一种制备高矫顽力和高耐蚀性烧结钕铁硼磁体的方法与流程

文档序号:16237462发布日期:2018-12-11 22:45阅读:109来源:国知局

本发明涉及磁性材料制备技术领域,更具体地说,它涉及一种制备高矫顽力和高耐蚀性烧结钕铁硼磁体的方法。

背景技术

1983年日本的佐川真仁等人在对re-fe-x三元合金进行广泛研究的基础上,采用粉末冶金工艺制备出磁能积高达290kj/m3的钕铁硼(nd-fe-b)烧结磁体,开创了第三代稀土永磁材料。烧结钕铁硼磁体自发明以来,以其优异的综合性能及相对低廉的价格而得到广泛应用。在短短的几十年的发展中,钕铁硼磁性能不断得到提高,日本现已能够批量生产磁能积达400kj/m3(50mmgoe)的各向异性烧结ndfeb永磁体,实验研究的烧结ndfeb磁体磁能积已打474kj/m3(59.5mmgoe),达到了其理论值的93%,从磁能积角度看已没有太大的提升空间。

ndfeb基永磁材料主相nd2fe14b具有非常高的各向异性场,其矫顽力的理论极限高达70koe,但是实际磁体的矫顽力仅为理论值的十分之一到三分之一。ndfeb永磁体的矫顽力之所以远小于理论各向异性场,是由于其具体的微结构及缺陷造成的。磁体硬磁相晶粒的不规则形状决定的自退磁场和晶粒之间相互作用产生的内部散磁场合成得有效退磁场(-neffms)使磁体的矫顽力降低。晶粒界面结构缺陷是另外一个影响因素,结构缺陷势必导致磁性结构参数的畸变,即晶粒表面结构缺陷区的磁晶各向异性常数k、交换积分a和饱和磁极化强度js(或饱和磁化强度ms)都会不同于晶粒内部相应量的取值,它们既是晶粒反磁化的成核中心,又是阻碍晶粒间畴壁位移的钉扎部位,对磁体矫顽力有很大影响。

烧结钕铁硼磁性能另外一个缺点就是耐腐蚀性差,从而大大限制了其进一步应用。烧结ndfeb磁体耐腐蚀性差的特点首先与其自身晶体结构和相分布有着密切的联系。与多数金属及合金一样,烧结ndfeb永磁合金是由多晶体组成的,其多晶组织由主相nd2fe14b相、富nd相和富b相nd1+εfe4b4三相组成。就分布状态而言,富nd相以网络状的方式分布在主相nd2fe14b的晶粒边界或三角晶界位置,形成所谓的晶界相,此外少量的富b相以颗粒的形式分布于主相的晶界位置。ndfeb磁体的磁性主要由硬磁相nd2fe14b决定;富nd相的存在可促进磁性材料的烧结,使磁体致密化,沿晶界分布时,可起磁耦合隔离作用,有利于矫顽力的提高,但会降低饱和磁化强度和剩磁。另一个造成烧结ndfeb磁体耐腐蚀性差的原因则与合金中的相的化学特点有关。具体而言,富nd相中大量存在的单质nd元素是化学活性最高的金属元素之一,化学稳定性差,较易发生氧化。一般而言,当磁体处于室温和干燥环境(<15%rh)下,其氧化腐蚀过程十分缓慢,化学稳定性较好,但是当合金处于干燥高温(>250℃)或电化学环境中,就会发生明显的腐蚀过程,其中在干燥高温的环境中,合金中富nd相会首先转变为nd2o3,随后还会逐步发生主相nd2fe14b的氧化分解成ɑ-fe和nd2o3,进一步氧化生成fe2o3;而在电化学环境中,合金组织中相互接触的三相之间存在着明显的电位差,三相的电化学点位由低到高依次分别为富nd相、富b相和主相nd2fe14b,因此三相的腐蚀速率不同,三相间电化学性质的不同造成了电偶效应,为合金形成原电池提供了可能。富nd相和富b相会相对于主相nd2fe14b形成阳极,优先发生腐蚀,这两相作为阳极金属将承担很大的腐蚀电流密度,尤其是其中的富nd相,由于在组织中呈网络状分布,腐蚀速度很快。它的腐蚀会导致主相nd2fe14b晶粒之间结合界面消失,出现晶粒脱落现象,最终导致合金的整体腐蚀。由此可见,无论在哪种腐蚀环境中,烧结ndfeb合金的腐蚀过程就其本质而言都属于选择性腐蚀。发生这一过程的原动力在于合金中富nd相既具有强烈的化学活性,又与主相nd2fe14b之间有明显的电位差。与此同时,由于合金中的富nd相是呈网络状分布在主相晶粒边界上,使得ndfeb磁体的腐蚀形态具有典型的晶间腐蚀特征,大大加速了合金的腐蚀速度。可见,富nd相的化学特性及其分布状态是决定ndfeb磁体耐腐蚀性的关键因素。

据此,本发明采用镝钴合金粉末颗粒掺杂制备兼具高矫顽力和高耐蚀性的烧结ndfeb永磁体。与单相金属粉末颗粒掺杂相比,本发明利用两种元素组成合金粉末掺杂磁体,综合利用了两种元素的特性,使磁体的磁性能和耐腐蚀性能更好。



技术实现要素:

针对上述两个问题,本发明的提出采用镝钴合金粉末掺杂的方法制备高矫顽力和高耐腐蚀性的烧结钕铁硼磁体,是通过添加镝钴合金粉末颗粒提高烧结钕铁硼磁体矫顽力和耐腐蚀性的新方法。

为实现上述目的,通过以下技术手段实现:一种制备高矫顽力和高耐蚀性烧结钕铁硼磁体的方法,包括以下步骤:

(1)采用速凝薄片工艺制备钕铁硼基速凝薄片,之后用氢爆法将合金薄片破碎并通过气流磨粉碎制备3-5微米钕铁硼基原料粉末;

(2)将平均粒径1-10微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的0.2-5%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在磁场中进行取向成型,得到压坯;

(4)将压坯进行等静压后进行真空烧结,然后回火热处理,最终获得烧结钕铁硼磁体。

进一步优化为:所述镝钴合金的添加比例为钕铁硼基原料粉末的0.5-3%(重量)。

进一步优化为:所述的磁场取向成型中磁场为1.8-2t。

进一步优化为:所述的等静压,压力为200-300mpa。

进一步优化为:所述真空烧结为抽真空至1×10-2pa以下,首先升温至200~300℃烧结0.5~1小时,然后升温至1040~1080℃烧结2~4小时。

进一步优化为:所述回火热处理为在800-900℃下一级回火2-3小时,在480-500℃下二级回火2-3小时。

本发明与现有技术相比的优点在于:本发明通过选择低熔点的镝钴合金dyco2对基体原料进行掺杂,镝钴合金粉末颗粒与钕铁硼基体原料微颗粒混合后镝钴合金粉末颗粒均匀分散于主相nd2fe14b晶粒表面,经过烧结及回火热处理过程后富集在富nd相和主相晶粒边界处,添加镝钴合金dyco2后,磁体晶界相的熔点降低,在烧结温度下更易形成液相,改善富nd相与主相的润湿性,使富nd相更均匀的沿晶界分布,晶界更加清晰、光滑,晶界微观结构得到优化,增强了晶粒间的去磁交换耦合作用和晶界上反磁化畴的形核场,从而提高了磁体的矫顽力;同时dy、co元素富集在晶粒表层和晶界处,并在晶粒表层形成(nd,dy)2(fe,co)14b壳层,进一步提高磁体的矫顽力。通过形成壳层这样的掺杂方式可以减少主相中dyfeb的含量比例,在总体相同dy含量的情况下,磁体剩磁和磁能积的被减小程度更轻,换句话说就是提高了磁体的综合性能,为了达到相同的磁性能,可以用更少的镝,从而也降低了材料的制造成本;另一方面,镝钴合金在晶界上部分取代了富钕晶界相,因为这类化合物具有相对稳定的化学特性,它的存在可以起到改善晶界相耐蚀性差的弱点。

具体实施方式

下面通过具体实施例对发明作进一步详述,以下实施例只是描述性的,不是限定性的本发明的保护范围。

实施例一

(1)采用速凝工艺将成分为nd14.7fe余b6.0zn1.7(at%)的合金制备为薄片,然后采用氢破碎-气流粉碎工艺将薄片制成平均粒径为3微米的钕铁硼基原料粉末;

(2)将平均粒径为2微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的0.3%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在1.8t磁场中进行取向成型,得到压坯;

(4)将成型好的压坯在200mpa下进行等静压,随后放入真空烧结炉中,抽真空至1×10-2pa,先升温至200℃烧结0.5小时,然后升温至1040℃烧结2小时,随后进行回火热处理,即在800℃下一级回火2小时,在480℃下二级回火2小时,最终获得烧结钕铁硼磁体。

(5)直接用得到的nd14.7fe余b6.0zn1.7(at%)合金,不加入镝钴合金粉末,采用相同的制造工艺制成烧结钕铁硼磁体。

用b-h仪测试两种磁体的磁性能,同时将二种磁体通过机械加工制得φ10×10(mm)的标样,再进行hast试验(131℃,96%rh,2.6bar,96h)来测试材料的耐腐蚀性,其性能如表1。

表1磁性能及耐腐蚀性试验结果

由上表结果可以看出对于成分相同的ndfeb磁体而言,掺杂镝钴合金粉末制得的磁体比未掺杂磁体的矫顽力显著提高,同时磁体的耐腐蚀性明显改善。

实施例二

(1)采用速凝工艺将成分为nd14.7fe余b6.0al0.5zn1.7(at%)的合金制备为薄片,然后采用氢破碎-气流粉碎工艺将薄片制成平均粒径为3.2微米的钕铁硼基原料粉末;

(2)将平均粒径为4微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的0.8%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在1.8t磁场中进行取向成型,得到压坯;

(4)将成型好的压坯在240mpa下进行等静压,随后放入真空烧结炉中,抽真空至1×10-2pa,先升温至240℃烧结0.8小时,然后升温至1060℃烧结2.5小时,随后进行回火热处理,即在830℃下一级回火2小时,在480℃下二级回火3小时,最终获得烧结钕铁硼磁体。

(5)直接用得到的nd14.7fe余b6.0al0.5zn1.7(at%)合金,不加入镝钴合金粉末,采用相同的制造工艺制成烧结钕铁硼磁体。

用b-h仪测试两种磁体的磁性能,同时将二种磁体通过机械加工制得φ10×10(mm)的标样,再进行hast试验(131℃,96%rh,2.6bar,96h)来测试材料的耐腐蚀性,其性能如表2。

表2磁性能及耐腐蚀性试验结果

由上表结果可以看出对于成分相同的ndfeb磁体而言,掺杂镝钴合金粉末制得的磁体比未掺杂磁体的矫顽力显著提高,同时磁体的耐腐蚀性明显改善。

实施例三

(1)采用速凝工艺将成分为nd14.7fe余b6.0gd0.2al0.3zn1.7(at%)的合金制备为薄片,然后采用氢破碎-气流粉碎工艺将薄片制成平均粒径为4微米的钕铁硼基原料粉末;

(2)将平均粒径为4微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的1.5%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在1.9t磁场中进行取向成型,得到压坯;

(4)将成型好的压坯在260mpa下进行等静压,随后放入真空烧结炉中,抽真空至1×10-2pa,先升温至260℃烧结0.8小时,然后升温至1080℃烧结2.5小时,随后进行回火热处理,即在850℃下一级回火2.5小时,在490℃下二级回火3小时,最终获得烧结钕铁硼磁体。

(5)直接用得到的nd14.7fe余b6.0gd0.2al0.3zn1.7(at%)合金,不加入镝钴合金粉末,采用相同的制造工艺制成烧结钕铁硼磁体。

用b-h仪测试两种磁体的磁性能,同时将二种磁体通过机械加工制得φ10×10(mm)的标样,再进行hast试验(131℃,96%rh,2.6bar,96h)来测试材料的耐腐蚀性,其性能如表3。

表3磁性能及耐腐蚀性试验结果

由上表结果可以看出对于成分相同的ndfeb磁体而言,掺杂镝钴合金粉末制得的磁体比未掺杂磁体的矫顽力显著提高,同时磁体的耐腐蚀性明显改善。

实施例四

(1)采用速凝工艺将成分为nd14.7fe余b6.0gd0.2al0.3ti1.1(at%)的合金制备为薄片,然后采用氢破碎-气流粉碎工艺将薄片制成平均粒径为5微米的钕铁硼基原料粉末;

(2)将平均粒径为5微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的2%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在1.9t磁场中进行取向成型,得到压坯;

(4)将成型好的压坯在260mpa下进行等静压,随后放入真空烧结炉中,抽真空至1×10-2pa,先升温至280℃烧结0.8小时,然后升温至1080℃烧结2.5小时,随后进行回火热处理,即在850℃下一级回火2.5小时,在500℃下二级回火3小时,最终获得烧结钕铁硼磁体。

(5)直接用得到的nd14.7fe余b6.0gd0.2al0.3ti1.1(at%)合金,不加入镝钴合金粉末,采用相同的制造工艺制成烧结钕铁硼磁体。

用b-h仪测试两种磁体的磁性能,同时将二种磁体通过机械加工制得φ10×10(mm)的标样,再进行hast试验(131℃,96%rh,2.6bar,96h)来测试材料的耐腐蚀性,其性能如表4。

表4磁性能及耐腐蚀性试验结果

由上表结果可以看出对于成分相同的ndfeb磁体而言,掺杂镝钴合金粉末制得的磁体比未掺杂磁体的矫顽力显著提高,同时磁体的耐腐蚀性明显改善。

实施例五

(1)采用速凝工艺将成分为nd14.7fe余b6.0nb0.2al0.3ti1.1(at%)的合金制备为薄片,然后采用氢破碎-气流粉碎工艺将薄片制成平均粒径为4微米的钕铁硼基原料粉末;

(2)将平均粒径为8微米的镝钴合金dyco2粉末加入到步骤(1)中制备好的钕铁硼基原料粉末中,添加比例为钕铁硼基原料粉末的3%(重量),将两种粉末混合均匀;

(3)将步骤(2)经过均匀混合后的粉末在2t磁场中进行取向成型,得到压坯;

(4)将成型好的压坯在300mpa下进行等静压,随后放入真空烧结炉中,抽真空至1×10-2pa,先升温至300℃烧结1小时,然后升温至1080℃烧结3小时,随后进行回火热处理,即在800℃下一级回火32.5小时,在500℃下二级回火3小时,最终获得烧结钕铁硼磁体。

(5)直接用得到的nd14.7fe余b6.0nb0.2al0.3ti1.1(at%)合金,不加入镝钴合金粉末,采用相同的制造工艺制成烧结钕铁硼磁体。

用b-h仪测试两种磁体的磁性能,同时将二种磁体通过机械加工制得φ10×10(mm)的标样,再进行hast试验(131℃,96%rh,2.6bar,96h)来测试材料的耐腐蚀性,其性能如表5。

表5磁性能及耐腐蚀性试验结果

由上表结果可以看出对于成分相同的ndfeb磁体而言,掺杂镝钴合金粉末制得的磁体比未掺杂磁体的矫顽力显著提高,同时磁体的耐腐蚀性明显改善。

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1