具有分层互连结构的桥互连的制作方法

文档序号:15097565发布日期:2018-08-04 14:56阅读:146来源:国知局

技术领域

本公开的实施例通常涉及集成电路领域,且更具体地涉及用于在集成电路组件中的具有分层互连结构的桥互连的技术和配置。



背景技术:

嵌入式桥互连可提供在处理器和存储器芯片之间的更快的通信。各种管芯可能需要在第一级互连(FLI)处附接到衬底,以实现高性能计算(HPC)。因为管芯继续缩小到较小的尺寸,因此在FLI级处的互连结构之间通常需要更细的间距。

使用目前的技术提供未来计算设备的更细间距可能是有挑战性的。例如目前,在处理器管芯和存储器管芯之间的混合凸块间距可能使封装和组装变得非常有挑战性并导致差的产出性能。使用焊膏印刷(SPP)工艺的FLI接头架构可能由于对管芯上的焊料凸块高度和/或焊料体积的限制而导致低质产出,这可导致非接触断开和凸块开裂,特别是对于FLI的较小间距区域。而且,电迁移风险可能由于铜(Cu)扩散和在FLI接头的衬底侧面上使用的有机焊料保护剂(OSP)表面精加工而升高。

附图说明

结合附图通过下面的详细描述将容易理解实施例。为了便于该描述,相似的附图标记表示相似的结构元件。实施例作为例子而不是作为限制在附图的图中示出。

图1示意性示出根据一些实施例的配置成使用在衬底中具有分层互连结构的嵌入式桥互连的示例性集成电路(IC)组件的截面侧视图。

图2示意性示出根据一些实施例的用于使用分层互连结构形成嵌有桥互连的衬底的封装衬底制造过程的流程图。

图3示意性示出根据一些实施例的在将桥嵌在衬底中之前的与图2所示的封装衬底制造过程有关的一些选定操作的截面侧视图。

图4示意性示出根据一些实施例的在将桥嵌在衬底中之前的与图2所示的封装衬底制造过程有关的一些其它选定操作的截面侧视图。

图5示意性示出根据一些实施例的与图2所示的封装衬底制造过程有关的将桥嵌在衬底中的一些选定操作的截面侧视图。

图6示意性示出根据一些实施例的与图2所示的封装衬底制造过程有关的形成分层互连结构的一些选定操作的截面侧视图。

图7示意性示出根据一些实施例的与图2所示的封装衬底制造过程有关的形成分层互连结构的一些其它选定操作的截面侧视图。

图8示意性示出根据一些实施例的与图2所示的封装衬底制造过程有关的完成分层互连结构的一些选定操作的截面侧视图。

图9示意性示出根据一些实施例的利用具有嵌入式桥互连的封装衬底的组装过程的流程图。

图10示意性示出根据一些实施例的在如本文所述的衬底中包括具有分层互连结构的嵌入式桥互连的计算设备。

具体实施方式

本公开的实施例描述在集成电路组件中的具有分层互连结构的桥互连的技术和配置。在下面的描述中,将使用由本领域技术人员普遍使用的术语来描述例证性实现方式的各种方面,以将它们工作的实质传达给本领域中的其他技术人员。然而,对本领域技术人员将明显,本公开的实施例可在只有所述方面中的仅仅一些的情况下被实施。为了解释的目的,阐述了特定的数量、材料和配置,以便提供对例证性实现方式的彻底理解。然而,对本领域技术人员将明显,本公开的实施例可在没有特定细节的情况下被实施。在其它实例中,公知的特征被省略或简化,以便不使例证性实现难理解。

在下面的详细描述中,参考形成其一部分的附图,其中相似的附图标记始终表示相似的部件,且其中通过说明的方式示出本公开的主题可被实施的实施例。应理解,在不偏离本公开的范围的情况下其它实施例可被利用,且可做出结构或逻辑变化。因此,下面的详细描述不应在限制的意义上被理解,且实施例的范围由所附权利要求及其等价体来限定。

为了本公开的目的,短语“A和/或B”意指(A)、(B)或(A和B)。为了本公开的目的,短语“A、B和/或C”意指(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或(A、B和C)。

本描述可使用基于视角的描述,例如顶部/底部、在…中/外、在…之上/在…之下等。这样的描述仅用于便于讨论,且并不打算将本文描述的实施例的应用限制到任何特定的方向。

本描述可使用短语“在一个实施例中”、“在实施例中”或“在一些实施例中”,每个可以指相同或不同实施例中的一个或多个。此外,如关于本公开的实施例使用的术语“包括(comprising)”、“包括(including)”、“具有”等是同义的。

术语“与…耦合”连同其派生词可在本文被使用。“耦合”可以意指下列内容中的一个或多个。“耦合”可以意指两个或多个元件直接物理或电接触。然而,“耦合”也可意指两个或多个元件彼此间接接触,但仍然彼此协作或交互作用,且可以意指一个或多个其它元件耦合或连接在被认为彼此耦合的元件之间。术语“直接耦合”可以意指两个或多个元件直接接触。

在各种实施例中,短语“在第二特征上形成、沉积或以另外方式设置的第一特征”可以意指第一特征在第二特征之上形成、沉积或设置,且第一特征的至少一部分可以与第二特征的至少一部分直接接触(例如直接物理和/或电接触)或间接接触(例如具有在第一特征和第二特征之间的一个或多个其它特征)。

如在本文使用,术语“模块”可以指以下部件、或是以下这些部件的部分、或包括以下这些部件:专用集成电路(ASIC)、电子电路、片上系统(SoC)、执行一个或多个软件或固件程序的处理器(共用、专用或组)和/或存储器(共用、专用或组)、组合逻辑电路、和/或提供所描述的功能的其它适当的部件。

图1示意性示出根据一些实施例的配置成使用在衬底中具有分层互连结构的嵌入式桥互连的示例性IC组件100的截面侧视图。在实施例中,IC组件100可包括与封装衬底150电气和/或物理地耦合的一个或多个管芯,例如管芯110和管芯120,如可看到的。封装衬底150还可与电路板190电气地耦合,如可看到的。如在本文使用的,第一级互连(FLI)可以指在管芯和封装衬底之间的互连,而第二级互连(SLI)可以指在封装和电路板之间的互连。

管芯110或120可代表使用半导体制造技术(例如薄膜沉积、光刻法、蚀刻等)由半导体材料制成的分立单元。在一些实施例中,管芯110或120可包括处理器、存储器、SoC或ASIC、或是这些部件的一部分。管芯110和120可根据各种适当的配置(包括如所描绘的倒装芯片配置或例如嵌在封装衬底150中的其它配置)附接到封装衬底150。在倒装芯片配置中,管芯110或120可使用FLI结构(例如互连结构130、135)附接到封装衬底150的表面(例如,侧面S1),互连结构130、135配置成电气和/或机械地使管芯110、120与封装衬底150耦合,并在管芯110、120中的一个或多个与其它电气部件之间传送电信号。在一些实施例中,电信号可包括输入/输出(I/O)信号和/或与管芯110、120的操作相关联的功率/接地。

互连结构130可与桥140电气地耦合,以使用桥140在管芯110、120之间传送电信号。如下面进一步讨论的,互连结构130可基本上抑制扩散且减轻电迁移风险,并提供较高和较兼容的FLI接头和支架高度,这可提高组件性能,减小组件产出损失,并增强FLI可靠性。

互连结构135可配置成在管芯(例如管芯110)和电通道133之间传送电信号,电通道133从第一侧面S1到与第一侧面S1相对的第二侧面S2穿过封装衬底150。例如,互连结构135可与配置成在封装衬底150的第一侧面S1和第二侧面S2之间传送管芯110的电信号的其它互连结构(例如互连结构137)(例如沟槽、过孔、迹线或导电层)等耦合。在一些实施例中,互连结构135可以是电气通道133的部分。

互连结构137为了讨论起见仅仅是示例性结构,并可代表各种适当的互连结构和/或层中的任一个。类似配置的互连结构130和135可使管芯120或其它管芯(未示出)与封装衬底150耦合。封装衬底150可包括比所描绘的更多或更少的互连结构或层。在一些实施例中,例如模塑料或底层填充材料(未示出)的电绝缘材料可部分地密封管芯110或120的一部分和/或互连结构130、135。

在一些实施例中,桥140可配置成使管芯110和120彼此电气地连接。在一些实施例中,桥140可包括互连结构(例如,互连结构130)以用作在管芯110和120之间的电布线特征。在一些实施例中,桥可设置在封装衬底150上的一些管芯之间而不在其它管芯之间。在一些实施例中,从顶视图来看,桥可以是不可见的。在一些实施例中,桥140可嵌在封装衬底150的腔中。桥140可以是提供电信号的路线的高密度布线结构。桥140可包括桥衬底,其由玻璃或半导体材料(例如具有在其上形成的电布线互连特征的高密度硅(Si))组成以提供在管芯110和120之间的芯片到芯片连接。在其它实施例中,桥140可由其它适当的材料组成。在一些实施例中,封装衬底150可包括多个嵌入式桥,以在多个管芯之间传送电信号。

在一些实施例中,封装衬底150是具有核心和/或内置层的基于环氧树脂的层压衬底,例如味之素(Ajinomoto)内置膜(ABF)衬底。在其它实施例中,封装衬底150可包括其它适当类型的衬底,包括例如由玻璃、陶瓷或半导体材料形成的衬底。

电路板190可以是由电绝缘材料(例如环氧树脂层压板)组成的印刷电路板(PCB)。例如,电路板190可包括电绝缘层,其由材料(例如聚四氟乙烯、诸如阻燃剂4(FR-4)、FR-1的酚醛棉纸材料、诸如CEM-1或CEM-3的绵纸和环氧树脂材料、或使用环氧树脂预浸渍材料层压在一起的玻璃布材料)组成。诸如迹线、沟槽、过孔的结构可穿过前绝缘层形成,以穿过电路板190传送管芯110或120的电信号。在其它实施例中,电路板190可由其它适当的材料组成。在一些实施例中,电路板190是母板(例如图10的母板1002)。

封装级互连(例如焊球170或连接盘栅格阵列(LGA)结构)可耦合到在封装衬底150上的一个或多个连接盘(在下文中是“连接盘160”)和在电路板190上的一个或多个焊盘180,以形成被配置成在封装衬底150和电路板190之间传送电信号的相应的焊接头。连接盘160和/或焊盘180可由诸如金属(包括例如镍(Ni)、钯(Pd)、金(Au)、银(Ag)、铜(Cu)及其组合)的任何适当的导电材料组成。在其它实施例中,可使用使封装衬底150与电路板190物理和/或电气地耦合的其它适当的技术。

图2示意性示出根据一些实施例的用于使用分层互连结构(例如图1的互连结构130)形成嵌有桥互连的衬底(例如图1的封装衬底)的封装衬底制造过程(在下文中是“过程200”)的流程图。过程200可适于根据各种实施例的关于图3-8描述的实施例。

在210,过程200可包括在衬底中形成桥(例如图1的桥140)。在实施例中,桥可由玻璃或半导体材料(例如Si)组成,并包括电布线特征以在管芯之间传送电信号。在一些实施例中,桥可被设置在由衬底的一个或多个内置层形成的平面中或内。例如,如可在关于图1所示的实施例中看到的,桥140嵌在衬底150的内置层中。在一些实施例中,桥可设置在由内置层形成但与内置层分开地形成的平面中。

在一些实施例中,根据任何适当的技术,可通过将桥嵌在内置层中作为内置层的形成的部分或通过在内置层中形成腔并在内置层的形成之后将桥放置在腔中来形成设置在内置层的平面中的桥(例如图1的桥140)。可在根据各种实施例的关于图3-5描述的制造期间将桥嵌在衬底中。

在220,过程200可包括形成包括第一导电材料的接头,该接头与桥连接以在衬底的表面之外传送电信号。在实施例中,接头可以是可将桥电耦合到管芯的互连结构(例如图1的互连结构130)的一部分。接头可包括第一导电材料。在一个实施例中,第一导电材料可包括Cu。在其它实施例中,第一导电材料可包括其它化学成分或其组合。在实施例中,接头可包括以下结构:例如迹线、沟槽、过孔、连接盘、焊盘、或为管芯的电信号提供穿过封装衬底到嵌入式桥然后例如到电耦合到桥的另一管芯的相应电通道的其它结构。在一个实施例中,接头可包括过孔结构。在实施例中,接头还可包括与过孔结构耦合的焊盘结构。接头可在根据各种实施例的关于图6描述的制造期间形成。

在230,过程200可包括直接在接头上形成包括第二导电材料的阻挡层。在实施例中,阻挡层可包括诸如阻挡层金属的第二导电材料,并被涂敷以覆盖接头。阻挡层可减小或防止在接头中使用的第一导电材料在周围材料中的扩散,同时维持在接头和管芯之间的电连接。第二导电材料可具有与第一导电材料不同的化学成分。第二导电材料可包括例如镍(Ni)、钽(Ta)、铪(Hf)、铌(Nb)、锆(Zr)、钒(V)、钨(W)、或其组合。在一些实施例中,第二导电材料可包括导电陶瓷,例如氮化钽、氧化铟、硅化铜、氮化钨、以及氮化钛。

在实施例中,阻挡层可减轻电迁移的风险。当电子器件(例如集成电路(IC))中的结构尺寸减小时,电迁移的风险可随着更高的直流密度而增加。电迁移可引起扩散过程,例如晶界扩散、体扩散或表面扩散。在实施例中,当第一导电材料包括铜时,表面扩散可能在由电迁移引起的铜互连中占优势。阻挡层可防止在相邻铜和/或铜合金线之间的铜扩散。在一个实施例中,电解电镀可用于形成阻挡层。阻挡层可在根据各种实施例的关于图7描述的制造期间形成。

在240,过程200可包括直接在阻挡层上形成包括第三导电材料的焊接层,阻挡层和焊接层配置成传送电信号。在实施例中,焊接层可包括涂敷在阻挡层上的第三导电材料,例如易熔合金。焊接层可用于经由管芯的连接点将包括阻挡层和接头的下层结构与管芯接合在一起,同时维持在下层结构和管芯之间的电连接。在实施例中,接头、阻挡层和焊接层可共同形成互连结构,以在桥和管芯之间传送电信号。

在实施例中,第三导电材料可具有与第一和第二导电材料不同的化学成分。第三导电材料可包括例如锡(Sn)、银(Ag)、镍(Ni)、锌(Zn)、或其组合。焊接层可在根据各种实施例的关于图7描述的制造期间形成。在其它实施例中,焊接层可通过电解电镀、过去印刷、小球(uball)碰撞或其它可兼容的工艺来形成。

各种操作以对理解所要求的主题最有用的方式依次被描述为多个分立的操作。然而,描述的顺序不应被解释为暗示这些操作必须是顺序相关的。过程200的操作可以按与所描绘的不同的另一适当的顺序执行。在一些实施例中,过程200可包括关于图3-8描述的动作,并且反之亦然。

图3示意性示出根据一些实施例的在嵌入桥之前的关于图2所示的封装衬底制造过程200的一些选定操作的截面侧视图。参考操作392,描绘了在图案化金属层310之上形成介电层320之后的衬底,如可看到的。在实施例中,图案化金属层和在图案化金属层之下的任何数量的层可以是衬底的部分,并可以用本领域中已知的任何方式来形成。例如,图案化金属层可以是使用半加成工艺(SAP)形成的内置层的顶部或最外面的导电层。

在实施例中,介电层320可由各种适当的介电材料(包括例如基于环氧树脂的层压材料、二氧化硅(例如SiO2)、碳化硅(SiC)、碳氢化硅(SiCN)或氮化硅(例如SiN、Si3N4等))中的任一种组成。也可使用其它适当的介电材料,例如包括介电常数k小于二氧化硅的介电常数k的低k介电材料。在实施例中,可通过使用任何适当的技术(包括例如原子层沉积(ALD)、物理气相沉积(PVD)或化学气相沉积(CVD)技术)沉积介电材料来形成介电层320。在实施例中,介电层320可包括具有硅石填料的聚合物(环氧基树脂),以提供满足封装的可靠性要求的适当机械特性。在实施例中,介电层320可例如通过ABF层压被形成为聚合物的膜。介电层320可具有适当的消融率以实现如在本文的其它地方描述的激光图案化。

参考操作394,示出了在介电层320上形成腔332之后的衬底,如可看到的。在实施例中,腔332可以是通孔,其可以被激光钻孔到介电层320中以暴露出图案化金属层310的一部分。可使用任何常规技术(例如使用CO2激光器)来形成腔332。在实施例中,可随后应用表面沾污去除工艺,以从图案化金属层310的表面去除弄脏的介电材料(例如环氧树脂),以防止污迹残留物形成另一介电层。

在实施例中,金属种晶层330接着使用任何适当的技术被沉积在N-2层的顶部上。在一些实施例中,化学镀可用于形成金属种晶层330。例如,诸如钯(Pd)的催化剂可在化学镀铜(Cu)工艺之后被沉积。在一些实施例中,物理气相沉积(即,溅射)技术可用于沉积金属种晶层330。参考操作396,描绘了在形成光敏层(例如干膜抗蚀剂(DFR)层336)之后的衬底,如可看到的。在实施例中,DFR层336可使用本领域中已知的任何技术被层压并图案化。在实施例中,在DFR层336中的开口328可具有比腔332大的横向尺寸,如可看到的。

图4示意性示出根据一些实施例的在嵌入桥之前的关于图2所示的封装衬底制造过程的一些其它选定操作的截面侧视图。参考操作492,描绘了在将导电材料沉积到腔332和开口328中之后的衬底,如可看到的。在实施例中,如上面讨论的,导电材料可包括第一导电材料,例如包括诸如镍(Ni)、钯(Pd)、金(Au)、银(Ag)、铜(Cu)、及其组合的金属。在实施例中,腔332和开口328可例如使用电解电镀工艺被填充。在实施例中,电解电镀铜工艺可被执行来填充腔332和开口328。在实施例中,在操作492中形成的互连结构410可在N-2层的表面之上突出。

参考操作494,描绘了在剥离DFR之后的衬底,如可看到的。在实施例中,可使用任何常规剥离工艺来去除DFR。参考操作496,描绘了在蚀刻金属种晶层330之后的衬底,如可看到的。在实施例中,DFR剥离可进一步勾划出互连结构410并暴露下层介电层320。

图5示意性示出根据一些实施例的关于图2所示的封装衬底制造过程的嵌入桥的一些选定操作的截面侧视图。参考操作592,描绘了在形成桥腔502之后的衬底,如可看到的。在实施例中,桥腔502可被提供用于桥的放置。在实施例中,可通过暴露于热或化学物质以去除介电层320的至少一部分来形成桥腔502。在实施例中,桥腔502可以被激光钻孔到介电层320中以暴露图案化金属层310的一部分。在其它实施例中,桥腔502可在前面讨论的内置层的制造期间保持打开。在又一些其它实施例中,桥腔502可使用图案化工艺穿过前面讨论的内置层而形成。例如,介电层320可由经得起掩模、图案化和蚀刻或显影工艺的光敏材料组成。

参考操作594,描绘了在安装桥530(只示出桥的一部分)之后的衬底,如可看到的。在实施例中,桥530可包括桥衬底,其由玻璃或半导体材料(例如具有在其上形成的电布线互连特征的高电阻率硅(Si))组成,以提供在管芯之间的芯片到芯片连接。在实施例中,桥530可使用粘合层520安装在图案化金属层310上。粘合层520的材料可包括配置成经得住与衬底的制造相关的工艺的任何适当的粘合剂。在实施例中,化学处理(例如铜粗加工技术)可被应用来提高桥530与其周围表面之间的粘合。在实施例中,桥530可具有在桥衬底的表面之上突出的布线特征540(例如焊盘),并被配置为连接点以向和从桥530传送信号。

参考操作596,描绘了在桥530之上形成介电层550因而实质上在N-2层上形成N-1层之后的衬底,如可看到的。在实施例中,介电层550可由各种适当的介电材料中的任一种组成。在实施例中,可通过使用任何适当的技术(包括例如原子层沉积(ALD)、物理气相沉积(PVD)或化学气相沉积(CVD)技术)沉积介电材料来形成介电层550。在实施例中,介电层320可包括聚合物(例如,环氧基树脂),并且还可包括填料(例如硅石)以提供满足封装的可靠性要求的适当机械特性。在实施例中,介电层320可例如通过ABF层压被形成为聚合物的膜。介电层550可具有适当的消融率以实现如在本文的其它地方描述的激光图案化。

图6示意性示出根据一些实施例的关于图2所示的封装衬底制造过程的形成分层互连结构(例如图1的互连结构130)的一些选定操作的截面侧视图。

参考操作692,描绘了在介电层550上形成腔604之后的衬底,如可看到的。在实施例中,腔可以是通孔,其可以被激光钻孔到介电层550中以暴露下层布线特征540的一部分。可使用任何常规技术(例如使用CO2激光器)来形成腔604。在实施例中,可随后应用表面沾污去除工艺,以从腔604的底表面去除弄脏的介电材料(例如环氧树脂),以防止污迹残留物形成另一介电层。在实施例中,金属种晶层610接着使用任何适当的技术沉积在N-1层的顶部上。在一些实施例中,化学镀可用于形成金属种晶层610。例如,诸如钯(Pd)的催化剂可在化学镀铜(Cu)工艺之后被沉积。在一些实施例中,物理气相沉积(即,溅射)技术可用于沉积金属种晶层330。

参考操作694,描绘了在形成光敏层(例如干膜抗蚀剂(DFR)层612)之后由此实质上在N-1层上形成N层之后的衬底,如可看到的。在实施例中,DFR层612可使用本领域已知的任何技术被层压并图案化。在实施例中,在DFR层612中的开口614可具有比腔604大的横向尺寸。在实施例中,可在衬底的顶侧面和底侧面(例如图1的侧面S1和S2)上执行操作694。

参考操作696,描绘了在将导电材料沉积到腔604和开口614中之后的衬底,如可看到的。在实施例中,如上面讨论的,导电材料可包括第一导电材料,例如包括镍(Ni)、钯(Pd)、金(Au)、银(Ag)、铜(Cu)、及其组合的金属。在实施例中,腔604和开口614可例如使用电解电镀工艺被填充。在实施例中,电解电镀铜工艺可被执行来填充腔604和开口614,以形成接头620。在操作696,可通过蚀刻、擦亮(buff)研磨、化学机械抛光等中的一种或多种来去除上面的电镀填充金属,以平面化接头620。例如,化学、机械抛光(CMP)或擦亮研磨可用于首先平面化接头620,且然后可使用蚀刻来从DFR层612的顶表面去除任何剩余的填充金属。在实施例中,在操作696中形成的互连结构或接头620可在N-1层的表面之上突出(例如在焊盘结构的形成中)并配置成将桥530与管芯耦合。

在实施例中,其它分层FLI互连结构(例如图1的互连结构135)可通过692、694和696的操作部分地形成。

图7示意性示出根据一些实施例的关于图2所示的封装衬底制造过程的形成分层互连结构的一些其它选定操作的截面侧视图。参考操作792,描绘了在直接在接头上形成阻挡层710之后的衬底,如可看到的。在实施例中,阻挡层710可包括第二导电材料(例如阻挡层金属),并被涂敷来覆盖接头。阻挡层710可配置成抑制在接头中使用的第一导电材料的扩散,同时维持在接头和管芯之间的电连接。第二导电材料可与第一导电材料不同。第二导电材料可包括例如镍(Ni)、钽(Ta)、氮化坦(TaN)、氮化钛(TiN)、钨化钛(TiW)、铪(Hf)、铌(Nb)、锆(Zr)、钒(V)或钨(W)、及其组合。在一些实施例中,第二导电材料可包括导电陶瓷,例如氮化钽、氧化铟、硅化铜、氮化钨、和氮化钛。在一些实施例中,阻挡层710可由多层不同材料组成。在实施例中,操作792可包括在衬底的背面侧上涂敷保护膜。

可使用任何适当的沉积技术来沉积阻挡层710。在一些实施例中,可使用PVD技术来沉积阻挡层710的一种或多种阻挡层材料。在其它实施例中,可使用其它适当的沉积技术来形成阻挡层710。

参考操作794,描绘了在直接在阻挡层上形成焊接层720之后的衬底,如可看到的。在实施例中,焊接层720可包括第三导电金属,例如易熔金属合金,并被涂敷在阻挡层710上。在实施例中,第三导电材料与第一和第二导电材料不同。第三导电材料可包括例如锡(Sn)、银(Ag)、镍(Ni)、锌(Zn)、及其组合。在实施例中,焊接层720可用于将下层结构与管芯连接在一起,被同时维持在下层结构和管芯之间的电连接。在实施例中,接头620、阻挡层710和焊接层720可共同形成互连结构,以在桥530和一个或多个管芯(例如关于图1的管芯110和120)之间传送电信号。

参考操作796,描绘了在剥离DFR层612之后的衬底,如可看到的。在实施例中,可使用任何常规剥离工艺来去除DFR层612。在实施例中,可例如通过蚀刻来去除金属种晶层610的部分,以便进一步勾划出互连结构。在一些实施例中,蚀刻工艺可包括金属种晶层610的湿蚀刻。在其它实施例中,可使用其它适合的蚀刻技术或化学剂。在实施例中,还可去除衬底的背面侧上的保护膜。

在实施例中,其它分层FLI互连结构(例如图1的互连结构135)可部分地通过792、794和796的操作来形成。

图8示意性示出根据一些实施例的关于图2所示的封装衬底制造过程的完成分层互连结构的一些选定操作的截面侧视图。参考操作892,描绘了在暴露出顶侧(例如图1的侧面S1)上的凸块区域之后的衬底。在实施例中,焊接抗蚀剂(SR)层可沉积在介电层550上。在实施例中,SR层可在非凸块区域处被图案化,以覆盖迹线或其它电布线特征,也形成用于组装的基准焊盘,例如焊盘802。随后,可使用诸如SR曝光或SR显影的技术在衬底的顶侧(例如,图1的侧面S1)上去除凸块区域SR层。在其它实施例中,可使用任何适当的技术(包括诸如蚀刻和/或光刻法的图案化技术)来去除SR层。在实施例中,操作892此外可包括在衬底(未示出)的底部(例如图1的侧面S2)上的SR层压和焊接抗蚀剂开口(SRO)的形成。

参考操作894,描绘了在形成保护膜804之后的衬底,如可看到的。保护膜804可在衬底的背面(例如图1的侧面S2)上的处理期间保护衬底的顶部(例如,图1的侧面S1)上的部件。在实施例中,保护膜804可通过任何适当的技术(例如薄膜沉积技术)来形成。在实施例中,镍-钯-金(NiPdAu)铅表面精加工(SF)可被应用在衬底(未示出)的背面侧上,同时将保护膜804涂敷到衬底的顶部。

参考操作896,描绘了在互连结构上形成圆形凸块顶部之后的衬底,如可看到的。在实施例中,保护膜804可首先被去除,且然后可使用热过程以将焊接层的温度升高到焊料的回流温度之上,来将焊接层720回流到圆形形状中。

在实施例中,其它分层FLI互连结构(例如图1的互连结构135)可部分地通过892、894和896的操作来形成。

图9示意性示出根据一些实施例的利用具有嵌入式桥互连的封装衬底的组装过程900的流程图。这样的封装衬底可通过参考上面的图2-8描述的例证性过程来产生。

组装过程900在操作910开始接纳具有带分层互连结构(例如图1的互连结构130)的嵌入式桥的封装衬底。可在组装过程900中使用在图8中描绘的封装衬底。

在操作920,可接纳具有芯片I/O连接点(例如,焊盘、凸块或支柱)的IC芯片。虽然IC芯片可通常具有任何常规类型,在一些实施例中,IC芯片可以是具有大I/O计数的处理器,例如微处理器。在一些实施例中,IC芯片可以是具有大I/O计数的存储器管芯。在一些实施例中,焊料可被涂敷到芯片I/O连接点。

在操作930,IC芯片可与封装衬底对齐,使得焊接的芯片I/O连接点与分层互连结构对齐。分层互连结构的可焊接材料和/或芯片I/O连接点上的焊料接着在操作940被回流,以将IC芯片固定到分层互连结构。额外的操作可被执行以在950完成封装。例如,在一些实施例中,电绝缘材料可被沉积以密封或部分地密封IC芯片,和/或封装衬底可与电路板进一步耦合。

本公开的实施例可被实现为使用任何适当的硬件和/或软件以按需要配置的系统。图10示意性示出根据一些实施例的在如本文所述的衬底中包括具有分层互连结构的嵌入式桥互连的计算设备。计算设备1000可容纳板,例如母板1002。母板1002可包括多个部件,包括但不限于处理器1004和至少一个通信芯片1006。处理器1004可以物理地和电气地耦合到母板1002。在一些实现方式中,至少一个通信芯片1006也可以物理地和电气地耦合到母板1002。在另外的实现方式中,通信芯片1006可以是处理器1004的部分。

根据其应用,计算设备1000可包括可以或可以不物理地和电气地耦合到母板1002的其它部件。这些其它部件可包括但不限于易失性存储器(例如DRAM)、非易失性存储器(例如ROM)、闪存、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)设备、罗盘、盖革(Geiger)计数器、加速度计、陀螺仪、扬声器、相机、和大容量存储设备(例如硬盘驱动器、光盘(CD)、数字通用盘(DVD)等)。

通信芯片1006可实现用于向和从计算设备1000传输数据的无线通信。术语“无线”及其派生词可用于描述可通过使用经由非固体介质的经调制的电磁辐射来通信数据的电路、设备、系统、方法、技术、通信信道等。该术语并不暗示相关联的设备不包含任何电线,虽然在一些实施例中它们可以不包含电线。通信芯片1006可实现多种无线标准或协议中的任一个,包括但不限于电气与电子工程师学会(IEEE)标准,包括Wi-Fi(IEEE 802.11系列)、IEEE 802.16标准(例如IEEE 802.16-2005修订)、长期演进(LTE)计划连同任何修订、更新和/或修正(例如高级LTE计划、超移动宽带(UMB)计划(也被称为“3GPP2”)等)。IEEE 802.16兼容的BWA网络通常被称为WiMAX网络——代表微波存取全球互通的首字母缩略词,其为通过IEEE 802.16标准的符合性和互操作性测试的产品的证明标志。通信芯片1006可根据全球移动通信系统(GSM)、通用分组无线业务(GPRS)、通用移动通信系统(UMTS)、高速分组接入(HSPA)、演进HSPA(E-HSPA)或LTE网络来操作。通信芯片1006可根据增强型数据GSM演进(EDGE)、GSM边缘无线接入网络(GERAN)、通用陆地无线接入网络(UTRAN)或演进UTRAN(E-UTRAN)来操作。通信芯片1006可根据码分多址(CDMA)、时分多址(TDMA)、数字增强无绳通信(DECT)、演进数据优化(EV-DO)、其派生物以及被指定为3G、4G、5G和更高代的任何其它无线协议来操作。在其它实施例中,通信芯片1006可根据其它无线协议来操作。

计算设备1000可包括多个通信芯片1006。例如,第一通信芯片1006可专用于较短范围无线通信,例如Wi-Fi和蓝牙,而第二通信芯片1006可专用于较长范围无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。

计算设备1000的处理器1004可被封装在IC组件(例如图1的IC组件100)中,IC组件包括具有带如本文所述的分层互连结构的嵌入式桥的衬底(例如图1的封装衬底150)。例如,图1的电路板190可以是母板1002,且处理器1004可以是使用图1的互连结构130耦合到封装衬底150的管芯110。封装衬底150和母板1002可使用封装级互连耦合在一起。术语“处理器”可以指处理来自寄存器和/或存储器的电子数据以将该电子数据转换成可存储在寄存器和/或存储器中的其它电子数据的任何设备或设备的部分。

通信芯片1006还可包括可被封装在IC组件(例如图1的IC组件100)中的管芯(例如图1的管芯120),该IC组件包括具有带如本文所述的分层互连结构的嵌入式桥的衬底(例如图1的封装衬底150)。在另外的实现方式中,容纳在计算设备1000内的另一部件(例如存储器设备或其它集成电路设备)可包括可被封装在IC组件(例如图1的IC组件100)中的管芯(例如图1的管芯110),IC组件包括具有带有如本文所述的分层互连结构的嵌入式桥的衬底(例如图1的封装衬底150)。根据一些实施例,多个处理器芯片和/或存储器芯片可设置在同一封装衬底上,且具有分层互连结构的嵌入式桥可在处理器或存储器芯片中的任两个之间电气地传送信号。在一些实施例中,单个处理器芯片可使用第一嵌入式桥与另一处理器耦合,并使用第二嵌入式桥与存储器芯片耦合。

在各种实现方式中,计算设备1000可以是膝上型计算机、上网本计算机、笔记本计算机、超极笔记本TM、智能电话、平板计算机、个人数字助理(PDA)、超移动PC、移动电话、桌上型计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数码相机、便携式音乐播放器、或数字视频记录器。在另外的实现方式中,计算设备1000可以是处理数据的任何其它电子设备。

实例

根据各种实施例,本公开描述了一种装置或集成电路组件,其可包括:衬底;嵌在衬底中的桥,所述桥配置成在第一管芯和第二管芯之间传送电信号;以及与桥电气地耦合的互连结构。互连结构可包括:过孔结构,其包括第一导电材料,过孔结构设置成穿过衬底的至少一部分传送电信号;阻挡层,其包括设置在过孔结构上的第二导电材料;以及可焊接材料,其包括设置在阻挡层上的第三导电材料。第一导电材料、第二导电材料和第三导电材料可具有不同的化学成分。

在实施例中,桥还可包括焊盘。第一导电材料可与焊盘直接接触。

在实施例中,过孔结构可突出在衬底的最外面的内置层的表面之外。

在实施例中,阻挡层可覆盖过孔结构的表面,以通过阻挡层抑制第一导电材料的扩散。

在实施例中,第一管芯可包括处理器,而第二管芯可包括存储器管芯或另一处理器。

在实施例中,电信号可以是输入/输出(I/O)信号。

在实施例中,桥可包括半导体材料,所述半导体材料包括硅(Si),且衬底可包括基于环氧树脂的介电材料。

在实施例中,可使用ABF层压将桥嵌在衬底中。

在实施例中,第一导电材料可包括铜(Cu);第二导电材料可包括镍(Ni);且第三导电材料可包括锡(Sn)。

根据各种实施例,本公开描述了制造集成电路组件的封装衬底的方法。在一些实施例中,该方法包括将桥嵌在衬底中,形成与桥连接以在衬底的表面之外传送电信号的包括第一导电材料的接头;直接在接头上形成包括第二导电材料的阻挡层;以及直接在阻挡层上形成包括第三导电材料的焊接层。阻挡层和焊接层可配置成传送电信号。

在实施例中,将桥嵌在衬底中还可包括形成桥腔,将桥放置在桥腔中,以及在桥之上层压介电材料。

在实施例中,形成接头还可包括在衬底中形成过孔腔,在光敏材料中在过孔腔之上形成开口,以及使用电镀工艺将第一导电材料沉积到过孔腔和开口中。

在实施例中,形成阻挡层可包括将第二导电材料沉积在接头上。

在实施例中,形成焊接层可包括将第三导电材料沉积在阻挡层上。

在实施例中,该方法还可包括使焊接层回流以形成圆形凸块。

在实施例中,第一导电材料可包括铜(Cu);第二导电材料可包括镍(Ni);且第三导电材料可包括锡(Sn)。

根据各种实施例,本公开描述了具有多个指令的存储介质,所述指令配置成使设备响应于设备对指令的执行而实施任何前面描述的方法。

根据各种实施例,本公开描述了具有实施任何前面描述的方法的模块的桥互连的装置。

根据各种实施例,本公开描述了通过任何前面描述的方法而制造的产品。

根据各种实施例,本公开描述了包括第一管芯和第二管芯以及具有嵌入式桥和互连结构的衬底的系统或计算设备。桥和互连结构可配置成在第一管芯和第二管芯之间传送电信号。

互连结构可包括:过孔结构,其包括第一导电材料,过孔结构被设置成穿过衬底的至少一部分传送电信号;阻挡层,其包括设置在过孔结构上的第二导电材料;以及可焊接材料,其包括设置在阻挡层上的第三导电材料。第一导电材料、第二导电材料和第三导电材料可具有不同的化学成分。

在实施例中,第一导电材料可包括铜(Cu);第二导电材料可包括镍(Ni);且第三导电材料可包括锡(Sn)。

在实施例中,桥可包括半导体材料,半导体材料包括硅(Si)。衬底可包括介电材料。

在实施例中,第一管芯可包括处理器,而第二管芯可包括存储器管芯或另一处理器。

在实施例中,第一管芯可包括存储器管芯,而第二管芯可包括另一存储器管芯或处理器。

在一些实施例中,系统或计算设备还可包括电路板。电路板可配置成传送管芯的电信号,并且,与电路板耦合的天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)设备、罗盘、盖革计数器、加速度计、陀螺仪、扬声器、或相机中的一种或多种。在一些实施例中,系统或计算设备是以下中的一种:可佩带计算机、智能电话、平板计算机、个人数字助理、移动电话、超移动PC、超级笔记本TM、上网本计算机、笔记本计算机、膝上型计算机、桌上型计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数码相机、便携式音乐播放器或数字视频记录器。

各种实施例可包括上述实施例(包括以上面的结合形式(例如“和”可以是“和/或”)描述的实施例的可选实施例)的任何适当的组合。此外,一些实施例可包括其上存储有指令的一个或多个制造物品(例如非临时计算机可读介质),指令当被执行时导致上述实施例中的任一个的动作。而且,一些实施例可包括具有用于执行上述实施例的各种操作的任何适当的模块的装置或系统。

所示实现方式(包括在摘要中描述的内容)的以上描述并没有被规定是详尽的或将本公开的实施例限制到所公开的精确形式。虽然为了例证性目的在本文描述了特定的实现和例子,各种等效的变形在本公开的范围内是可能的,如相关领域中的技术人员将认识到的。

可根据上面详细的描述对本公开的实施例进行这些修改。在所附权利要求中使用的术语不应被解释为将本公开的各种实施例限制到在说明书和权利要求中公开的特定实现方式。更确切地,范围应完全由下面的权利要求确定,该权利要求应根据权利要求诠释的所确认的教义而被解释。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1