发生变化从而产生形变。其中,主动层的热膨胀系数较高,被动层的膨胀系数较低。具体而言,在本实施方式中,主动层的材质可优选为锰镍铜合金、镍铬铁合金、镍锰铁合金等,被动层的材质可优选为镍铁合金等,但并不以此为限。在其他实施方式在,双金属片230亦不限于双层结构,其可采用三层及以上的结构,利用热膨胀系数不同的主动层与被动层,在受热时使双金属片230定向弯曲,以实现带动拨杆240转动的功能。

基于上述设计,当本发明的断路器200所处的电路过载时,电路的电流达到一过载动作值,复合端子发热量增大而通过导热块220传热至双金属片230,双金属片230受热弯曲并通过第一触头242带动拨杆240转动,拨杆240转动至触发角度时第一触头242触发机械跳闸装置250动作,断路器200脱扣断开。

在此应注意,附图中示出而且在本说明书中描述的断路器200仅仅是能够采用本发明原理的许多种断路器200中的一个示例。应当清楚地理解,本发明的原理绝非仅限于附图中示出或本说明书中描述的断路器200的任何细节或断路器200的任何部件。

举例来说,如图5和图6所示,在本实施方式中,本发明提出的断路器200还可包括短路脱扣触发组件。

如图5和图6所示,在本实施方式中,该短路脱扣触发组件主要包括三个电磁块280和三个瞬时衔铁260。其中,三个电磁块280均设于壳体210的第一侧,且三个电磁块280分别连接于三个复合端子,以在电路的电流作用下产生作用于瞬时衔铁260的磁场。瞬时衔铁260可转动地设于壳体210的第二侧。具体而言,在本实施方式中,瞬时衔铁260的材质可以优选为软铁,且每个瞬时衔铁260包括枢接部261以及推抵部262。其中,枢接部261可转动地设于壳体210的第二侧,推抵部262连接于枢接部261。另外,拨杆240还包括三个第二触头243。每个第二触头243的一端固定于杆体241,另一端向瞬时磁铁延伸。当电路短路时,电路中出现大电流,该大电流产生的磁场作用于瞬时衔铁260而使其在磁场中动作,瞬时衔铁260推动第二触头243而带动拨杆240转动,拨杆240转动至触发角度时触发机械跳闸装置250动作,断路器200脱扣断开,实现断路器200的瞬时(短路)保护功能。其中,在本实施方式中,三个第一触头242和三个第二触头243的位置分别对应,且双金属片230与瞬时衔铁260的设置位置相同。在其他实施方式中,根据对电路的保护需要,双金属片230与瞬时衔铁260的数量亦可不同,以对不同的电路提供过载保护和瞬时保护的至少其中之一的保护功能,则双金属片230与瞬时衔铁260的相对位置和布置方式亦可灵活调整。

进一步地,如图5和图6所示,在本实施方式中,本发明提出的断路器200还包括三个衔铁支架270,每个衔铁支架270安装于壳体210的第二侧,且三个瞬时衔铁260分别可转动地安装于三个衔铁支架270。具体而言,在本实施方式中,每个衔铁支架270两侧分别具有一固定部271,可优选为耳板,耳板上开设有定位孔,并通过螺钉固定于壳体210。另外,瞬时衔铁260的枢接部261可转动地设于衔铁支架270,且瞬时衔铁260的推抵部262露出于衔铁支架270,以在瞬时衔铁260转动时推抵第二触头243而带动拨杆240转动。更进一步地,在本实施方式中,衔铁支架270与瞬时衔铁260之间连接有复位弹簧,以在短路时瞬时衔铁260动作后,当电流减小而使磁场减弱时,驱动瞬时衔铁260复位。

基于上述设计,当电路短路时,其大电流产生的磁场作用于瞬时衔铁260而使其在磁场中动作,且瞬时衔铁260带动拨杆240转动,拨杆240转动至触发角度时触发机械跳闸装置250动作,断路器200脱扣断开。

需要说明的是,以上导热块220将热量传导至双金属片230是连续的过程,可通过调整双金属片230和结构、层数或材质等,预先设定双金属片230开始弯曲所需的过载热量值。即,当电路的电流过载时,复合端子产生的热量达到上述过载热量值时,则双金属片230弯曲而实现过载脱扣的功能。对应地,以上电磁块280将电路的电流转换为磁场,并通过磁场作用于瞬时衔铁260是连续的过程,可通过调整复位弹簧的张弛程度(电流增大,磁场增大,而使瞬时衔铁260开始转动的过程中,需克服复位弹簧的弹性力)或瞬时衔铁260的磁感系数,预先设定瞬时衔铁260开始转动所需的短路磁场强度。即,当电路短路而使电流增大时,电磁块280产生的磁场的磁场强度达到上述短路磁场强度时,则瞬时衔铁260开始转动而实现短路脱扣的功能。

综上所述,本发明提出的断路器的优点和积极效果在于:

本发明提出的断路器,利用双金属片的受热弯曲带动拨杆转动,而实现断路器的脱扣。本发明提出的断路器相比于现有电子式断路器,结构更加简单,组成元件较少且制造成本较低,能够满足使用者的不同需求。

进一步地,在本发明提出的断路器中,利用瞬时衔铁在磁场中的动作,而实现断路器的脱扣。通过上述设计,本发明在实现断路器的过载保护的同时,实现了断路器的瞬时保护。

以上详细地描述和/或图示了本发明提出的断路器的示例性实施方式。但本发明的实施方式不限于这里所描述的特定实施方式,相反,每个实施方式的组成部分和/或步骤可与这里所描述的其它组成部分和/或步骤独立和分开使用。一个实施方式的每个组成部分和/或每个步骤也可与其它实施方式的其它组成部分和/或步骤结合使用。在介绍这里所描述和/或图示的要素/组成部分/等时,用语“一个”、“一”和“上述”等用以表示存在一个或多个要素/组成部分/等。术语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。此外,权利要求书及说明书中的术语“第一”和“第二”等仅作为标记使用,不是对其对象的数字限制。

虽然已根据不同的特定实施例对本发明提出的断路器进行了描述,但本领域技术人员将会认识到可在权利要求的精神和范围内对本发明的实施进行改动。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1