用于批量移转微半导体结构的方法与流程

文档序号:16813981发布日期:2019-02-10 14:05阅读:190来源:国知局
用于批量移转微半导体结构的方法与流程

本发明是关于一种微半导体结构的制作过程,特别是关于一种微半导体结构的批量移转制作过程。



背景技术:

微发光二极管(microled)的产品寿命、能耗、可视角与解析度均优于软性主动式有机发光二极管(flexibleamoleddisplay),应有市场上的优势;然而,微发光二极管在电路驱动设计、led均匀度、巨量移转的实务上,仍有技术门坎与限制。

传统发光二极管(边长超过100微米)通常在磊晶(epitaxy)制作过程后,通过一系列制作过程形成阵列排列的发光二极管晶粒,欲转置于一承载底材上,是采用一选取头(pick-uphead)对应一晶粒的方式,自前述承载底材执行挑选与转移。然而,在发光二极管微米化的制作中,传统制作过程可能遇到几个难题:例如,微发光二极管晶粒的边长尺寸相对较小(如100微米以下、或以下等级),选取头的尺寸有微缩下限,选取头尺寸大于发光二极管晶粒,导致无法有效拾取微发光二极管晶粒;又如,晶粒尺寸的微米化,意谓同尺寸晶圆所能成形的晶粒数量将巨量增加,传统制作过程中以一对一拾取的方式,势必无法满足巨量移转微发光二极管晶粒的需求,导致微发光二极管的产率极低。

业界有利用微接触印刷(microcontactprinting)技术,使聚合物材料模板上预设有巨量的凹凸图案,用来对应所要选取的微发光二极管晶粒,以达到巨量移转的要求。但,实务上同样也因微发光二极管晶粒的尺寸偏小,聚合物材料模板上两相邻凸点(或凹点)有难以控制间距的困难,且更困难的是,即便凸点能精确选取并下压黏取所欲移动的目标晶粒,但聚合物材料的硬度与黏性必先控制精准,尽量降低因受力变形而黏住目标晶粒的相邻晶粒的机率。

因此,实务上急欲发展更有弹性运作的制作过程。



技术实现要素:

有鉴于此,本发明在提供一种用于批量移转微半导体结构的方法,进行批量或巨量移转微半导体结构至目标基板上,可广泛地应用于各种微半导体结构的批量或巨量移转领域。

有鉴于此,本发明在提供一种用于批量移转微半导体结构的方法,可选择性雷射剥除(laserlift-off,llo)微半导体结构,以进行批量或巨量移转。

为此,本发明提出一种用于批量移转微半导体结构的方法,包括下列步骤:

于一半导体器件上贴附一黏着材;其中,该半导体器件包括一原生基板、以及由该原生基板成长的阵列式微半导体结构,该阵列式微半导体结构是定义多个微半导体结构以阵列排列所构成;

自该原生基板选择性地剥离该阵列式微半导体结构的一部分,使被批量选择的阵列式微半导体结构于该原生基板离开后仍留置于该黏着材;以及

提供一黏贴装置,将该批量的阵列式微半导体结构,移转至一目标基板。

附图说明

图1a、1b、1c为本发明的用于批量移转微半导体结构的方法的第一、第二、第三实施例流程图;

图2a至图2i为图1a的制作过程示意图;

图3a至图3g为图1a的另一制作过程示意图;

图4a至图4b为图1a的又一制作过程示意图;

图5a为图1a的再一制作过程示意图;

图6a至图6b为图1b的局部制作过程示意图;以及

图7a至图7b、图8a至图8d为图1c的制作过程示意图。

具体实施方式

本发明关于一种用于批量移转微半导体结构的方法,可允许阵列式排列的微尺度结构/器件,并进行批量拾取并整合至非原生基板上,而不发生对结构/器件自身的损坏。以下兹配合附图、图号说明、组件符号,详细介绍本发明的具体实施例如后;在附图中,类似元件符号大体上指示相同、功能上类似及/或结构上类似的元件;此外,元件符号仅供对元件、流程、步骤等说明之用,而对组件之间的顺序、上下层关系的限定,除非以文内定义,否则仅供示例与说明。

如本文所使用“半导体结构”、“半导体器件”同义使用且广泛地是指一半导体材料、晶粒、结构、器件、一器件的组件、或一半成品。所使用“微”半导体结构、“微”半导体器件是同义使用且泛指微尺度。半导体元件包含高质量单晶半导体及多晶半导体、经由高温处理而制造的半导体材料、掺杂半导体材料、有机及无机半导体,以及具有一或多个额外半导体组件或非半导体组件的组合半导体材料及结构(诸如,介电层或材料,或导电层或材料)。半导体组件包含(但不限于)晶体管、包含太阳能电池的光伏打器件、二极管、发光二极管、雷射、p~n接面、光电二极管、集成电路及传感器的半导体器件及器件组件。此外,半导体组件可指形成一功能性半导体器件或产品之一部件或部分。

如本文中所使用的“目标基板”指用于接收“微半导体结构”的非原生基板。原生基板或非原生基板的材料的实施例包含聚合物、塑料、树脂、聚酰亚胺、聚萘二甲酸乙二酯、聚对苯二甲酸伸乙基酯、金属、金属箔、玻璃、可挠性玻璃、半导体、蓝宝石、或薄膜晶体管(thinfilmtransistor,tft)等等。

为便于理解与说明,本文所使用“微半导体结构”以微发光二极管晶粒、或为完成至少一磊晶层并已受定义的多个微半导体结构的半成品为例;“半导体器件”包含“微半导体结构”、以及可供成长“微半导体结构”的晶圆。如本文中所使用的“目标基板”以薄膜晶体管为例。

[第一实施例]

图1a、图2a至图2i、图3a至图3g、图6a至图6b所示者,为本发明的用于批量移转微半导体结构的方法,其主要概念的流程图及大部分的制作过程示意图。

请先参阅图2b,一半导体器件20包括一原生基板22、以及由原生基板22成长的阵列式微半导体结构24。该阵列式微半导体结构24是定义为:多个微半导体结构24,其以阵列排列所构成;各该半导体结构24是具有至少一电极244。或,该阵列式微半导体结构24,亦可以为制作过程完整且个别独立的多个微发光二极管晶粒。

如图1a所示,本发明用于批量移转微半导体结构的方法至少包括步骤s30、步骤s40、与步骤s50。

步骤s20:参阅图2a与图2b,于一半导体器件20上贴附一黏着材30。其中,黏着材30的实施,将因自身材料特性、微发光二极管种类、或移除原生基板22的方式不同而异。通常,黏着材30包括一底材34、及设于底材34上的一黏着层32,黏着层32为光解离胶;唯,此黏着材30所包含元件及其方式,仅为示例而非限制。

步骤s30:参阅图2c,自该原生基板22选择性地剥离该阵列式微半导体结构24的一部分,本实施例是采雷射剥离技术进行选择性剥离;此外,选择性批量剥离的图样,通常对应至一目标基板50(参阅图2i)上的图样设计。此时,因批量选择的时间点发生在雷射剥离步骤,其后的黏贴装置40是否预先制作凹凸图案则不影响后续的批量移转;换句话说,沿用常用微接触印刷的凹凸图案亦非为本发明所排除。惟,若采用未默认凹凸图案的均一平整的印刷面,将能进一步避免采用凹凸图案印刷所遭遇的技术障碍。参阅图2d,移动半导体器件20,使被批量选择的阵列式微半导体结构24于原生基板22离开后,仍留置于黏着材30。此时的半导体器件20,原生基板22还留有未被批量选择的微半导体结构24,此等未被批量选择的阵列式微半导体结构,亦随着原生基板22离开黏着材30,而脱离黏着材30。

步骤s40:参阅图2e至图2h,提供一黏贴装置40,将该被批量选择的阵列式微半导体结构24经由黏贴装置40移转至目标基板50;本实施例中,黏贴装置40可具有保持均一平整之一黏贴表面42。参阅图2e,黏贴装置40为一黏贴平面,黏贴表面42形成于黏贴平面;黏贴平面沿着垂直黏着材30的方向,朝黏着材30移动,以黏贴该被批量选择的阵列式微半导体结构24。参阅图2f,照射紫外光,以熟化(curing)具有光解离胶的黏着材30,降低黏着材30与该被批量选择的阵列式微半导体结构24之间的黏性。参阅图2g,黏贴装置40带着该批量的阵列式微半导体结构24,沿垂直黏着材30的方向,脱离黏着材30。参阅图2h,黏贴装置40将该批量的阵列式微半导体结构24,移转至目标基板50;通常,目标基板50至少定义有一薄膜基板52、以及于薄膜基板52上的多个导电部54;导电部54可为金属电极、可预熔而具黏着性,或导电部54可为进一步包含在金属电极上预设的焊料或类似功效的黏着材料;惟,导电部54的实施方式仅为示例而非拘束本发明。参阅图2i,透过目标基板50的该导电部54与该被批量选择的阵列式微半导体结构24的电极244彼此黏着,于该被批量选择的阵列式微半导体结构24定位于目标基板50之时或之后,移除黏贴装置40。

参照图4a至图4b,黏贴装置的另一实施方式为至少一黏贴滚轮40b,一黏贴表面42b形成于黏贴滚轮40b,并由黏贴滚轮40b将该批量的阵列式微半导体结构24定位于目标基板50。

参照图5a,黏贴装置仍为一黏贴平面40c,黏贴表面42c形成于黏贴平面40c,黏贴平面40c将该批量的阵列式微半导体结构24定位于目标基板50后,是以具有角度的撕除方式移除黏贴平面40c。同理,黏贴平面40c亦能够以具有角度的方式,黏贴该批量的阵列式微半导体结构24。

同时参照图1a、图3a至图3g,用来说明还留有未被批量选择的微半导体结构24的同一半导体器件20,可再次进行步骤s20、s30、s40。

步骤s20:参阅图3a,同一半导体器件20上,由原生基板22选择性地剥离该阵列式微半导体结构24的一部或全部。

步骤s30:参阅图3b,选择性剥离的图样,可对应至同一目标基板50、或另一目标基板。假若图3b步骤,其剥离未被批量选择微半导体结构24的全部,此时将原生基板22已可单独且完全移除,参阅图3c。

步骤s40:参阅图3d至图3g,提供黏贴装置,可选用同一黏贴装置40,或新的黏贴装置40a,将该批量的阵列式微半导体结构24,移转至目标基板;目标基板可为图2h、图2i中的原目标基板50、或另一目标基板50a,目标基板50a定义有类似原目标基板50之一薄膜基板52a、以及于薄膜基板52a上的多个导电部54a。黏贴装置40a同样保持均一平整之一黏贴表面42。参阅图3d,黏贴装置40a黏贴留置于黏着材30上的阵列式微半导体结构24。参阅图3e,紫外光熟化具光解离胶的黏着材30,降低黏着材30与阵列式微半导体结构24之间的黏性。参阅图3f,黏贴装置40a带着该批量的阵列式微半导体结构24,脱离黏着材30。参阅图3g,黏贴装置40a将该批量的阵列式微半导体结构24,移转并定位至目标基板50a后,移除黏贴装置40a。

[第二实施例]

图1b、图6a与图6b所示者为图1a的流程再细化说明;指示上相同、功能上类似的步骤与元件采用相同标号。

本实施例中,步骤s20之前,还包括步骤s10:置备半导体器件20。

步骤s10,至少包括二步骤:步骤s12、s14。步骤s12提供有成长一结构层240的原生基板22(如图6a);步骤s14于该结构层240进行后续制作过程,以完成阵列排列于原生基板22上的多微半导体结构24(如图6b)。结构层240的制备到完成多微半导体结构24的全部过程,可不必连续实施;换句话说,步骤s12、s14,或可间断、穿插、接续其他制作过程,只要达到可制备阵列排列的微半导体结构24即可。结构层240与阵列式微半导体结构24具有定义相同的第一表面242s与第二表面244s。该阵列式微半导体结构24的第一表面242s由微半导体半结构242所定义,该阵列式微半导体结构24以第一表面242s附着至原生基板22;该阵列式微半导体结构24的第二表面244s相对第一表面242s、而由电极244所定义。

[第三实施例]

图1c、图7a与图7b、图8a至图8d所示者为本发明的第三实施例,因微半导体结构的电极不同而有如下置备方式;为便于更理解本实施例,微半导体结构的电极以垂直式电极为例。指示上相同、功能上类似第二实施例的其他步骤采用相同标号。

步骤s10中至少包括步骤s12、s14、s16。

步骤s12,提供有成长一结构层640的原生基板62(如图7a)。

步骤s14,于结构层640进行后续制作过程,以完成阵列排列于原生基板62上的多微半导体结构64;其中,阵列式微半导体结构64的上下电极644仅具备其一。该阵列式微半导体结构64的第一表面642s由微半导体半结构642所定义,该阵列式微半导体结构64以第一表面642s附着至原生基板62;该阵列式微半导体结构64的第二表面644s相对第一表面642s、而由电极644所定义(如图7b)。

并于步骤s20中,以具备电极644之一端贴附黏着材70(如图8a);选择性剥离批量的阵列式微半导体结构64(如图8b)。

在步骤s40后,该批量的阵列式微半导体结构64移转至一目标基板900,目标基板90布设有多个导电部94,各该微半导体结构64仅以前述单一电极644与目标基板90的导电部94相接(如图8c)。

步骤s16:于该批量的阵列式微半导体结构64置备另外一电极644(如图8d)。

本文中的“批量移转”,其可选择至少一排的至少部分的微半导体结构24、64进行移转;或选择多排微半导体结构24、64进行移转;或选择一排微半导体结构24、64中的一部分的微半导体结构24、64进行移转;或选择多排微半导体结构24、64中的一部分的微半导体结构24、64进行移转;或前述任何组合与变化。同样地,“批量拾取”通常视目标基板50、50a的设计需求而决定,本文示例是便于说明,而非拘束对“批量拾取”的解释。

上述实施例及其流程,均可互相拆解错置或替换或混合实施;并在制作过程条件允许的情况下,一并实施。

所以,本发明可通过主步骤的替换、或拆解/替换次步骤、或调整至少一次步骤在其他主步骤内的实施顺序,在制作过程条件允许的情况下,以此概念排列组合。

藉此,采用本发明的用于批量移转微半导体结构的方法,以有效、与有效率地允许进行批量或巨量拾取微半导体结构24、64(微尺度结构/器件)的阵列选择及整合于目标基板50、50a、90(非原生基板)上。不仅可应用于不同的微发光二极管晶粒或器件或半成品,更能广泛地应用于各种微半导体结构的批量或巨量移转领域。

综上所述,在本发明的用于批量移转微半导体结构的方法,其功效包含,但不局限本发明:

1、使批量选择的时间点发生在雷射剥离步骤,可不拘束其后的黏贴装置是否需要预先制作凹凸图案,使制作过程本身更具有调配弹性。

2、使批量选择的时间点发生在雷射剥离步骤,可使其后的黏贴装置无须预先制作凹凸图案,避免使用常用微接触印刷制作过程所衍生的技术困难。

3、允许此等超薄、易碎及/或小型器件的选择及应用而不导致对器件自身的损坏。

4、达到有效且有效率地,进行批量或巨量移转微半导体结构至目标基板上。

5、减少组装成本及增大产量,可广泛地应用于各种微半导体结构的批量或巨量移转领域。

以上所述仅为举例性,而非为限制性者。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包含于后附的权利要求中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1