感光元件及其制造方法、显示面板及其制造方法与流程

文档序号:15313833发布日期:2018-08-31 22:30阅读:372来源:国知局

本公开的实施例涉及一种感光元件及其制造方法、显示面板及其制造方法。



背景技术:

铜铟镓硒(cigs)材料因高吸收率和高转换率在诸如薄膜太阳能电池等感光元件中有广泛应用。如何进一步提高光吸收率和感光灵敏度,是本领域备受关注的问题。



技术实现要素:

本公开的至少一个实施例提供一种感光元件,包括依次层叠设置的第一薄膜层、第二薄膜层和第三薄膜层,所述第一薄膜层为p型铜铟镓硒(cigs)层,所述第二薄膜层为本征cigs层,所述第三薄膜层为n型薄膜层,由此所述第一薄膜层、所述第二薄膜层和所述第三薄膜层构成pin结构。

例如,所述感光元件还包括位于所述第一薄膜层一侧的第一电极层,所述第一薄膜层覆盖所述第一电极层,且所述第一电极层为铜电极层。

例如,所述第一薄膜层与所述第一电极层图案相同。

例如,所述第一薄膜层的铜含量比所述第二薄膜层高。

例如,所述第三薄膜层为n型铜铟镓硒(cigs)层。

例如,所述第三薄膜层为n型zno薄膜。

例如,所述的感光元件还包括位于所述第二薄膜层和所述第三薄膜层之间的cds缓冲层。

本公开的至少一个实施例还提供一种显示面板,该显示面板包括上述感光元件。

例如,所述显示面板还包括与所述感光元件连接的开关晶体管,所述开关晶体管包括源漏电极层,其中,当所述感光元件还包括设置于所述第一薄膜层一侧的第一电极层的情形,所述源漏电极层充当所述感光元件的第一电极层。

本公开的至少一个实施例还提供一种感光元件的制造方法,包括:依次形成层叠的第一薄膜层、第二薄膜层和第三薄膜层。所述第一薄膜层为p型铜铟镓硒(cigs)层,所述第二薄膜层为本征cigs层,所述第三薄膜层为n型层,所述第一薄膜层、所述第二薄膜层和所述第三薄膜层构成pin结构。

例如,所述制造方法还包括形成第一电极层,所述第一薄膜层、第二薄膜层和第三薄膜层依次形成与所述第一电极层上,所述第一电极层的材料为铜,所述形成第一薄膜层包括对所述第一薄膜层进行退火,使得所述第一电极层中的铜元素扩散至所述第一薄膜层中以使所述第一薄膜层为p型。

例如,所述第一电极层和所述第一薄膜层连续形成并具有相同的图案。

例如,所述第三薄膜层为n型铜铟镓硒(cigs)层或n型zno层。

本公开的至少一个实施例还提供一种感光元件的制造方法,包括:形成源漏电极层;在所述源漏电极层上依次形成第一薄膜层、第二薄膜层和第三薄膜层。所述第一薄膜层为p型铜铟镓硒(cigs)层,所述第二薄膜层为本征cigs层,所述第三薄膜层为n型层,由此所述第一薄膜层、所述第二薄膜层和所述第三薄膜层构成pin结构。

例如,所述源漏电极层和所述第一薄膜层连续形成并具有相同的图案。

附图说明

为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。

图1为本公开一实施例提供的感光元件的剖面结构示意图;

图2为本公开又一实施例提供的感光元件的剖面结构示意图;

图3为本公开一实施例提供的显示面板的平面示意图;

图4为图3沿a-a剖面线方向的剖面结构示意图;

图5a-5c为本公开一实施例提供的感光元件的示例性制造方法的各步骤的剖面示意图;

图6a-6b为本公开另一实施例提供的感光元件的示例性制造方法的各步骤的剖面示意图;

图7a-7b为本公开再一实施例提供的感光元件的示例性制造方法的各步骤的剖面示意图;

图8a-8c是本公开一实施例提供的显示面板的示例性制造方法的各步骤的剖面示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来子层分不同的组成部分。同样,“一个”、“一”或者“所述”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现所述词前面的元件或者物件涵盖出现在所述词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则相对位置关系也可能相应地改变。

研究表明,铜铟镓硒(cigs)薄膜中各元素组成接近cu(inxga1-x)se2的化学计量比时,cigs薄膜的吸收光谱与太阳能光谱的匹配达到最佳,例如,x数值范围约为0.6至0.8。在此基础上调节各元素的含量,可以使得cigs薄膜呈现出不同的半导体性质。例如,在富铜(cu-rich)情形下,铜原子占据铟空位形成cuin的受主型杂质,使得薄膜呈p型。例如,铟原子占据铜空位形成的incu施主型杂质,使得cigs薄膜呈n型。例如,贫硒(se-poor)情形下形成呈施主型的硒空位vse,使得cigs薄膜呈n型。

图1为本公开一实施例提供的感光元件100的剖面结构示意图。感光元件100包括依次层叠设置于基板10上的第一电极层11、第一薄膜层12、第二薄膜层13、第三薄膜层14和第二电极层15。第一薄膜层12为p型铜铟镓硒(cigs)层,第二薄膜层13为本征cigs层,第三薄膜层14为n型薄膜层,由此第一薄膜层12、第二薄膜层13和第三薄膜层14构成pin结构。

在该pin结构中,形成了由第三薄膜层14(n区)指向第一薄膜层12(p区)的内建电场。当感光元件100接收光照时,该pin结构吸收光能并产生光生电子-空穴对,在内建电场作用下,空穴和电子分别朝向第一薄膜层12和第三薄膜层14的方向迁移从而形成光电流。由于第二薄膜层13(本征区)的存在,内建电场的区域足够宽,使得感光元件能够充分吸收接收到的光并将其转换成电信号。

在该pin结构中,起光吸收作用的主要是作为本征区的第二薄膜层13,因此可以将第二薄膜层13的厚度设定为远大于第一薄膜层12和第三薄膜层14。例如,第二薄膜层13的厚度为第一薄膜层12或第三薄膜层14的十倍以上。例如,第一薄膜层12和第三薄膜层14的厚度为五十纳米到三百纳米,第二薄膜层13的厚度为三百纳米到三千纳米。

例如,第一薄膜层12覆盖第一电极层11,且二者具有相同的图案。

例如,第一电极层11的材料可为金属材料,如钼(mo)、铜(cu)、镍(ni)、铝(al)等或它们的合金材料。

例如,第一薄膜层12的铜含量比第二薄膜层13高。

在本实施例中,第二电极层15为块状电极,其材料为具有高透光率和低电阻率的材料,例如可为铟锡氧化物(ito)、锌铝氧化物(azo)等透明金属氧化物材料。在其它实施例中,第二电极层15还可为金属栅状电极。

在本实施例中,n型的第三薄膜层14作为入光层(窗口层)。在一变更实施例中,第一薄膜层12、第二薄膜层13和第三薄膜层14在基板100上的层叠次序可以倒过来,即p型的第一薄膜层12作为入光层(窗口层)。

在本实施例中,第三薄膜层14为n型cigs层,具有与第二薄膜层13相同的本体材料cigs,二者晶格尺寸几乎不存在差异,从而不需要额外设置晶格缓冲层。

在另一实施例中,例如,请参阅图2,与图1所示的实施例相比,第三薄膜层14的材料还可为锌的氧化物,例如为n型zno,此时,由于第二薄膜层13和第三薄膜层14的晶格尺寸差异较大,该感光元件还包括设置于第二薄膜层13和第三薄膜层之间的缓冲层16,用于缓解第二薄膜层13与第三薄膜层14之间晶格不匹配的问题,从而减少界面缺陷。例如,缓冲层16可为硫化镉(cds)。

在本发明实施例及其变更实施例提供的感光元件中,均采用p型cigs薄膜材料和本征cigs薄膜材料与n型材料构成pin结构,从而在p型cigs薄膜材料和本征cigs薄膜材料之间不存在晶格失配的问题,降低了吸收层的界面缺陷,提高了感光元件的光吸收率和转换率。

基于薄膜材料的感光元件100可以用于多种应用,例如用于形成成像元件等,或者例如用于实现基于光电感测原理的触控功能、指纹识别功能等,进一步例如可以通过微纳电子工艺技术集成于显示面板中从而实现上述功能,从而得到具有触控功能的显示面板、具有指纹识别功能的显示面板等。

本发明的一个实施例提供包括感光元件100的显示面板200,该显示面板例如为液晶显示面板、有机发光二极管(oled)显示面板等。以下以使用感光元件100实现指纹识别功能的oled显示面板为例进行详细说明,本发明的实施例不限于此。

图3为本发明一实施例提供的显示面板200的平面示意图。显示面板200包括阵列排布的多个像素单元201,每个像素单元201包括至少一个发光元件28与一个感光单元100。显示面板200还包括栅极驱动电路31、数据驱动电路32和感光检测电路33。

发光元件28通过栅线311与栅极驱动电路31连接,通过数据线321与数据驱动电路32连接,由此可以被栅极驱动电路31和数据驱动电路32提供的栅极信号和数据信号驱动。感光单元100通过检测线331与感光检测电路33连接,由此其检测到的光电信号可以被传输至感光检测电路33。

请一并参阅图4,图4为图3沿剖面线a-a方向的剖面结构示意图。如图所示,显示面板200包括设置于第一基板20上的像素阵列结构、感光元件100和发光元件28。像素阵列结构包括用于驱动发光元件28的像素电路、栅线、数据线、电源线(未示出)等。该像素电路例如包括常规oled像素驱动电路,例如,为2t1c像素电路,即每个像素单元包括两个薄膜晶体管(thin-filmtransistor,tft)和一个存储电容cs。两个tft其中一个为开关晶体管;另一个为驱动晶体管,该驱动晶体管的源极或漏极与发光元件28电连接。为了清楚起见,图4仅示出了驱动晶体管204的结构。同样,本公开实施例的像素电路也不限于2t1c像素电路,例如还可以包括更多的晶体管或电容,以得到具有内部补偿功能或外部补偿功能的像素驱动电路。

如图所示,显示面板200还包括与感光元件100连接的开关晶体管202,开关晶体管202例如为薄膜晶体管(thin-filmtransistor,tft)。感光元件100与开关晶体管202的源极或漏极连接,并通过该开关晶体管202连接至感光检测电路33。感光检测电路33通过控制开关晶体管202从而选择输出感光元件100产生的电信号。

在本实施例中,该开关晶体管202为底栅型结构,包括依次层叠设置的栅极层21、栅极绝缘层22、有源层23和源漏电极层24。在其它实施例中,该开关晶体管202也可为顶栅型结构等。

例如,发光元件28可以为有机发光元件,包括第一电极281、第二电极283及位于二者之间的有机发光层282等,其中,第一电极281与驱动晶体管204的源极或者漏极电连接。

例如,开关晶体管202和驱动晶体管204具有相同的顶栅或底栅结构,二者绝缘设置。例如,开关晶体管202和驱动晶体管204对应的结构层同层设置。

例如,源漏电极层24直接充当感光元件100的第一电极层11,或者与感光元件100的第一电极层11电连接。

例如,显示面板200还可以包括设置于感光元件100上的平坦化层26,发光元件28通过贯穿平坦化层26和第一薄膜层12的过孔与驱动晶体管204的源极或漏极连接。

例如,显示面板200还可以包括包裹于感光元件100侧壁的钝化层(未示出),用于防止漏电。该钝化层可为硅的氮化物或者氧化物。

例如,显示面板200还可以包括设置于平坦化层26上的像素界定层(pixeldefininglayer,pdl)27,用于将相邻的有机发光层282间隔开从而避免发生串色。在像素界定层27上形成开口从而将像素界定层27分为像素区(开口区)和像素间隔区,该像素区暴露出发光元件28的第一电极281,发光元件28的有机发光层282和第二电极283依次形成于第一电极281上。

例如,显示面板200还可以包括设置于发光元件28上的封装层29及第二基板30。

在显示面板200在实现指纹识别功能时,触摸主体203(即用户的手指)靠近或接触第二基板30,发光元件28发出的光照射到触摸主体203上并被反射而照射到感光元件100上,由于该手指的指纹谷(凹陷表面)与指纹脊(凸出表面)对光的反射率不相同,不同位置的感光元件100接收到不同强度的反射光,从而转化生成不同的电信号,该电信号传输至感光检测电路33得以放大、分析从而得到手指表面的图像,该图像进一步被用于指纹识别,指纹识别的结果可以用于系统解锁、支付等功能。

例如,感光检测电路33集成有驱动电路、感测电路和处理器等。例如,感光检测电路33可以通过柔性电路板(flexibleprintedcircuit,fpc)与像素阵列结构进行耦接。

例如,为了提高检测精准度,显示面板200可以包含多个感光元件100,即多个像素单元201中包含有感光元件100。每个感光元件100检测触摸主体203表面相应部分区域的指纹图像,进而拼接成完整的指纹图像。

在本实施例中,发光元件28为顶发光型。此时,第一电极281为反射电极,由此可以将有机发光元件282发出的光反射至显示侧的第二基板30,进而可以提升发光元件28的发光效率。例如,第一电极281为有机发光元件的阳极,例如可以由铟锡氧化物(ito)和金属层的叠层制成。第二电极282具有高透射率。例如,第二电极282为有机发光元件的阴极,例如可以由低功函数(lowworkfunction)的ag、al、ca、in、li与mg等金属或低功函数的复合金属(例如mg/ag)制成。

本公开的至少一个实施例还提供根据本公开实施例的感光元件的制造方法,该制造方法至少包括:依次形成层叠的第一薄膜层、第二薄膜层和第三薄膜层,所述第一薄膜层为p型铜铟镓硒(cigs)层,所述第二薄膜层为本征cigs层,所述第三薄膜层为n型层,所述第一薄膜层、所述第二薄膜层和所述第三薄膜层构成pin结构。

在一个实施例中,该制造方法包括在基板上直接依次形成第一电极层、p型铜铟镓硒(cigs)层、本征cigs层、n型层和第二电极层,从而形成如图1所示的感光元件100。

例如,通过溅射形成第一电极层。例如,第一电极层的材料为金属材料,如钼(mo)、铜(cu)、镍(ni)、铝(al)或它们的合金等。

对于p型铜铟镓硒(cigs)层和本征cigs层,可以通过常规工艺制备,在制备过程中,调控各元素的化学计量比从而分别得到p型的cigs薄膜和本征cigs薄膜。例如,通过溅射法配合硒化法制备p型cigs层和本征cigs层。该方法的一个示例包括先通过溅射形成cuinga合金预制层,再通过硒化工艺形成p型或本征cigs薄膜。例如,还可以通过多元共蒸发法制备p型cigs层和本征cigs层,如一步法、两步法和三步法。该方法包括采用cu、in、ga、se四种蒸发源通过热蒸发形成p型cigs薄膜或本征cigs薄膜。例如,在制备p型铜铟镓硒(cigs)层时,通过调节溅射功率或者蒸发源的蒸发速率来使得生成的cigs薄膜中的铜元素的计量比高于本征cigs薄膜中铜元素的计量比,由于富铜会使得薄膜呈p型,从而使得生成的cigs薄膜呈p型。这些都是薄膜的常规制备工艺,这里不再赘述。

例如,该n型层为n型cigs层,也可根据上述常规cigs薄膜制备工艺通过调控各元素的化学计量比制得,例如,通过调节蒸发源的蒸发速率来使得生成的cigs薄膜中的硒元素的计量比低于本征cigs薄膜中硒元素的计量比,由于贫硒会使得薄膜呈n型,从而生成n型的cigs薄膜。这种情形下,由于第一薄膜层、第二薄膜层和第三薄膜层均采用cigs薄膜,三者的晶格尺寸几乎没有差异,因而不需要额外设置晶格缓冲层。

例如,该n型层为n型zno层,通过常规溅射工艺制备即可。在这种情形下,需要在第二薄膜层和该n型层之间额外形成晶格缓冲层以缓解cigs薄膜与zno薄膜晶格失配的问题。例如,该缓冲层为cds层。

请参阅图5a-5c,在另一个实施例中,感光元件100的制造方法包括如下步骤:

步骤s51:如图5a所示,在基板10上于一道工艺中连续形成第一电极材料层101和本征铜铟镓硒(cigs)材料层102,第一电极材料层101的材料为铜或铜合金。例如,通过溅射工艺连续形成第一电极材料层101和覆盖于其上的本征铜铟镓硒(cigs)材料层102。例如,可以在同一个溅射腔内通过切换靶材连续形成第一电极材料层101和本征铜铟镓硒(cigs)材料层102,并不打开溅射腔。

步骤s52:如图5b所示,对第一电极材料层101和本征铜铟镓硒(cigs)材料层102进行图案化工艺形成第一电极层11和本征铜铟镓硒(cigs)层103,此时,第一电极层11和本征铜铟镓硒(cigs)层103具有相同的图案。

步骤s53:如图5c所示,对本征铜铟镓硒(cigs)层103进行退火,使得第一电极层11中的铜元素扩散至本征铜铟镓硒(cigs)层103中以使本征铜铟镓硒(cigs)层103变为p型铜铟镓硒(cigs)层,也即第一薄膜层12。该退火处理可以通过各种适当的方式进行,例如快速热退火等。

接着在第一薄膜层12上依次形成本征cigs层、n型层和第二电极层15,从而形成如图1所示的感光元件100。这里对此不再赘述。

由于在此过程中,第一电极材料层101从形成到被本征cigs材料层覆盖一直处于溅射的真空环境下,在后续图案化工艺中又受到本征cigs材料层的保护,从而避免在制造工艺(例如在介质层的沉积过程中)中被氧化,也省去了制造源漏电极层保护层的工艺步骤。同时,由于采用铜作为第一电极层材料,可以利用后续退火工艺使得铜元素扩散实现cigs薄膜材料的p型化。

在另一实施例中,请参阅图6a-6b,通过控制本征铜铟镓硒(cigs)材料层102的厚度和退火时间使得本征铜铟镓硒(cigs)层103在退火后包括第一子层1031和第二子层1032,其中,第一子层1031更靠近第一电极层11,在退火作用下成为p型cigs层,即第一薄膜层12;第二子层1032保持为本征型,即第二薄膜层13。

在又一实施例中,请参阅图7a-7b,通过控制本征铜铟镓硒(cigs)材料层的厚度和退火时间使得本征铜铟镓硒(cigs)层103在退火后包括第一子层1031和第二子层1032,其中,第一子层1031更靠近第一电极层11,在退火作用下变为p型cigs层,即第一薄膜层12;第二子层1031保持为本征型。接着对第二子层1031进行n型化处理使得靠近第二子层表面处的薄层部分1033变为n型,即成为第三薄膜层14;剩余部分保持为本征型,即第二薄膜层13。

本公开实施例还提供根据本公开实施例的显示面板的制造方法,以下将结合附图8a-8c对本公开实施例的显示面板的制造方法进行示例性描述。

步骤s81,提供第一基板20,对第一基板20进行清洗和干燥。第一基板20可以为可弯曲的柔性基板,例如,各种塑料膜,如聚对苯二甲酸乙二醇酯(pet)、聚醚砜、聚碳酸酯或聚酰亚胺及其衍生物等制成的基板。或者,第一基板20可以刚性基板,例如,玻璃基板、不锈钢基板等。

步骤s82,如图8a所示,在第一基板20上形成彼此绝缘的开关晶体管202和驱动晶体管204。

例如,开关晶体管202和驱动晶体管204具有相同的顶栅或底栅结构,二者对应的结构层在一道工艺中形成。

例如,依次形成开关晶体管202和驱动晶体管204栅极层、栅极绝缘层、有源层和源漏电极层24。

例如,有源层可以为多种类型,例如非晶硅、多晶硅(低温多晶硅、高温多晶硅)、氧化物半导体等。

步骤s83,请参阅图8b,在源漏电极层24上形成感光元件100。这里将源漏电极层24直接作为感光元件100的第一电极层11,在源漏电极层24上形成第一薄膜层12、第二薄膜层13、第三薄膜层14和第二电极层15。第一薄膜层12为p型铜铟镓硒(cigs)层,第二薄膜层13为本征cigs层,第三薄膜层14为n型层,由此第一薄膜层12、第二薄膜层13和第三薄膜层14构成pin结构。

例如,可以依次形成第一薄膜层12、第二薄膜层13、第三薄膜层14。例如采用上述常规cigs薄膜的制造工艺通过调控各元素计量比依次形成p型cigs薄膜、本征cigs薄膜和n型cigs薄膜。

例如,源漏电极层24和第一薄膜层12在工艺中连续形成并具有相同的图案。例如,在同一个溅射腔内通过切换靶材连续形成源漏电极层24和第一薄膜层12,并不打开溅射腔。例如,通过溅射工艺连续形成源漏电极材料层和覆盖于其上的第一薄膜材料层,然后通过同一构图工艺对该源漏电极材料层和该第一薄膜材料层得到源漏电极层24和第一薄膜层12。在这个过程中,源漏电极材料层从形成到被第一薄膜材料层覆盖一直处于溅射的真空环境下,在后续图案化工艺中又受到第一薄膜材料层的保护,从而避免在制造工艺中(例如在介质层的沉积过程中)被氧化,同时也省去了额外制造源漏电极层保护层的工艺步骤。

例如,源漏电极层24的材料为铜或铜合金。

例如,在源漏电极层24上制备一层较厚的本征cigs层,在后续工艺中通过退火使得源漏电极层24中的铜元素扩散至该本征cigs层中,使得该本征cigs层包括第一子层和第二子层,其中,第一子层更靠近源漏电极层24,在退火作用下成为p型cigs层,即第一薄膜层12;第二子层保持为本征型,即形成第二薄膜层13。例如,该退火过程可与驱动晶体管的有源层的退火步骤一同进行。

例如,在源漏电极层24上制备一层较厚的本征cigs层,在后续工艺中通过退火使得第一电极层中的铜元素扩散至该本征cigs层中,使得该本征cigs层包括第一子层和第二子层,其中,第一子层更靠近源漏电极层24,在退火作用下成为p型cigs层,即第一薄膜层12;第二子层保持为本征型。接着对该第二子层进行n型化处理使得靠近第二子层表面处的薄层部分变为n型,即形成第三薄膜层14;该第二子层的剩余部分保持为本征型,即形成第二薄膜层13。例如,该退火过程可与驱动晶体管的有源层的退火步骤一同进行。

步骤s84,如图8c所示,在第二电极层15上依次形成平坦化层26,并在该平坦化层26对应驱动晶体管204的源漏电极层的位置形成过孔,且该过孔还贯穿第一薄膜层12。接着形成发光元件28的第一电极281,第一电极281通过贯穿平坦化层26和第一薄膜层12的过孔与驱动晶体管204的源漏电极层电连接。接着形成像素界定层27并在像素界定层27上对应第一电极281的区域形成开口。接着在该开口区依次形成有机发光层282、第二电极283从而形成发光元件28,然后形成封装层29,并固定第二基板30。从而形成如图4所示的显示面板。

根据本公开实施例提供的感光元件及其制造方法、显示面板及其制造方法,采用p型cigs薄膜材料和本征cigs薄膜材料与n型材料构成pin结构,从而在p型cigs薄膜材料和本征cigs薄膜材料之间不存在晶格失配的问题,降低了吸收层的界面缺陷,提高了感光元件的光吸收率和转换率。

显然,本领域的技术人员可以对本公开的实施例进行各种改动、变型、组合而不脱离本公开的精神和范围。这样,倘若本公开的实施例的这些修改、变型、组合属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1