显示装置的制作方法

文档序号:15740466发布日期:2018-10-23 22:12阅读:126来源:国知局

本发明涉及显示装置、特别是涉及具有使用氧化物半导体的TFT的显示装置。



背景技术:

在液晶显示装置、有机EL显示装置中,在各像素的开关元件、驱动电路中使用了薄膜晶体管(TFT:Thin Film Transistor)。在TFT中,使用了a-Si(非晶硅)、Poly-Si(Poly Slicion:多晶硅)、或氧化物半导体等。

非晶硅由于迁移率小,因此当将使用非晶硅的TFT在周边驱动电路中使用时,存在问题。多晶硅的迁移率大、可将使用多晶硅的TFT用在周边驱动电路中,但当用作像素的开关元件时,存在漏电流大的问题。对于氧化物半导体而言,其迁移率比非晶硅大,另外,漏电流也小,但在与膜缺陷的控制相关的可靠性中存在课题。

专利文献1记载了用无机绝缘膜(例如氧化铝膜、氧化钛膜、或氧化铟膜)覆盖包含栅电极且由氧化物半导体形成的TFT整体的构成。

专利文献2中记载了下述构成:为了提高使用氧化物半导体的TFT的性能,而将栅极绝缘膜减薄,利用这种情况下的隧道效应来抑制栅极泄露。作为栅极绝缘膜,使用介电常数高的氧化铪、氧化钽等高介电常数材料,将包含氧化硅、氮化硅、氧化铝等的膜层叠与其层叠。

专利文献3中记载了下述构成:为了使使用氧化物半导体的TFT的特性变得稳定,在沟道部(channel portion)用无机绝缘膜夹持氧化物半导体。作为这种情况下的无机绝缘膜,例示了氧化铝、氧化钛、氧化铟等。

现有技术文献

专利文献

专利文献1:日本特开2012-15436号公报

专利文献2:日本特开2015-92638号公报

专利文献3:WO2010/041686号公报



技术实现要素:

发明要解决的课题

作为氧化物半导体,有IGZO(Indium Gallium Zinc Oxide:铟镓锌氧化物)、ITZO(Indium Tin Zinc Oxide:铟锡锌氧化物)、ZnON(Zinc Oxide Nitride:氮氧化锌)、IGO(Indium Gallium Oxide:铟镓氧化物)等。由于这些氧化物半导体是透明的,因此,有时也被称为TAOS(Transparent Amorphous Oxide Semiconductor:透明非晶氧化物半导体)。需要说明的是,例如IGZO等为In:Ga:Zn=1:1:1的情况居多,但在本说明书中,也包括偏离该比例的情况。

对于使用氧化物半导体的TFT而言,能够通过氧化物半导体中的氧量、或与氧化物半导体接触的绝缘膜中的氧量来调节初始特性,但可靠性的控制是困难的。尤其是,若增加绝缘膜的氧量,则绝缘膜中的缺陷增加。因而,初始特性与可靠性形成权衡的关系。

另外,即便在初始时控制氧化物半导体中的氧的量,也会存在上述氧在工作寿命中逐渐脱除、从而发生TFT特性变动这样的问题。

本发明的课题在于,提供一种显示装置,其能够确保使用氧化物半导体的TFT的初始特性和工作寿命中的可靠性这两者,且初始特性和可靠性优异。

用于解决课题的手段

本发明解决了上述问题,具体的手段如下所述。

(1)、显示装置,其特征在于,所述显示装置包含具有显示区域的基板,所述显示区域中形成有多个像素,其中,所述像素包含使用第一氧化物半导体的第一TFT,在所述第一氧化物半导体之上形成第一栅极绝缘膜,所述第一栅极绝缘膜由第一硅氧化膜与第一铝氧化膜的层叠构造形成,在所述第一铝氧化膜之上形成有第一栅电极。

(2)、(1)中记载的显示装置,其特征在于,所述第一栅电极由第二氧化物半导体与在所述第二氧化物半导体之上形成的金属的层叠构造构成。

(3)、(1)中记载的显示装置,其特征在于,经ESR分析,所述第一硅氧化膜的缺陷密度为1×1018(spins/cm3)以下。

(4)、(3)中记载的显示装置,其特征在于,经TDS分析,在M/z=32的条件下,所述第一硅氧化膜的氧(O2)放出量在100℃至250℃为1×1015(molec./cm2)以上。

附图说明

图1:为液晶显示装置的俯视图。

图2:为图1的A-A剖面图。

图3:为液晶显示装置的显示区域的剖面图。

图4:为示出实施例1的剖面图。

图5:为示出实施例1的第二方式的剖面图。

图6:为示出实施例1的第三方式的剖面图。

图7:为示出实施例2的剖面图。

图8:为示出实施例3的剖面图。

图9:为示出实施例4的剖面图。

图10:为示出实施例4的第二方式的剖面图。

图11:为示出实施例4的第三方式的剖面图。

图12:为示出实施例4的第四方式的剖面图。

图13:为示出实施例5的剖面图。

图14:为示出实施例5的第二方式的剖面图。

图15:为有机EL显示装置的剖面图。

附图标记说明

10…TFT基板,11…基膜,12…第1氧化物半导体,13…第一栅极绝缘膜,14…第一栅电极,15…层间绝缘膜,16…漏电极,17…源电极,18…有机钝化膜,19…公共电极,20…电容绝缘膜,21…像素电极,22…取向膜,23…通孔,30…反射电极,31…阳极,32…堤,33…有机EL层,34…阴极,35…保护膜,36…粘合剂,37…圆偏光板,40…对置基板,41…彩色滤光片,42…黑矩阵,43…保护膜,44…取向膜,50…保护层,60…第二栅电极,61…第二栅极绝缘膜,70…多晶硅,71…第三栅极绝缘膜,72…第三栅电极,80…密封材料,90…显示区域,91…扫描线,92…视频信号线,93…像素,95…驱动IC,96…柔性布线基板,111…SiO/SiN的层叠膜,112…第2铝氧化膜,121…漏极区域,122…源极区域,131…硅氧化膜,132…铝氧化膜,141…第二氧化物半导体,142…金属,300…液晶层,301…液晶,510…下偏光板,520…上偏光板,601…第三氧化物半导体,602…金属,611…第三硅氧化膜,612…第2硅氧化膜,1000…背光源

具体实施方式

以下,通过实施例详细说明本发明的内容。

【实施例1】

图1为在作为可应用本发明的一个例子的手机等中使用的液晶显示装置的俯视图。图1中,形成有多个像素93的TFT基板10、与对置基板40通过密封材料80而接合。在TFT基板10与对置基板40之间夹持有液晶。密封材料80的内侧成为显示区域90。显示区域90中,扫描线91沿横向延伸、在纵向上排列。另外,视频信号线92沿纵向延伸、在横向上排列。

在由扫描线91与视频信号线92围成的区域中形成有像素93。在各像素93中,形成有像素电极、对被供给至像素电极的信号进行控制的TFT。TFT基板10形成为比对置基板40大,TFT基板10不与对置基板40重合的部分成为端子区域。在端子区域中,搭载有对信号进行控制的驱动IC95。另外,在端子区域中,连接有用于对液晶显示装置供给信号、电源的柔性布线基板96。

图2为图1的A-A剖面图。图2中,TFT基板10与对置基板40层叠。与TFT基板10、对置基板40的厚度相比,液晶层的厚度相当小,因此,在图2中,省略液晶层。TFT基板10不与对置基板40重叠的部分成为端子区域,在该部分中搭载驱动IC95,柔性布线基板96与其连接。

液晶由于自身不会发光,因此,在TFT基板10的背面配置背光源1000。来自背光源1000的光按每个像素来控制,由此形成图像。液晶能够仅控制偏振光,因此,在TFT基板10的下侧贴合下偏光板510、在对置基板40的上侧贴合上偏光板520。

图3为液晶显示装置的显示区域的剖面图。图3中,TFT基板10由玻璃或树脂形成。为了防止来自玻璃或树脂的杂质污染半导体层,在TFT基板10之上形成有基膜11。基膜11由硅氧化膜(以下,也称为SiO)、硅氮化膜(以下,也称为SiN)的层叠膜,但有时也层叠铝氧化膜(以下,也称为AlO)等。

在基膜11之上,形成由例如IGZO形成的氧化物半导体12。覆盖氧化物半导体12而形成栅极绝缘膜13。在本发明中,如后文说明的那样,栅极绝缘膜13的构成为在硅氧化膜之上层叠铝氧化膜的构成。在栅极绝缘膜13之上形成栅电极14。本发明的实施方式中,如后文说明的那样,栅电极14成为第二氧化物半导体与金属膜的层叠构造。对于金属膜而言,Mo、W或它们的合金是合适的。

图3中,在形成栅电极14后,通过以栅电极14为掩模并注入离子,由此,在氧化物半导体12中形成缺陷从而赋予导电性,在氧化物半导体12形成漏极区域121、源极区域122。覆盖栅电极14及栅极绝缘膜13来形成层间绝缘膜15。层间绝缘膜15由硅氧化膜形成,也可以是由硅氮化膜、或者硅氧化膜与硅氮化膜的层叠膜形成。在层间绝缘膜15及栅极绝缘膜13中形成通孔,形成漏电极16或源电极17。漏电极16与视频信号线连接,源电极17经由通孔23而与像素电极21连接。

覆盖层间绝缘膜15、漏电极16、源电极17等来形成有机钝化膜18。有机钝化膜18还同时发挥平坦化膜的作用,因此,形成为如2至4μm这样厚。为了将像素电极21与TFT的源电极17连接,在有机钝化膜18中形成通孔23。

在有机钝化膜18之上,形成呈平面状的公共电极19。覆盖公共电极19而通过SiN形成电容绝缘膜20,在电容绝缘膜20之上形成像素电极21。覆盖公共电极19的绝缘膜由于在与像素电极之间形成像素电容,因此称为电容绝缘膜20。覆盖像素电极21,形成有用于使液晶初始取向的取向膜22。像素电极21形成为俯视下呈条带状或梳齿状,若对像素电极21施加电压,则会产生如图3的箭头所示那样的电力线,由此,液晶分子301发生旋转,从而控制像素中的来自背光源的光的透射率。

图3中,夹持液晶层300配置有对置基板40。对置基板40中,与像素电极对应地形成彩色滤光片41,从而能够形成彩色图像。另外,在彩色滤光片41与彩色滤光片41之间形成黑矩阵42,从而提高图像的对比度。覆盖彩色滤光片41及黑矩阵42而形成保护膜(over coat film)43。保护膜43防止构成彩色滤光片41的色素向液晶层300中渗出。覆盖保护膜43而形成有取向膜44。

图4为示出本发明的实施例1的剖面图。图4中,在构成基膜11的SiO与SiN的层叠膜之上,形成有由例如IGZO形成的第一氧化物半导体12。第一氧化物半导体12的厚度为10nm至70nm。覆盖第一氧化物半导体12而形成有栅极绝缘膜13。栅极绝缘膜13形成硅氧化膜131与第一铝氧化膜132的双层构成。构成栅极绝缘膜13的硅氧化膜131的厚度为例如50nm至200nm,覆盖其的铝氧化膜132的厚度为例如1nm至20nm。

图4中,在第一铝氧化膜132之上,形成有栅电极14,而图4中的栅电极14形成第二氧化物半导体141与金属层142的双层构造。金属层142为例如Mo、W或它们的合金。第二氧化物半导体141由例如IGZO形成。第二氧化物半导体141与第一氧化物半导体12也可以不是相同材料,但当为相同材料时,工艺变得简单。第二氧化物半导体141的厚度为1至30nm。

通过从栅极绝缘膜13对氧化物半导体12供给氧,使用氧化物半导体12的TFT的特性得以维持。为了从栅极绝缘膜13对氧化物半导体12供给氧,需要预先使缺陷在栅极绝缘膜13增多。但是,工艺中使用的气体等易于吸收到缺陷多的栅极绝缘膜13中,从而有损氧化物半导体12的可靠性。

本发明的特征为:作为栅极绝缘膜13,使用缺陷少的硅氧化膜131,在硅氧化膜131之上形成铝氧化膜132。通过采用这种构成,可从铝氧化膜132通过硅氧化膜131对氧化物半导体12供给氧,因此,能够稳定地维持氧化物半导体12的特性。

本实施例中,此外,通过在构成栅电极14的下层中使用第二氧化物半导体141,可从第二氧化物半导体141对构成TFT的第一氧化物半导体12供给氧。另外,当形成第二氧化物半导体141时,进行基板的退火,但当此时,从铝氧化膜132放出的氧将被供给至构成TFT的第一氧化物半导体12。因而,根据本发明,即便是作为栅极绝缘膜13而使用缺陷少的硅氧化膜131,也能够维持氧化物半导体12的特性,因此,能够提高使用氧化物半导体12的TFT的可靠性。

构成本发明的栅极绝缘膜13的硅氧化膜131的特性如下所述。第一,缺陷密度小,具体而言,经ESR(Electron Spin Resonance)分析,缺陷密度为1×1018(spins/cm3)以下。ESR的测定条件为:测定温度:85K.;μ波功率:10[mW];磁场的方向:与膜面平行;磁场范围:317±25[mT];调制宽度:0.5[mT],调制频率:100[kHz];时间常数:0.03[s]。第二,氧的供给量应当为对于维持氧化物半导体的特性而言充分的量。具体而言,经TDS(Thermal Desorption Spectrometry)分析,在M/z=32的条件下,氧(O2)放出量在100℃至250℃为1×1015(molec./cm2)以上。同时满足第一特性、和第二特性的构成以往未能实现。

第三,氧以外的气体的放出小。TFT基板会经历各种工艺,若膜缺陷多,则工艺气体包含在上述缺陷中,该气体对氧化物半导体的特性产生不良影响,从而使可靠性降低。因而,通过使用膜缺陷小的硅氧化膜131,能够提高使用氧化物半导体12的TFT的可靠性。

具体而言,以在工艺中所暴露的气体之中的N2O为例进行评价,如下所述。经TDS在M/z=44的条件下,N2O的放出量在100℃至400℃为8×1013(molec./cm2)以下。

以上的特性为显示装置完成后的状态下的硅氧化膜131的特性。对于测定成品中的硅氧化膜131的特性而言,在图4中,将比构成栅极绝缘膜13的硅氧化膜131靠上侧的层除去,进行ESR分析、TDS分析即可。

图4中,基膜11为SiN、SiO的双层。最下层为SiN,上层为SiO。SiN尤其对水分的阻挡性优异,因此是必须的层,但也是将氧化物半导体12还原的氢的供给源。因此,在SiN之上层叠SiO。SiO、SiN的层叠膜可使用CVD连续进行。

上述上层的硅氧化膜(SiO)由于与氧化物半导体12直接接触,因此,需要控制特性。具体的特性与栅极绝缘膜13中的SiO相同。第一,缺陷密度小,具体而言,经ESR(Electron Spin Resonance)分析,缺陷密度为1×1018(spins/cm3)以下。需要说明的是,层间绝缘膜15的缺陷密度经ESR(Electron Spin Resonance)分析为1×1018(spins/cm3)以上。第二,氧的供给量应当为对于维持氧化物半导体的特性而言充分的量。具体而言,经TDS(Thermal Desorption Spectrometry)分析,在M/z=32的条件下,氧(O2)放出量在100℃至250℃为1×1015(molec./cm2)以上。第三,氧以外的气体的放出小,以N2O为例,经TDS分析,在M/z=44的条件下,N2O的放出量在100℃至400℃为8×1013(molec./cm2)以下。

对于针对基膜11中的硅氧化膜(SiO)的测定方法而言,与针对栅极绝缘膜13中的硅氧化膜(SiO)的测定方法相同,将比测定的硅氧化膜(SiO)靠上的层除去,针对露出的硅氧化膜(SiO)进行ERS分析、TDS分析即可。

图5为示出本实施例中的第二方式的剖面图。图5不同于图4的方面在于,在基膜11上追加了第二铝氧化膜112。第二铝氧化膜112的膜厚也可以是1nm至20nm。图5中,基膜为在SiO、SiN的层叠膜111之上形成有第二铝氧化膜112。在SiO与SiN的层叠膜为SiO/SiN/SiO的三层构造的情况下,可以在最上层的SiO之上层叠铝氧化膜112,也可以代替最上层的SiO而形成铝氧化膜112。

铝氧化膜对水分、气体的阻挡性能优异,不仅如此,也成为对氧化物半导体12的氧的供给源。因而,作为相对于氧化物半导体12的基膜是合适的。另一方面,铝氧化膜与硅氧化膜等相比膜缺陷多。因而,吸收至上述缺陷部分中的气体等存在对氧化物半导体12产生不良影响的危险。但是,对于TFT的工作而言,氧化物半导体12中的第一栅极绝缘膜13侧的特性处于支配性地位,因此,作为TFT不成为大的问题。

图6为示出本实施例的第三方式的剖面图。图6不同于图4的方面在于,在氧化物半导体12与漏电极16及源电极17连接的部分处,形成有由金属形成的保护层50。漏电极16及源电极17在形成于层间绝缘膜15及栅极绝缘膜13中的通孔中形成。通孔的形成通过干式蚀刻等进行。氧化物半导体12的厚度由于是像10nm至70nm这样非常薄,因此,当将层间绝缘膜15、栅极绝缘膜13蚀刻时,存在同时被除去的危险。

图6中,氧化物半导体12在与漏电极16或源电极17导通的部分中形成由金属形成的保护层50,从而防止氧化物半导体12通过蚀刻而被除去。构成保护层50的金属可以是与形成视频信号线92的金属相同的构成。例如,是Al合金用Ti等夹持的构成。通过采用图6那样的构成,能够制造可靠性高的、使用氧化物半导体的TFT。

【实施例2】

图7为示出本发明的实施例2的剖面图。图7不同于图4的方面在于,栅极绝缘膜13仅在栅电极14之下形成。图7中,在氧化物半导体12之上,形成构成栅极绝缘膜13的硅氧化膜131,在其上形成铝氧化膜132。硅氧化膜131及铝氧化膜132的膜厚与实施例1相同。

图7中,在栅电极13之下以外的部分,硅氧化膜131及铝氧化膜132被除去。图7的优点如下所述。氧化物半导体12需要在沟道部以外的区域具有导电性。因此,在图4的构成中,需要以栅电极14为掩模进行离子注入并形成晶体缺陷,从而赋予导电性。

根据图7的构成,在栅极绝缘膜13在栅电极14之下以外的部分中被除去后,氧化物半导体12处于露出的状态。在该状态下,可通过穿过例如硅烷(SiH4),将氧化物半导体12还原,从而赋予导电性。或者,可在氧化物半导体12露出的状态下,通过暴露于Ar等离子体或N2等离子体,从而对氧化物半导体12赋予缺陷,赋予导电性。因而,根据本实施例的构成,即便不使用离子注入,也能够对氧化物半导体12赋予必要的特性。

图7中,在对氧化物半导体12的必要的部分赋予导电性后,与以往同样地,层间绝缘膜15通过SiO或SiN、或者SiO及SiN的层叠膜来形成。对于基膜11也可使用第二铝氧化膜、对于氧化物半导体12的漏极区域、源极区域也可使用由金属形成的保护层,这与实施例1相同。使用氧化物半导体的TFT的性能与实施例1相同。

【实施例3】

图8为示出实施例3的剖面图。图8不用于实施例1的图4的方面在于,栅电极14仅由金属形成,不存在第二氧化物半导体。这种情况下,第二铝氧化膜132成为针对氧化物半导体12的氧的供给源。因而,构成栅极绝缘膜13的硅氧化膜131能够成为缺陷少的膜。

即,铝氧化膜132在成为针对氧化物半导体12的氧的供给源的同时,还具有将氧封入氧化物半导体12侧的作用,因此,在许多情况下,能够维持氧化物半导体12的特性和可靠性。

在本实施例中,对于基膜11也可以使用第二铝氧化膜,对于氧化物半导体12的漏极区域、源极区域也可使用由金属形成的保护层,这与实施例1相同。另外,实施例2的构成也能够并用。

【实施例4】

图9为示出实施例4的剖面图。使用氧化物半导体12的TFT的ON电流能够成为使用非晶硅的TFT的ON电流的10倍左右。但是,达不到使用多晶硅的TFT的ON电流。作为使使用氧化物半导体12的TFT的ON电流增加的方法,能够使用双栅极方式。

图9为示出其构成的剖面图。图9中,在TFT基板10之上形成第二栅电极60,覆盖第二栅电极60而形成有第二栅极绝缘膜61。在第二栅极绝缘膜61之上,形成有构成TFT的第一氧化物半导体12。比第一氧化物半导体12更靠上的层与实施例1中的图4相同。

根据图9的构成,由于能够在氧化物半导体12的上侧和下侧流过电流,因此,能够增大ON电流。图9中,第二栅极绝缘膜61为硅氧化膜,第二栅电极60为金属,例如Mo或W、或者它们的合金。第二栅极绝缘膜61也可以是硅氮化膜与硅氧化膜的叠层。这种情况下,硅氮化膜成为下层,硅氧化膜成为上层。

图10为针对图9的构造而在氧化物半导体12的漏极区域及源极区域中形成有保护层50的构成。当在层间绝缘膜15及栅极绝缘膜13中形成通孔时,防止氧化物半导体12消失之效果与在实施例1的图6中说明的相同。

图11为示出本实施例中的其他方式的剖面图。图11为下述方式:为了形成可靠性提高了的TFT,在氧化物半导体12的第二栅电极60侧,第二栅极绝缘膜61也采用硅氧化膜612与第三硅氧化膜611的双层构成,第二栅电极60采用金属601与第三氧化物半导体602的双层构成。

即,图11中,覆盖第二栅电极60而形成第三硅氧化膜611,在其上形成有硅氧化膜612。另外,第二栅电极为在MoW等金属601之上形成有氧化物半导体602的构成。各层的膜厚等与第一栅电极侧相同。

图12为在图11的构成中从第二栅电极60中省略了氧化物半导体602的构成。该构成的作用效果与在实施例3中说明的相同。根据图11及图12的构成,能够获得可靠性进一步提高的双栅极方式的氧化物半导体TFT。需要说明的是,在图11及图12中,如图10所示,也可以采用在氧化物半导体12的漏极区域、源极区域中设置保护层50,从而防止氧化物半导体的消失的构成。

【实施例5】

多晶硅由于载流子的迁移率高,因此,能够使TFT高速工作。另一方面,氧化物半导体由于漏电流小,因此,使用其的TFT适合作为开关元件。因而,通过将多晶硅TFT与氧化物半导体TFT并用,能够获得性能高的显示装置。例如,可将多晶硅TFT用于驱动电路,将氧化物半导体TFT用作像素中的开关TFT。

图13为由多晶硅形成的TFT、与由氧化物半导体形成的TFT并存的、本发明的实施例5的剖面图。将如上所述的构成称为混合构成。图13所示的氧化物半导体TFT为双栅极方式。图13中,在TFT基板10之上形成有基膜11。基膜11的构成可采用与实施例1中说明的构成相同的构成。

在基膜11之上首先形成多晶硅70。多晶硅70是这样形成的:首先,形成非晶硅膜,对其照射准分子激光从而转化为多晶硅、并进行图案化。覆盖多晶硅70形成有第三栅极绝缘膜71。第三栅极绝缘膜71能够由例如以TEOS(Tetraethyl orthosilicate)为材料的CVD来形成。

在第三栅极绝缘膜71之上,形成氧化物半导体TFT的第二栅电极60。同时,也形成使用多晶硅的TFT的栅电极(第三栅电极)72。之后,覆盖第二栅电极60及第三栅电极72,形成硅氧化膜61(其作为氧化物半导体12的第二栅极绝缘膜)。在其上形成氧化物半导体12。

覆盖氧化物半导体12,形成由硅氧化膜131和铝氧化膜132构成的栅极绝缘膜13,在其上形成由第二氧化物半导体141和金属142构成的栅电极14,这与实施例1中说明的相同。需要说明的是,如在实施例1中说明的那样,能够仅在第一栅电极14之下形成第一栅极绝缘膜13。另外,能够从第一栅电极14中省略第二氧化物半导体141,在这一方面也与实施例1中说明的相同。

图13中,漏电极16和源电极17与氧化物半导体TFT和多晶硅TFT同时形成。也就是说,形成漏电极16、源电极17的通孔在氧化物半导体TFT侧与多晶硅TFT侧同时形成。

如图13所示,在多晶硅70侧,通孔相对于5层的绝缘膜形成,与此相对,在氧化物半导体12侧,通孔相对于3层的绝缘膜形成。因而,在氧化物半导体TFT侧,由于氧化物半导体12暴露于蚀刻液的时间变长,因此,氧化物半导体12易于消失。

除此以外,在多晶硅70侧,形成通孔后,需要用氢氟酸HF清洗。此时,氧化物半导体12也暴露于氢氟酸HF。氧化物半导体12若暴露于氢氟酸HF,则容易消失。

图14为针对上述问题的应对方式之混合方式的TFT。图14不同于图13的方面在于,在氧化物半导体12的漏极区域和源极区域形成有由金属形成的保护层50。氧化物半导体12侧的TFT的上述构成为与实施例4中的图12相同的构成。

对于图13及图14的构成而言,使用氧化物半导体的TFT为双栅极方式,但不限于此,使用氧化物半导体的TFT在如图4至图8那样的单栅极的情况下,也能够应用本发明。如上所述,根据本实施例,能够获得特性优异、并且可靠性高的混合型的TFT。

【实施例6】

在实施例1至5中,针对图1至3所示的液晶显示装置进行了说明。但是,本发明不限于液晶显示装置,对于有机EL显示装置而言,也同样能够应用。图15为有机EL显示装置的显示区域的剖面图。图15中,在TFT基板10之上形成TFT,在其上形成有机钝化膜18,在有机钝化膜18中形成通孔之前,与液晶显示装置中的图3相同。

因而,可在有机EL显示装置中直接应用实施例1至5中说明的氧化物半导体TFT的构成。

图15中,在有机钝化膜18之上形成反射电极30,在其上形成作为阳极31的、由ITO(Indium Tin Oxide)等形成的氧化物导电膜。覆盖阳极31、有机钝化膜18,形成有丙烯酸等有机材料形成的堤32。在堤32的孔部分中,在阳极31之上形成有作为发光层的有机EL层33,有机EL层33由多层形成,但全部加在一起为数百nm,非常薄。堤32防止有机EL层33由于阳极31、反射电极30而发生断开。

图15中,覆盖有机EL层33,通过ITO、IZO(Indium Zinc Oxide)等氧化物导电膜或薄金属膜形成作为阴极34的上部电极。有机EL层33由于通过水分而分解,因此,主要为了防止水分的侵入,而通过SiN等来形成保护膜35。

有机EL显示装置由于使用反射电极30,因此,外部光线通过反射电极30而反射。这样一来,画面不易观看。为了对此进行防止,通过粘合剂36等将圆偏光板37贴合于显示面。

像这样,即便是有机EL显示装置,在形成氧化物半导体12的漏电极16及源电极17以前,也能够采用与液晶显示装置的情况相同的构成,因此,可直接应用实施例1至5中说明的构成。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1