一种薄膜晶体管及其制备方法、阵列基板和显示装置与流程

文档序号:14177671阅读:215来源:国知局
一种薄膜晶体管及其制备方法、阵列基板和显示装置与流程

本发明涉及显示技术领域,特别是涉及一种薄膜晶体管及其制备方法、阵列基板和显示装置。



背景技术:

为了制作较高分辨率的显示面板,需要解决tft寄生电容过大的问题,现有技术一般采用顶栅自对准tft结构来降低tft寄生电容。而顶栅tft结构的显示面板又面临以下两个方面的问题需要解决,一方面是如何降低有源层与源漏电极之间电阻,参照图1,为了降低有源层与源漏之间的接触电阻,现有技术一般是通过ar、he等气体等离子体处理有源层03与源漏电极02接触的区域,即通过导体化工艺形成ldd(lightlydopeddrain,轻掺杂漏结构)区域01,但ldd区域01的制作存在工艺复杂、器件迁移率低、稳定性差的问题;另一方面是由于oxide本身对光照比较敏感,在光照下沟道区的电学特性会发生变化,现有技术为了改善其光照稳定性,通常在面板上制作一层shield层04以起到挡光的作用,但是由于ldd区域01的存在导致shield层04并不能完全有效地隔绝光对有源层03的影响,使得tft容易发生vth漂移,仍然存在光照稳定性差的问题。



技术实现要素:

本发明提供了一种薄膜晶体管及其制备方法、阵列基板和显示装置,以有效地降低有源层与源漏电极之间电阻,进一步增加tft的光照稳定性。

为了解决上述问题,本发明公开了一种薄膜晶体管,所述薄膜晶体管包括:

基板,以及设置在所述基板上的有源层和第一源漏电极,所述第一源漏电极与所述有源层连接;

层叠设置在所述有源层上的第一绝缘层和栅极,所述栅极与所述第一源漏电极的厚度和材料相同。

优选地,所述第一绝缘层在所述基板上的正投影与所述有源层在所述基板上的正投影重叠。

优选地,所述栅极在所述基板上的正投影与所述有源层在所述基板上的正投影重叠。

优选地,所述有源层的材料为igzo材料。

优选地,所述基板包括:

衬底,以及设置在所述衬底上的遮挡层;

设置在所述衬底和所述遮挡层上的缓冲层。

优选地,所述薄膜晶体管还包括:

设置在所述基板、所述第一源漏电极和所述栅极上的第二绝缘层;

以及设置在所述第二绝缘层上的第二源漏电极,所述第二源漏电极通过设置在所述第二绝缘层上的过孔与所述第一源漏电极连接。

为了解决上述问题,本发明还公开了一种薄膜晶体管的制备方法,应用于上述任一项所述的薄膜晶体管,所述制备方法包括:

提供基板;

在所述基板上形成层叠设置的有源层和第一绝缘层;

在所述第一绝缘层上形成栅极,并在所述基板上形成第一源漏电极,所述第一源漏电极与所述有源层连接,所述栅极与所述第一源漏电极的厚度和材料相同。

优选地,在所述基板上形成层叠设置的有源层和第一绝缘层的步骤,包括:

在所述基板上沉积有源层材料;

在所述有源层材料上沉积第一绝缘层材料;

对所述有源层材料和所述第一绝缘层材料进行一次构图工艺,形成层叠设置的所述有源层和所述第一绝缘层。

优选地,在所述第一绝缘层上形成栅极,并在所述基板上形成第一源漏电极,所述第一源漏电极与所述有源层连接,所述栅极与所述第一源漏电极的厚度和材料相同的步骤,包括:

在所述第一绝缘层和所述基板上沉积金属材料;

对所述金属材料进行一次构图工艺,在所述第一绝缘层上形成所述栅极,并在所述基板上形成所述第一源漏电极,所述第一源漏电极与所述有源层连接,所述栅极与所述第一源漏电极的厚度和材料相同。

优选地,对所述金属材料进行一次构图工艺,在所述第一绝缘层上形成所述栅极,并在所述基板上形成所述第一源漏电极,所述第一源漏电极与所述有源层连接,所述栅极与所述第一源漏电极的厚度和材料相同的步骤,包括:

在所述金属材料上涂覆光刻胶,对所述光刻胶进行曝光和显影,再对所述金属材料进行刻蚀,在所述第一绝缘层上形成所述栅极,并在所述基板上形成所述第一源漏电极,所述第一源漏电极与所述有源层连接,所述栅极与所述第一源漏电极的厚度和材料相同;其中,所述刻蚀的时长大于预设时长,以使所述栅极与所述第一源漏电极完全断开。

优选地,所述提供基板的步骤,包括:

提供衬底;

在所述衬底上形成遮挡层;

在所述衬底和所述遮挡层上形成缓冲层,得到所述基板。

优选地,所述制备方法,还包括:

在所述基板、所述第一源漏电极和所述栅极上形成第二绝缘层;

在所述第二绝缘层上形成第二源漏电极,所述第二源漏电极通过设置在所述第二绝缘层上的过孔与所述第一源漏电极连接。

为了解决上述问题,本发明还公开了一种阵列基板,所述阵列基板包括上述任一项所述的薄膜晶体管。

为了解决上述问题,本发明还公开了一种显示装置,所述显示装置包括上述的阵列基板。

与现有技术相比,本申请包括以下优点:

本申请提供了一种薄膜晶体管,该薄膜晶体管包括基板以及设置在基板上的有源层和第一源漏电极,第一源漏电极与有源层连接;通过设置与有源层直接接触的第一源漏电极,其中所述栅极与所述第一源漏电极的厚度和材料相同;相对现有技术,无需在第一源漏电极和有源层之间再设置ldd区域,因此,源漏电极与有源层之间的总电阻也就不再包括ldd区域本身的电阻,只剩余第一源漏电极与有源层之间的接触电阻,从而有效地减小了源漏电极与有源层之间的电阻;同时由于第一源漏电极对侧面光线的有效遮挡,结合现有shield层对正面光线的遮挡,可以进一步提高tft的光照稳定性;而且由于栅极与第一源漏电极的材料与厚度相同,使得栅极与第一源漏电极可以同步形成,从而简化制备工艺,提升良率的同时减低成本。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1示出了现有技术中一种薄膜晶体管的剖面结构示意图;

图2示出了本申请一实施例提供的一种薄膜晶体管的剖面结构示意图;

图3示出了本申请一实施例提供的另一种薄膜晶体管的剖面结构示意图;

图4示出了本申请一实施例提供的一种薄膜晶体管的制备方法的步骤流程图;

图5示出了本申请一实施例提供的一种基板的剖面结构示意图;

图6示出了本申请一实施例提供的一种薄膜晶体管的制备方法中完成了有源层和第一绝缘层制作的薄膜晶体管的剖面结构示意图;

图7示出了本申请一实施例提供的一种基板的制备方法的步骤流程图;

图8示出了本申请一实施例提供的一种薄膜晶体管的制备方法中制作有源层和第一绝缘层的步骤流程图;

图9示出了本申请一实施例提供的一种薄膜晶体管的制备方法中制作栅极和第一源漏电极的步骤流程图;

图10示出了本申请一实施例提供的另一种薄膜晶体管的制备方法的步骤流程图;

附图标记说明:

01-现有技术的ldd区域;02-现有技术的源漏电极;03-现有技术的沟道区;04-现有技术的shield层;10-基板;11-有源层;12-第一源漏电极;13-第一绝缘层;14-栅极;15-衬底;16-遮挡层;17-缓冲层;18-第二绝缘层;19-第二源漏电极。

具体实施方式

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

在本申请的一实施例中,参照图2,示出了一种薄膜晶体管的剖面结构示意图,该薄膜晶体管可以包括:基板10以及设置在基板10上的有源层11和第一源漏电极12,第一源漏电极12与有源层11连接;层叠设置在有源层11上的第一绝缘层13和栅极14,栅极14与第一源漏电极12的厚度和材料相同。

具体的,有源层11即active层,包括有源区或沟道区,材料可以是非晶硅,低温多晶硅或者金属氧化物材料。在优选的实现方式中,有源层11可以采用igzo材料,与传统的硅基薄膜晶体管相比,以igzotft为代表的金属氧化物薄膜晶体管具备迁移率高、均匀性好、制备工艺简单等优点。

第一源漏电极12可以采用多种金属材料,例如mo、al、ti、au、cu、hf或ta等,只要是电导率较高可以用作电极的材料即可。在实际应用中,源漏电极不但包括第一源漏电极12,还可以包括与第一源漏电极12连接的第二源漏电极。

第一绝缘层13通常称作gi层或者栅极绝缘层,材料可以为氧化硅、氮化硅或氮氧化硅等。

栅极14即gate电极,材料可以为mo、al、ti、au、cu、hf或ta等。

由于栅极14与第一源漏电极12的厚度和材料相同,使得上述薄膜晶体管在制备过程中可以同步形成栅极14与第一源漏电极12,从而使简化制备工艺,提升良率并降低成本。

与现有技术的薄膜晶体管结构相比,如图1所示的结构中源漏电极02与沟道区03之间的电阻可以表示为:rp=2rc+2rldd;其中,rp为源漏电极02与沟道区03之间总的寄生电阻,rc为一侧ldd区域01与源漏电极02之间的接触电阻,rldd为一侧ldd区域01的电阻。

本实施例中由于第一源漏电极12与有源层11直接接触,不存在ldd区域,这样,源漏电极与有源层11之间的电阻,不再包括ldd区域本身的电阻,只剩余第一源漏电极12与有源层11之间的接触电阻,而这一接触电阻相当于现有技术中的源漏电极02与ldd区域01的接触电阻,所以本实施例提供的薄膜晶体管有效地降低了源漏电极与有源层之间的电阻。

另外,现有技术中,由于ldd区域01的存在导致shield层04并不能完全有效地隔绝侧面光对有源层03的影响,而本实施例中由于第一源漏电极12的设置,可以有效地为tft有源层11遮挡来自侧面的光线,结合现有技术中shield层04对正面光线的遮挡,可以有效地减小tft因光照发生vth漂移,进一步提高光照稳定性。

本实施例提供的薄膜晶体管,包括基板以及设置在基板上的有源层和第一源漏电极,第一源漏电极与有源层连接;通过设置与有源层直接接触的第一源漏电极,其中所述栅极与所述第一源漏电极的厚度和材料相同;相对现有技术,无需在第一源漏电极和有源层之间再设置ldd区域,因此,源漏电极与有源层之间的总电阻也就不再包括ldd区域本身的电阻,只剩余第一源漏电极与有源层之间的接触电阻,所以本实施例提供的薄膜晶体管有效地减小了源漏电极与有源层之间的电阻;同时由于第一源漏电极对侧面光线的有效遮挡,结合现有shield层对正面光线的遮挡,可以进一步提高tft的光照稳定性;而且由于栅极与第一源漏电极的材料与厚度相同,使得栅极与第一源漏电极可以同步形成,从而简化制备工艺,提升良率的同时减低成本。

在上述实施例的一种实现方式中,第一绝缘层13在基板10上的正投影与有源层11在基板10上的正投影可以重叠,从而可以使第一绝缘层13与有源层11同步形成,进一步简化制备工艺。

在实际应用中,栅极14在基板10上的正投影与有源层11在基板10上的正投影重叠,这对于本领域技术人员是公知的,如果栅极14在基板10上的正投影小于有源层11在基板10上的正投影,将会导致电阻的增大,开启电压增大。

在实际应用中,参照图2,上述基板10可以进一步包括衬底15以及设置在衬底15上的遮挡层16;设置在衬底15和遮挡层16上的缓冲层17。

具体的,衬底15可以是玻璃或者其他柔性基底等。遮挡层16相当于现有技术中的shield层04,材料可以是monb金属和薄层的alnd金属等,主要用于为tft器件遮挡外界光线,结合本实施例中与有源层11直接接触的第一源漏电极12对侧面光线的有效遮挡,可以增强tft的光照稳定性,大大减小vth漂移。缓冲层17即buffer层,材料可以为为氧化硅、氮化硅或氮氧化硅。

在实际应用中,参照图3,上述薄膜晶体管还可以进一步包括设置在基板10、第一源漏电极12和栅极14上的第二绝缘层18;以及设置在第二绝缘层18上的第二源漏电极19,第二源漏电极19通过设置在第二绝缘层18上的过孔与第一源漏电极12连接,其中,第一源漏电极12和第二源漏电极19共同构成源漏电极。

其中,第二源漏电极19可以是sd层,材料可以与第一源漏金属层12的材料相同。第二绝缘层18即ild层,材料可以与第一绝缘层13的材料相同。

在本申请的另一实施例中,参照图4,示出了一种薄膜晶体管的制备方法的步骤流程图,该制备方法可以包括:

步骤401:提供基板10,参照图5示出了一种基板的剖面结构示意图。

步骤402:在基板10上形成层叠设置的有源层11和第一绝缘层13,参照图6。

步骤403:在第一绝缘层13上形成栅极14,并在基板10上形成第一源漏电极12,第一源漏电极12与有源层11连接,栅极14与第一源漏电极14的厚度和材料相同,参照图2。

参照图7,上述步骤401中提供基板10的步骤,可以进一步包括:

步骤701:提供衬底15。

步骤702:在衬底15上形成遮挡层16。

具体的,衬底15采用标准方法进行清洗后,依次沉积monb金属和薄层的alnd金属,之后涂覆光刻胶,在衬底15上光刻出遮挡层16的图形。

步骤703:在衬底15和遮挡层16上形成缓冲层17,得到基板10,参照图5。

具体的,通过在衬底15和遮挡层16上覆盖沉积缓冲层材料形成buffer缓冲层17。

在上述实施例的一种实现方式中,参照图8,上述步骤402可以进一步包括:

步骤801:在基板10上沉积有源层材料。

步骤802:在有源层材料上沉积第一绝缘层材料。

步骤803:对有源层材料和第一绝缘层材料通过一次构图工艺,形成层叠设置的有源层11和第一绝缘层13,参照图6。

具体的,完成有源层材料和第一绝缘层材料的沉积后,涂覆光刻胶,然后通过一次光刻工艺,先干刻后湿刻的方法同步形成有源层11和第一绝缘层13。

这样,由于有源层和第一绝缘层可以同步形成,可以进一步简化工艺,降低成本。

在上述实施例的一种实现方式中,参照图9,上述步骤403还可以进一步包括:

步骤901:在第一绝缘层13和裸露的基板10上沉积金属材料。

步骤902:对金属材料通过一次构图工艺,在第一绝缘层13上形成栅极14,并在基板10上形成第一源漏电极12,第一源漏电极12与有源层11连接,栅极14与第一源漏电极12的厚度和材料相同,参照图2。

具体的,在第一绝缘层13和裸露的基板10上完成金属层沉积后,通过一次构图工艺可以同时得到栅极14和第一源漏电极12,形成顶栅自对准结构。其中在光刻图形化过程中需要确保第一源漏电极12与有源层11形成良好接触,进一步减小电阻。

其中,上述构图工艺可以包括在金属材料上涂覆光刻胶,对光刻胶进行曝光和显影,再对裸露的金属材料进行刻蚀,从而在第一绝缘层13上形成栅极14,并在基板10上形成第一源漏电极12,第一源漏电极12与有源层11连接,栅极14与第一源漏电极12的厚度和材料相同;其中,刻蚀的时长大于预设时长,以使栅极14与第一源漏电极12完全断开。由于第一源漏电极与栅电极交界处的金属厚度远小于栅电极和第一源漏电极处的金属厚度,这样适当延长刻蚀时间可以确保交界处的金属完全断开,避免短路;具体的预设时长与金属材料以及刻蚀液的性能有关,可以通过反复试验预先获得,本申请对预设时长不作具体限定。

另外,为了确保栅极14与第一源漏电极12完全断开,还可以采取以下措施,例如在photo工艺时,通过控制光刻胶厚度使得第一源漏电极12与栅极14交界处的金属裸露,从而在后续工艺中将交界处金属完全刻蚀掉,以确保栅极14与第一源漏电极12之间断开;为了进一步保证交界处的金属断开,还可以采用横向刻蚀等工艺。

这样,由于第一源漏电极和栅极是通过一次构图工艺形成,既减小了导体化形成ldd区域的过程,降低了源漏电极与有源层之间的电阻;又有效地避免了栅极与源漏电极之间的交叠区域,抑制了交叠区引入的寄生电容和寄生电阻,有利于减小寄生效应和信号延迟,提高了器件性能,可以应用在高分辨率的显示装置中。

在实际应用中,参照图10,上述薄膜晶体管的制备方法,还可以进一步包括:

步骤1001:在基板10、第一源漏电极12以及栅极14上形成第二绝缘层18。

步骤1002:在第二绝缘层18上形成第二源漏电极19,第二源漏电极19通过设置在第二绝缘层18上的过孔与第一源漏电极12连接,参照图3。

在本申请的另一实施例中还提供了一种阵列基板,包括上述任一实施例所述的薄膜晶体管。

在本申请的另一实施例中还提供了一种显示面板,包括上述任一实施例所述的薄膜晶体管。

具体的,该显示面板可以是tft-lcd显示面板、oled显示面板等。

在本申请的另一实施例中还提供了一种显示装置,包括上述任一实施例所述的阵列基板。

本申请提供了一种薄膜晶体管的制备方法、薄膜晶体管、阵列基板和显示装置,其中薄膜晶体管包括基板以及设置在基板上的有源层和第一源漏电极,第一源漏电极与有源层连接;通过设置与有源层直接接触的第一源漏电极,其中所述栅极与所述第一源漏电极的厚度和材料相同;相对现有技术,无需在第一源漏电极和有源层之间再设置ldd区域,因此,源漏电极与有源层之间的总电阻也就不再包括ldd区域本身的电阻,只剩余第一源漏电极与有源层之间的接触电阻,从而有效地减小了源漏电极与有源层之间的电阻;同时由于第一源漏电极对侧面光线的有效遮挡,结合现有shield层对正面光线的遮挡,可以进一步提高tft的光照稳定性;而且由于栅极与第一源漏电极的材料与厚度相同,使得第一源漏电极和栅极可以通过一次构图工艺形成,既避免了有源层导体化的过程,简化了工艺,降低了源漏电极与有源区之间的电阻;又有效地避免了栅极与源漏电极之间的交叠区域,抑制了交叠区引入的寄生电容和寄生电阻,有利于减小寄生效应和信号延迟,提高了器件性能,可以应用在高分辨率的显示装置中;

进一步地,由于有源层和第一绝缘层也可以同步形成,可以进一步简化工艺,降低成本;

本申请提供的薄膜晶体管的制备工艺过程,没有增加掩膜版的个数,而且可以在低温环境下进行,因此可以应用在柔性显示中;工艺成本低,可控性强。

本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。

以上对本发明所提供的一种薄膜晶体管的制备方法、薄膜晶体管、阵列基板及显示装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1