一种提高烧结钕铁硼磁体性能的方法和专用装置与流程

文档序号:15971154发布日期:2018-11-16 23:29阅读:240来源:国知局

本发明涉及烧结钕铁硼永磁体技术领域,尤其涉及一种提高烧结钕铁硼磁体性能的方法和专用装置。



背景技术:

对于尺寸较大的钕铁硼磁体而言,在烧结和时效过程中,因受到液相烧结稀土挥发、毛细管张力作用等,容易产生成分偏析,即在毛坯的不同位置成分,特别是稀土总量会有所差别,从而导致磁性能的不均匀。对于单坯尺寸较大以及晶粒尺寸较小的磁体成分和磁性能不均问题更为严重。另外,传统钕铁硼产品一般是在磁体烧结和热处理后,通过机械加工的方式加工成成品尺寸,涉及的加工工艺包括切割、磨削、钻孔、倒角等,加工技术比较成熟,操作简单,加工效率高,加工精度高。但热处理后的毛坯在加工过程中,在产品表面产生表面应力,造成表面晶体结构破坏,导致磁性能衰减,使得磁体性能偏离毛坯的性能,对于比表面积较大的小型产品和异形产品由加工导致的磁衰减尤为严重。同时,在机械加工过程中,为了降温,需要用到切削液,研究表明,切削液可以侵蚀到磁体中数微米的深度,影响到磁体的磁性能和耐腐蚀性。

中国专利cn105741994b提供了一种在烧结前将钕铁硼生坯直接加工成成品的形状后再烧结,避免了在加工过程中对磁体性能的破坏,保持了磁体热处理后的性能状态,同时解决了传统加工方式产生的切削废料难以回收的问题。但是将生坯完全加工成成品后再烧结的方法也存在一些不足:使用传统设备和方法对生坯进行加工,在操作性和精确性上具有较大问题,因生坯与烧结毛坯相比密度较低,生坯加工过程中容易损坏,合格率降低,且将生坯直接加工成成品形状工序较多,要保证每一个加工工序都在惰性气体保护气氛或者保护油中进行对设备的要求比较严格,成本增加。对于成品尺寸较小的产品,要在生坯状态加工成成品操作难度较大,精度较差;对于一些有弧形面的产品或异形产品,如果生坯状态下加工成成品,烧结过程中毛坯在不同方向的收缩率很难精确计算,有可能导致毛坯烧结后与目标产品尺寸存在较大偏差。另外,尺寸较小的产品完全加工成成品后再烧结,因比表面积增大,导致烧结过程中更易氮化、氧化,磁体氧、氮含量增加,性能降低。



技术实现要素:

本发明的目的是克服上述已有技术的不足,而提供一种提高烧结钕铁硼磁体性能的方法。

本发明的另一目的是提供一种实现提高烧结钕铁硼磁体性能方法的专用装置。

本发明主要解决现有的钕铁硼磁体制备方法会导致磁体成分和磁性能偏差较大,传统机械加工会导致磁体性能降低的问题,本发明还能减少磁体加工过程中产生的难以回收废粉的比例,同时解决将生坯完全加工成成品易导致生坯损坏,且烧结后磁体中氧、氮含量偏高,性能降低的问题。

本发明的技术方案是:一种提高烧结钕铁硼磁体性能的方法,其特殊之处在于,包括以下工艺步骤:

a、将钕铁硼磁粉在取向场条件下压制成初始坯体,然后退磁,再经等静压压制成生坯;

b、将等静压后的生坯固定在专用装置上,根据加工数量和加工尺寸选择合适规格的装置部件,启动专用装置在生坯取向面、非取向面、压制面中的一个或两个面上进行切割,在生坯切割面上得到成品形状及成品对应尺寸;

c、对切割后的生坯进行烧结、时效处理;

d、对烧结时效后的毛坯进行常规机械加工,得到成品形状和尺寸。

进一步的,a步骤中所述的等静压压力为150mpa~400mpa,压制的生坯密度为4.5-5.5g/cm3。

进一步的,步骤b中所述的取向面是指压型过程中与取向磁场平行且不与压头接触的面;所述的压制面是指压型过程中与压机压头接触的平面;所述的非取向面是指与取向面和压制面垂直的面;所述的成品对应尺寸是指成品尺寸乘以烧结过程收缩率所得到的尺寸。

进一步的,步骤b中所述的切割整个过程在惰性气体(包括氮气、稀有气体)气氛下进行;切割过程中不使用任何磨削液体或者冷却液体,在生坯切割过程中产生的切削粉,可以进行收集后直接重新压制成生坯,不需要报废或进行其它处理。

进一步的,步骤c中所述的烧结、时效过程均在真空炉中进行,真空度在5×10-1pa以下,烧结温度范围为980℃~1040℃,一级时效温度范围为800℃~900℃,二级时效温度范围为480℃~600℃。

进一步的,步骤d中所述的常规机械加工是针对未经过b步骤完成生坯态切割的面,经过b步骤完成生坯状态切割的面只需进行简单的抛光处理。

本发明的一种提高烧结钕铁硼磁体性能的方法的专用装置,其特殊之处在于,由往复切割机构、切割工装、生坯固定工装、往复升降机构四部分组成;所述的往复切割机构下连接切割工装,所述的往复升降机构上连接生坯固定工装,生坯固定工装与切割工装相对应;所述的往复切割机构在水平方向做往复运动,往复升降机构在竖直方向实现往复升降;所述的生坯固定工装由线槽板、限位导向板、导向销、调节螺栓、底座组成,所述的底座上对应设两个线槽板,线槽板的端部设限位导向板,限位导向板上设导向销和调节螺栓;所述的切割工装由固线板、切割丝、调节螺钉、固定板组成,所述的固定板上连接固线板,固线板间设切割丝,固线板上设调节螺钉。

本发明所述的一种提高烧结钕铁硼磁体性能的方法和专用装置与已有技术相比具有突出的实质性特点和显著进步:1)对等静压后的生坯沿取向面、非取向面、压制面中的一个或两个面切割成成品形状和对应尺寸后再烧结和时效,有效地减少了烧结过程造成的成分、性能偏差;2)在生坯状态下仅对一个面或两个面加进行加工,另外的面待烧结时效后再进行传统机械加工成成品尺寸,减轻了因生坯完全加工成成品后比表面积太大导致烧结过程中氧化、氮化的程度;3)经生坯切割后再烧结的毛坯传统机械加工量减少,加工应力造成的磁性能损失减少,磁体整体性能提高;4)使用本发明的专用装置对生坯进行切割,有效避免了因生坯密度小而使用传统设备加工容易损坏的问题,且加工精度高,切割过程产生的切削粉可以不经处理直接压制成生坯,提高了磁粉利用率。

附图说明:

图1是本发明的装置的总体结构示意图;

图2是本发明的装置中生坯固定工装结构示意图;

图3是本发明的装置中生坯切割工装的结构示意图。

具体实施方式:

为了更好地理解与实施,下面结合附图给出具体实施例详细说明本发明。

参见图1、2、3,根据设计要求选择合适的往复切割机构a和往复升降机构d,往复切割机构a能在水平方向做往复运动,往复升降机构d能在竖直方向实现往复升降;

在底座5上对应安装两个线槽板1,线槽板1的端部安装限位导向板2,在限位导向板2上安装导向销3和调节螺栓4,形成生坯固定工装c;

在固定板9上连接安装固线板6,固线板6间安装切割丝7,在固线板6上安装调节螺钉8,形成切割工装b;

上述线槽板1、限位导向板2、固线板6、切割丝7等部件可根据切割生坯的数量、尺寸、加工精度等进行更换;

在往复切割机构a下连接安装切割工装b,在往复升降机构d上连接安装生坯固定工装c,生坯固定工装c与切割工装b相对应;由往复切割机构a、切割工装b、生坯固定工装c、往复升降机构d组成本发明的专用装置。

使用时,根据加工生坯的数量和目标加工尺寸选择线槽板、限位导向板,并通过调节螺栓将生坯固定在底座上;选择与线槽板对应尺寸的固线板安装在切割工装固定板上,根据生坯加工数量和精度选择切割线,通过调节螺钉调整至合适的松紧度。

下述实施例均采用上述专用装置。

实施例1,制作的产品尺寸为:10.0mm(非取向面)*6.5mm(取向面)*8.0mm(压制面),生坯状态下使用本发明的专用装置将非取向面加工成成品对应的尺寸,非取向面和压制面对烧结时效的毛坯进行加工。具体步骤如下:

将平均粒度x50=4.0μm的磁粉在2.0t磁场条件下用压机压制成生坯,再经150mpa等静压压制,等静压后密度约为4.5g/cm3,生坯尺寸为79.3mm(非取向面)*38.2mm(取向面)*44.8mm(压制面),生坯单重610.7g;磁粉成分为prnd31.10wt.%,dy1.50wt.%,b0.95wt.%,co1.05wt.%,al0.51wt.%,cu0.15wt.%,ga0.12wt.%,ti0.11wt.%,余量为fe及不可避免的杂质元素;将生坯放置在生坯固定工装的底座上,选择线槽间隙为11.3mm的线槽板,并通过调节螺栓将生坯紧固;切割工装选择线槽间隙11.3mm的限位挡板,切割丝选择直径为0.3mm的切割丝;各工装安装到位后启动设备沿非取向面进行切割,切割后每块生坯切割成7块生坯,尺寸为11.0mm(非取向面)*38.2mm(取向面)*44.8mm(压制面);以上操作在氮气气氛中进行,切割过程产生的磁粉可以简单收集后进行二次成型;切割完成的毛坯在真空炉中进行烧结,烧结温度980℃,保温10小时,冷却后对烧结毛坯进行时效处理,一级时效温度800℃,保温3小时,二级时效温度480℃,保温3小时,烧结和时效过程中真空度小于5×10-1pa;对时效完成的毛坯进行常规机械加工,取向面和压制面使用线切割加工后磨抛,非取向面仅需进行简单磨抛,每块等静压毛坯最终得到140件尺寸为10.0mm*6.5mm*8.0mm的成品;在生坯加工过程中每块等静压生坯产生磁粉13.8g,简单回收后可直接压制成生坯;烧结时效毛坯加工过程中产生难回收废粉50.5g,成品总重546.0g,磁粉综合利用率为91.7%。随机挑选20件进行成分和磁性能测试,稀土元素含量(tre)及磁性能分布情况见表1。

根据表1数据,稀土元素总量(tre)最大值为31.2wt.%,最小值为30.97wt.%,最大偏差为0.23wt.%,标准偏差为0.09;br最大值为13.23kgs,最小值为13.16kgs,最大偏差为0.07kgs,标准偏差为0.02;hcj最大值为22.5koe,最小值为22.2koe,平均值为22.3koe,最大偏差为0.3koe,标准偏差为0.10;平均方形度(hk/hcj)为0.97。成品o元素均值为680ppm,n元素均值为383ppm。

实施例2,制作的产品尺寸为:10.0mm(非取向面)*6.5mm(取向面)*8.0mm(压制面),生坯状态下在取向面和非取向面用专用装置加工成成品对应形状和尺寸。具体步骤如下:

将平均粒度x50=4.0μm的磁粉在2.0t磁场条件下用压机压制成生坯,再经400mpa等静压压制,等静压后密度约为5.5g/cm3,生坯尺寸为75.7mm(非取向面)*33.9mm(取向面)*43.2mm(压制面),生坯单重609.7g;磁粉成分为prnd31.10wt.%,dy1.50wt.%,b0.95wt.%,co1.05wt.%,al0.51wt.%,cu0.15wt.%,ga0.12wt.%,ti0.11wt.%,余量为fe及不可避免的杂质元素;将生坯放置在生坯固定工装底座上,第一步:选择线槽间隙为10.8mm的线槽板和切割工装限位挡板,切割丝选择直径为0.3mm的切割丝(材质),各工装安装到位后启动设备沿非取向面进行切割,切割后每块生坯切割成7块生坯,尺寸为10.5mm(非取向面)*33.9mm(取向面)*43.2mm(压制面);第二步:更换线槽间隙为8.4mm的线槽板和切割工装限位板,工装安装到位后启动设备沿取向面切割,得到28个尺寸为10.5mm(非取向面)*8.1mm(取向面)*43.2mm(压制面)的生坯块;以上步骤在氩气气氛中进行,切割生坯过程中产生的磁粉经简单收集后进行二次成型;切割完成的毛坯在真空炉中进行烧结,烧结温度1040℃,保温7小时,冷却后对烧结毛坯进行时效处理;一级时效温度900℃,保温3小时,二级时效温度600℃,保温3小时;烧结和时效过程中;真空度小于5×10-1pa;对时效完成的毛坯压制面进行常规机械加工,加工成8.0mm尺寸,最后将所得的140件磁体进行抛光处理,得到140件尺寸为10.0mm*6.5mm*8.0mm的成品。在生坯加工过程中每块等静压生坯产生磁粉36.2g,经简单回收后可重新压制成生坯。烧结时效毛坯加工过程中产生难回收废粉25.8g,成品总重546.0g,磁粉综合利用率95.3%。随机挑选20件进行成分和磁性能测试,元素含量及磁性能分布见表2。

根据表2数据,稀土元素总量(tre)最大值为31.17wt.%,最小值为31.03wt.%,最大偏差为0.14wt.%,标准偏差为0.04;br最大值为13.22kgs,最小值为13.18kgs,最大偏差为0.04kgs,标准偏差为0.01,hcj最大值为22.5koe,最小值为22.3koe,平均值为22.4koe,最大偏差为0.2koe,标准偏差为0.07,平均方形度(hk/hcj)为0.97。成品o元素平均含量为692ppm,n元素平均含量为395ppm。

对比例1,制作的产品尺寸为:10.0mm(非取向面)*6.5mm(取向面)*8.0mm(压制面),生坯状态下不进行加工,生坯经过烧结时效后再经传统机械加工设备加工成成品尺寸。具体步骤如下:

将平均粒度x50=4.0μm的磁粉在2.0t磁场条件下用压机压制成生坯,再经400mpa等静压压制,等静压后密度约为5.5g/cm3,生坯尺寸为75.7mm(非取向面)*33.9mm(取向面)*43.2mm(压制面),生坯单重609.7g;磁粉成分为prnd31.10wt.%,dy1.50wt.%,b0.95wt.%,co1.05wt.%,al0.51wt.%,cu0.15wt.%,ga0.12wt.%,ti0.11wt.%,余量为fe及不可避免的杂质元素;将等静压生坯在真空炉中进行烧结,烧结温度1040℃,保温7小时,冷却后对烧结毛坯进行时效处理;一级时效温度900℃,保温3小时,二级时效温度600℃,保温3小时;烧结和时效过程中要求真空度小于5×10-1pa;对时效完成的毛坯进行常规的机械加工,每块烧结毛坯最终得到140件尺寸为10.0mm*6.5mm*8.0mm的成品;烧结时效毛坯加工过程中产生难回收废粉64.4g,成品总重546.0g,磁粉综合利用率89.6%。随机挑选20件进行成分和磁性能测试,稀土元素含量(tre)及磁性能分布见表3。

根据表3数据,稀土元素总量(tre)最大值为31.42wt.%,最小值为30.76wt.%,最大偏差为0.66wt.%,标准偏差为0.21;br最大值为13.26kgs,最小值为13.10kgs,最大偏差为0.16kgs,标准偏差为0.05;hcj最大值为22.4koe,最小值为21.7koe,最大偏差为0.7koe,平均值为22.0koe,标准偏差为0.23,平均方形度(hk/hcj)为0.96。成品o元素含量均值为663ppm,n元素含量均值为366ppm。

对比例2,制作的产品尺寸为:10.0mm(非取向面)*6.5mm(取向面)*8.0mm(压制面),生坯状态下在取向面、非取向面、压制面用专用装置加工成成品对应形状和尺寸。具体步骤如下:

将平均粒度x50=4.0μm的磁粉在2.0t磁场条件下用压机压制成生坯,再经400mpa等静压压制,等静压后密度约为5.5g/cm3,生坯尺寸为75.7mm(非取向面)*33.9mm(取向面)*43.2mm(压制面),生坯单重609.7g;磁粉成分为prnd31.10wt.%,dy1.50wt.%,b0.95wt.%,co1.05wt.%,al0.51wt.%,cu0.15wt.%,ga0.12wt.%,ti0.11wt.%,余量为fe及不可避免的杂质元素。生坯切割使用实施例1中完成的专用装置;将生坯放置在固定工装底座上,第一步:选择线槽间隙为10.8mm的线槽板和切割工装限位挡板,切割丝选择直径为0.3mm的切割丝(材质),各工装安装到位后启动设备沿非取向面进行切割,切割后每块生坯切割成7块生坯,尺寸为10.5mm(非取向面)*33.9mm(取向面)*43.2mm(压制面);第二步:更换线槽间隙为8.4mm的线槽板和切割工装限位板,工装安装到位后启动设备沿取向面切割,得到28个尺寸为10.5mm(非取向面)*8.1mm(取向面)*43.2mm(压制面)的生坯块;第三步:更换线槽间隙为8.6mm的线槽板和切割工装限位板,工装安装到位后启动设备沿压制面进行切割,得到140个尺寸为10.5mm(非取向面)*8.1mm(取向面)*8.3mm(压制面)的生坯块。以上步骤在氩气气氛中进行,切割生坯过程中产生的磁粉均可简单收集后进行二次成型;切割完成的毛坯在真空炉中进行烧结,烧结温度1040℃,保温7小时,冷却后对烧结毛坯进行时效处理。一级时效温度900℃,保温3小时,二级时效温度600℃,保温3小时;烧结和时效过程中要求真空度小于5×10-1pa;对时效完成的毛坯三个方向进行简单的机械磨抛,每块等静压毛坯最终得到140件尺寸为10.0mm*6.5mm*8.0mm的成品。在生坯加工过程中每块等静压生坯产生磁粉50.8g,经简单回收后可重新压制成生坯;烧结时效毛坯加工过程中产生难回收废粉12.0g,成品总重546.0g,磁粉综合利用率97.7%。随机挑选20件进行成分和磁性能测试,元素含量及磁性能分布见表4。

根据表4数据,稀土元素总量(tre)最大值为31.17wt.%,最小值为31.05wt.%,最大偏差为0.12wt.%,标准偏差为0.04;br最大值为13.21kgs,最小值为13.14kgs,最大偏差为0.07kgs,标准偏差为0.02;hcj最大值为22.3koe,最小值为21.7koe,最大偏差为0.6koe,平均值为22.1koe,标准偏差为0.17,平均方形度(hk/hcj)为0.96。成品o元素含量均值为719ppm,n元素含量均值为456ppm。

比较实施例1、实施例2和对比例1测试结果,使用本发明的装置对具有一定密度的等静压生坯取向面、非取向面和压制面中的一个或两个面进行切割后再烧结、时效,最后经常规机械加工至成品尺寸,成品稀土总量、br、hcj最大偏差和标准偏差值较传统工艺制备磁体均变小,均匀性得到改善,hcj平均值增大,hcj平均值提高0.3~0.4koe,在加工过程中产生的一部分磁粉通过简单的方式就可以回收重复利用,减少了传统机械加工方式产生的难以回收磁粉的比例,磁粉综合利用率由原来的89.6%提高至91.7~95.3%。

实施例1、实施例2与对比例2相比,虽然对比例2在生坯状态下将毛坯完全加工成成品后再烧结、时效的方式使得成分和br偏差略微减小,但并没有太大优势。更重要的是,对比例2中因生坯加工成成品后比表面积增大,导致毛坯在切割和烧结过程中极易氧化和氮化,成品中o元素、n元素含量增加明显,导致hcj低于实施例的值。可见,使用生坯切割的方式改善磁体均匀性以及提高成品hcj,生坯状态下只需对一到两个方向的面进行加工便可起到较好的作用。

以上实施例仅用以说明本发明的具体实施方式,不用于限制本发明。凡是根据本

技术实现要素:
和思路进行的修改、替换等均应落在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1