多阳极固体电解电容器组件的制作方法

文档序号:16889538发布日期:2019-02-15 22:56阅读:178来源:国知局
多阳极固体电解电容器组件的制作方法

本发明涉及一种在极端条件下稳定的电容器组件,更具体地说,本发明涉及一种多阳极固体电解电容器组件。



背景技术:

由于电解电容器(如钽电容器)的体积效率、可靠性和工艺兼容性,其在电路设计中的应用日益增长。例如,已经开发的一类电容器是固体电解电容器,包括阳极(如钽)、在阳极上形成的介质氧化物膜(如五氧化二钽(ta2o5))、固体电解质层及阴极。固体电解质层可由导电聚合物形成,如sakata等人的美国专利us5,457,862、sakata等人的美国专利us5,473,503、sakata等人的美国专利us5,729,428和kudoh等人的美国专利us5,812,367中所述。然而,遗憾的是,由于此类固体电解质在高温时存在从掺杂状态向不掺杂状态转变的倾向或从不掺杂状态向掺杂状态转变的倾向,其高温稳定性较差。为了解决这些问题和其它问题,人们已经开发了密封的电容器,以限制使用期间氧气与导电聚合物接触。例如,rawal等人公开的美国专利us2009/0244812描述了一种电容器组件,包括导电聚合物电容器,所述电容器封闭和密封在含惰性气体的陶瓷外壳内。所述外壳包括焊接到基础结构侧壁上的盖子。据rawal等所述,陶瓷外壳限制供应给导电聚合物的氧气量和水分量,因此,降低了在高温环境中氧化的可能性,从而提高了电容器组件的热稳定性。

然而,不管实现的好处如何,问题却依然存在。例如,高电容应用通常需要较大的阳极来实现要求的电容。然而,由于其尺寸较大,电容器元件的机械稳定性较差,尤其是在极端条件下(例如,超过大约175℃的高温与/或超过大约35伏特的高电压)时,导致剥离及电气性能较差。

因此,目前需要一种能够实现较高电容且在极端条件下仍然保持稳定的电容器。



技术实现要素:

在本发明的一个实施例中,公开了一种电容器组件。所述组件包括定义了一内部空腔的外壳,所述内部空腔内存在包含惰性气体的气体氛围。所述组件还包括与第二电容器元件并列相邻的第一电容器元件,其中所述第一电容器元件和第二电容器元件位于内部空腔内,并与外壳连接。每个电容器元件包括由阳极氧化的烧结多孔体形成的阳极及覆盖在所述阳极上的固体电解质。所述电容器组件进一步包括从阳极多孔体侧向延伸的阳极引线,其中所述引线位于外壳的内部空腔内。一阳极端子与每个电容器元件的阳极引线电连接,一阴极端子与每个电容器元件的固体电解质电连接。

本发明的其它特点和方面将在下文进行更详细的说明。

附图说明

本发明的完整和具体说明,包括对于本领域技术人员而言的最佳实施例,结合附图和附图标记在具体实施方式中作进一步描述,在附图中,同一附图标记表示相同或者相似部件。附图说明如下:

图1是本发明电容器组件的一个实施例的前视图;

图2是图1所示电容器组件去掉了盖子和密封元件后的前视图;

图3是图1和图2所示电容器组件沿线3-3的剖视图。

具体实施方式

对于本领域技术人员来说,下面的内容仅作为本发明的具体实施例,并不是对本发明保护范围的限制,保护范围在示范性结构中得到体现。

一般说来,本发明涉及一种能够实现高电容并且在极端条件下仍然具有热稳定性和机械稳定性的电容器组件。虽然所述组件的电容可能根据应用而有所不同,但是,在工作频率120hz和温度大约23℃±大约2℃时测定的电容可以是大约200μf至大约10,000μf,在一些实施例中,是大约500μf至大约8,000μf,在一些实施例中,是大约1,000μf至大约6,000μf,在一些实施例中,是大约2,000μf至大约5,000μf。即使电容如此之高,但是,通过将几个独立的电容器元件与电容器组件的外壳连接,仍然可以实现良好的机械稳定性。并不打算受理论限制,我们认为,采用多个电容器元件,增大了电容器元件与外壳连接的表面积。此外,这样做使电容器元件可以在更大面积上分散使用期间产生的振动力,从而降低了剥离的可能性。电容器元件还封闭和密封在存在含惰性气体的气氛的外壳内,从而限制供应给电容器元件固体电解质的氧气量和水分量。通过组合上述特点,所述电容器组件能够在极端条件下更好地工作。

下面将更为详细地说明本发明的各种实施例。

i.电容器元件

如上所述,电容器组件包括并列放置的多个电容器。通常可以采用任何数量的电容器元件。例如,电容器组件可能包括2至8个电容器元件(如2、3或4个),在一些实施例中,包括2至4个电容器元件,在一些实施例中,包括2至3个电容器元件,在一个具体的实施例中,包括2个电容器元件。

不管采用几个电容器元件,电容器元件都包括一阳极。在高压应用中使用时,通常希望电容器元件的阳极是由比电荷相对较低的粉末形成,例如,比电荷大约低于70,000微法拉*伏特/克(“μf*v/g”),在一些实施例中是大约2,000μf*v/g-大约65,000μf*v/g,在一些实施例中是大约5,000-大约50,000μf*v/g。当然,虽然有时候希望采用比电荷低的粉末,但是,这并不意味着要求采用。也就是说,粉末也可以具有大约70,000微法拉*伏特/克(“μf*v/g”)或更高的相对较高的比电荷,在一些实施例中,大约是80,000μf*v/g或更高,在一些实施例中,是大约90,000μf*v/g或更高,在一些实施例中,是大约100,000μf*v/g或更高,在一些实施例中,是大约120,000至大约250,000μf*v/g。

所述粉末可能包含一种阀金属(即能够氧化的金属)或基于阀金属的化合物,如钽、铌、铝、铪、钛及其各自的合金、氧化物、氮化物等。例如,阀金属组合物可能包含一种铌的导电氧化物,如铌氧原子比为1:1.0±1.0的铌的氧化物,在一些实施例中,铌氧原子比为1:1.0±0.3,在一些实施例中,铌氧原子比为1:1.0±0.1,在一些实施例中,铌氧原子比为1:1.0±0.05。例如,铌的氧化物可能是nbo0.7、nbo1.0、nbo1.1和nbo2。这种阀金属氧化物的实例在fife的美国专利us6,322,912中、fife等人的美国专利us6,391,275中、fife等人的美国专利us6,416,730中、fife的美国专利us6,527,937中、kimmel等人的美国专利us6,576,099中、fife等人的美国专利us6,592,740中、kimmel等人的美国专利us6,639,787中、kimmel等人的美国专利us7,220,397中,及schnitter公开的美国专利申请us2005/0019581中、schnitter等人公开的美国专利申请us2005/0103638中及thomas等人公开的美国专利申请us2005/0013765中均有所描述,以上专利以全文的形式引入到本专利中。

例如,颗粒可以是片状、角状、节状及上述混合体或者变体。颗粒的筛分粒度分布至少大约为60目,在一些实施例中为大约60目到大约325目,一些实施例中为大约100目到大约200目。此外,比表面积大约是0.1–大约10.0m2/g,在一些实施例中,是大约0.5–大约5.0m2/g,在一些实施例中,大约是1.0–大约2.0m2/g。术语“比表面积”是指按照journalofamericanchemicalsociety(《美国化学会志》)1938年第60卷309页上记载的bruanauer、emmet和teller发表的物理气体吸附法(b.e.t.)测定的表面积,吸附气体为氮气。同样,体积(或者斯科特)密度一般为大约0.1-大约5.0g/cm3,在一些实施例中为大约0.2-大约4.0g/cm3,一些实施例中为大约0.5-大约3.0g/cm3

在粉末中还可加入其它组分,以促进阳极体的形成。例如,可采用粘结剂与/或润滑剂,以保证在压制成阳极体时各颗粒彼此适当地粘结在一起。合适的粘结剂包括樟脑、硬脂酸和其它皂质脂肪酸、聚乙二醇(carbowax)(联合碳化物公司)、甘酞树脂(glyptal)(美国通用电气公司)、聚乙烯醇、萘、植物蜡以及微晶蜡(精制石蜡)。粘结剂可在溶剂中溶解和分散。溶剂实例包括水、醇等。使用粘结剂和/或润滑剂时,其百分含量是总重量的大约0.1%-大约8%。然而,应该理解的是,本发明并不要求使用粘结剂和润滑剂。

得到的粉末可以采用任一种常规的粉末压模压紧。例如,压模可为采用单模具和一个或多个模冲的一站式压力机。或者,还可采用仅使用单模具和单下模冲的砧型压模。单站压模有几种基本类型,例如,具有不同生产能力的凸轮压力机、肘杆式压力机/肘板压力机和偏心压力机/曲柄压力机,例如可以是单动、双动、浮动模压力机、可移动平板压力机、对置柱塞压力机、螺旋压力机、冲击式压力机、热压压力机、压印压力机或精整压力机。压制后,所得阳极体可以切割为任何要求的形状,如正方形、长方形、圆形、椭圆形、三角形、六边形、八边形、七边形、五边形等。所述阳极体还可以具有“槽”形,槽内包括一个或多个沟槽、凹槽、低洼或者凹陷,以增加表面积-体积比,最大程度地降低esr并延长电容的频率响应。然后,阳极体将经历一个加热步骤,脱除其中大部分粘结剂/润滑剂,如果不是全部脱除的话。例如,阳极体一般采用温度大约150℃-500℃的烘箱加热。或者,也可将颗粒与水溶液接触而脱除粘结剂/润滑剂,如bishop等人的美国专利us6,197,252所述。

阳极体一旦形成后,即进行烧结。烧结温度、气氛和时间取决于多种因素,如阳极类型、阳极尺寸等。一般来说,烧结在大约800℃-大约1900℃条件下进行,在一些实施例中,在大约1000℃-大约1500℃,在一些实施例中,在大约1100℃-大约1400℃条件下进行,烧结时间为大约5分钟–大约100分钟,在一些实施例中,为大约30分钟–大约60分钟。如果要求的话,烧结可在限制氧原子转移到阳极的气氛中进行。例如,烧结可在还原性气氛中进行,如在真空、惰性气体、氢气中进行。还原性气氛的压力大约是10托至大约2000托,在一些实施例中,大约是100托至大约1000托,在一些实施例中,大约是100托至大约930托。也可以使用氢气和其它气体(如氩气或氮气)的混合物。

阳极引线还可与阳极体连接,并从阳极体沿侧向引出。阳极引线可以是线状、片状等,可以采用阀金属化合物,如钽、铌、铌的氧化物等形成。所述引线的连接可采用任何已知的方法完成,例如将引线焊接到阳极体上或在形成期间(例如,在压紧与/或烧结之前)将引线嵌入阳极体内。

该阳极还涂覆介质层。介质可以这样形成:对烧结的阳极进行阳极氧化(“阳极氧化”),在阳极上面与/或内部形成介质层。例如,钽(ta)阳极可经阳极氧化变为五氧化二钽(ta2o5)。一般说来,阳极氧化首先是在阳极上涂覆一种溶液,例如将阳极浸到电解质中。通常采用溶剂,如水(如去离子水)。为了增强离子电导率,可以采用能够在溶剂中离解而形成离子的化合物。此类化合物的实例包括,例如,酸,如下文电解质一节所述。例如,酸(如磷酸)占阳极氧化溶液的含量可能是大约0.01wt%–大约5wt%,在一些实施例中是大约0.05wt%–大约0.8wt%,在一些实施例中是大约0.1wt%–大约0.5wt%。若需要的话,也可以采用酸的混合物。

使电流通过阳极氧化溶液,形成介质层。形成电压值决定介质层的厚度。例如,一开始以恒电流模式建立电源供应,直到达到要求的电压。然后,可将电源供应切换到恒电位模式,以确保在阳极整个表面形成要求的介质层厚度。当然,也可以采用人们熟悉的其它方法,如脉冲或阶跃恒电位法。阳极氧化发生时的电压一般是大约4–大约250v,在一些实施例中,是大约9-大约200v,在一些实施例中,是大约20-大约150v。在阳极氧化期间,阳极氧化溶液可保持在较高温度,如大约30℃或更高,在一些实施例中,大约40℃–大约200℃,在一些实施例中,大约50℃–大约100℃。阳极氧化还可在室温或更低温度下进行。所得到的介质层可在阳极表面形成或在阳极孔内形成。

电容器元件还包含作为电容器阴极的固体电解质。例如,二氧化锰固体电解质可通过硝酸锰(mn(no3)2)热解形成。例如,这种热解方法在sturmer等人的美国专利us4,945,452中进行了描述,该专利以全文的形式引入到本专利中。

或者,固体电解质可由一层或多层导电聚合物层形成。这些层中的导电聚合物通常是π-共轭的,并在氧化或还原后具有导电性,例如,氧化后电导率至少约为1μs·cm-1。此类π-共轭的导电聚合物的实例包括,例如,聚杂环类(例如聚吡咯;聚噻吩、聚苯胺等);聚乙炔;聚-对苯撑;聚酚盐等。尤其适合的导电聚合物是具有下述结构通式的取代聚噻吩:

其中,

t是o或s;

d是任选c1–c5烯烃取代基(例如,亚甲基、乙烯基、正-丙烯基、正丁烯基、正戊烯基等);

r7是线性或支链的任选c1–c18烷基取代基(例如,甲基、乙基、正丙基或异丙基、正丁基、异丁基、仲丁基或叔丁基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丙基、1,1-二甲基丙基、1,2-二甲基丙基、2,2-二甲基丙基、正己基、正庚基、正辛基、2-乙基己基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十六烷基、正十八烷基等);任选c5–c12环烷基取代基(如环戊基、环己基、环庚基、环辛基、环壬基、环癸基等);任选c6–c14芳基取代基(如苯基、萘基等);任选c7–c18芳烷基取代基(如苄基,邻、间、对-甲苯基、2,3-、2,4-、2,5-、2,6-、3,4-、3,5-二甲苯基、三甲苯基等);任选c1–c4羟烷基取代基或羟基取代基;及

q是0-8的整数,在一些实施例中,是0-2的整数,在一些实施例中,是0;及

n是2–5,000,在一些实施例中,n是4–2,000,在一些实施例中,n是5–1,000;“d”或“r7”的取代基实例包括,例如,烷基、环烷基、芳基、芳烷基、烷氧基、卤素、醚、硫醚、二硫化物、亚砜、砜、磺酸酯、氨基、醛、酮、羧酸酯、羧酸、碳酸酯、羧化物、氰基、烷基硅烷和烷氧基硅烷基、羧酰胺基等。

尤其适合的噻吩聚合物是“d”为任选取代c2–c3烯烃取代基的噻吩聚合物。例如,聚合物可为具有下述结构通式的任选取代聚(3,4-乙烯基二氧噻吩):

形成例如上文所述导电聚合物的方法是本领域熟悉的。例如,merker等人的美国专利us6,987,663描述了由单体前体形成取代聚噻吩的各种不同方法。该专利以全文的形式引入本专利中。例如,单体前体具有以下结构:

其中,

t、d、r7和q定义如上文所述。尤其适合的噻吩单体是其中“d”为任选取代的c2–c3烯基的噻吩单体。例如,可以使用具有下述结构通式的任选取代3,4-烯烃基二氧噻吩:

式中r7和q定义如上文所述。在一个具体的实施例中,“q”是0。一个商业上合适的3,4-乙烯基二氧噻吩实例是heraeusclevios以cleviostmm名称销售的产品。其它合适的单体还在blohm等人的美国专利us5,111,327和groenendaal等人的美国专利us6,635,729中进行了描述。以上专利以全文的形式引入到本专利中。也可以采用这些单体的衍生物,例如上述单体的二聚体或三聚体。分子量更高的衍生物,如单体前体的四聚体、五聚体等适合用于本发明。衍生物可以由相同的或不同的单体单元构成,可以以纯形式使用及以与另一种衍生物与/或单体的混合物的形式使用。还可以使用这些单体前体的氧化形式或还原形式。

在氧化催化剂存在的条件下,噻吩单体进行化学聚合。氧化催化剂通常包括过渡金属阳离子,如铁(iii)、铜(ii)、铬(vi)、铈(iv)、锰(iv)、锰(vii)、钌(iii)阳离子等。还可以使用掺杂剂,以给导电聚合物提供过量电荷,并稳定聚合物的导电性。掺杂剂一般包括无机或有机阴离子,如磺酸离子。在某些实施例中,前体溶液中使用的氧化催化剂包括阳离子(如过渡金属)和阴离子(如磺酸),从而兼具催化作用和掺杂功能。例如,氧化催化剂可能是过渡金属盐,包括铁(iii)阳离子,如卤化铁(iii)(如fecl3)或其它无机酸的铁盐(iii),如fe(clo4)3或fe2(so4)3及有机酸铁盐(iii)和包含有机自由基的无机酸的铁盐(iii)。带有机基团的无机酸的铁盐(iii)实例包括,例如,c1–c20烷醇的硫酸单酯铁盐(iii)(如月桂基硫酸铁盐(iii))。同样,有机酸铁盐(iii)实例包括,例如,c1–c20烷基磺酸铁盐(iii)(例如,甲烷磺酸、乙烷磺酸、丙烷磺酸、丁烷磺酸或十二烷基磺酸);脂肪族全氟磺酸铁盐(iii)(如三氟甲烷磺酸、全氟丁烷磺酸或全氟辛烷磺酸);脂肪族c1–c20羧酸铁盐(iii)(如2-乙基己基羧酸);脂肪族全氟羧酸铁盐(iii)(如三氟乙酸或全氟辛酸);任选被c1–c20烷基取代的芳香族磺酸铁盐(iii)(如苯磺酸、邻-甲苯磺酸、对-甲苯磺酸或十二烷基苯磺酸);环烷烃磺酸铁盐(iii)(如樟脑磺酸)等。也可以使用上文提到的铁盐(iii)的混合物。对甲苯磺酸铁(iii)和邻甲苯磺酸铁(iii)及其混合物,尤其适合本发明。一种商业合适的邻-甲苯磺酸铁(iii)盐是h.c.starckgmbh以名称cleviostmc销售的产品。

可以采用各种方法形成导电聚合物涂层。在一个实施例中,氧化剂和单体前体或者顺序涂覆或者一起涂覆,使聚合反应在部件上原位进行。用于形成一层导电聚合物涂层的合适的涂覆技术包括丝网印刷、浸渍、电泳涂装和喷涂等。例如,单体可以一开始与氧化催化剂混合,形成前体溶液。一旦形成混合物,即可将其涂覆到金属基板上,然后让其聚合,从而在表面上形成导电涂层。或者,可以顺序涂覆氧化催化剂和单体。例如,在一个实施例中,氧化催化剂可以溶解在有机溶剂(例如,丁醇)中,然后,以浸渍溶液的形式涂覆。然后,干燥部件,脱除部件上面的溶剂。然后,将部件浸到包含单体的溶液中。

根据使用的氧化剂和要求的反应时间,聚合大约在温度-10℃–250℃条件下进行,在一些实施例中大约在0℃–200℃条件下进行。合适的聚合方法,如上文所述的那些方法,在biler美国专利us7,515,396中进行了更为详细的描述。涂覆此类导电聚合物涂料的其它方法在sakata等人的美国专利us5,457,862、sakata等人的美国专利us5,473,503、sakata等人的美国专利us5,729,428及kudoh等人的美国专利us5,812,367进行了描述,以上专利的全文引用的方式并入本专利中。

除原位涂覆外,导电聚合物涂层还可以采用导电聚合物颗粒分散体的形式涂覆。虽然其粒径可能不同,但是,一般要求粒径较小,以增加粘附到阳极部件上的表面积。例如,颗粒平均粒径是大约1纳米–大约500纳米,在一些实施例中是大约5纳米–大约400纳米,在一些实施例中是大约10纳米–大约300纳米。颗粒的d90值(粒径小于或等于d90值的颗粒体积占全部固体颗粒总体积的90%)大约等于或小于15微米,在一些实施例中大约等于或小于10微米,在一些实施例中大约为1纳米–8微米。颗粒的直径可采用人们熟知的方法测定,如超速离心法、激光衍射法等。

采用独立的反离子中和取代聚噻吩携带的正电荷,可以增强导电聚合物形成颗粒。在一些情况下,聚合物在结构单元中可能具有正电荷和负电荷,正电荷位于主链上,而负电荷任选位于“r”取代基上,如磺酸酯基团或羧酸酯基团。主链的正电荷可以被“r”取代基上任选存在的阴离子基团部分或全部中和。从整体来看,在这些情况中,聚噻吩可以是阳离子、中性或甚至是阴离子。但是,因为聚噻吩主链带正电荷,它们全都被视为阳离子聚噻吩。

反离子可以是单体阴离子或聚合物阴离子。聚合物阴离子,例如,是聚羧酸(如聚丙烯酸、聚甲基丙烯酸、聚马来酸等);聚磺酸(如聚苯乙烯磺酸(“pss”)、聚乙烯基磺酸等)。酸还可以是共聚物,如乙烯基羧酸和乙烯基磺酸与其它可聚合单体,如丙烯酸酯和苯乙烯的共聚物。同样,合适的单体阴离子包括,例如,c1–c20烷基磺酸(如十二烷基磺酸);脂肪族全氟磺酸(如三氟甲烷磺酸、全氟丁烷磺酸或全氟辛烷磺酸);脂肪族c1–c20羧酸(2-乙基己基羧酸);脂肪族全氟羧酸(如三氟乙酸或全氟辛酸);任选被c1–c20烷基取代的芳香族磺酸(如苯磺酸、邻-甲苯磺酸、对-甲苯磺酸或十二烷基苯磺酸);环烷烃磺酸(如樟脑磺酸或四氟硼酸盐、六氟磷酸盐、高氯酸盐、六氟锑酸盐、六氟砷酸盐或六氯锑酸盐)等。特别适合的反离子是聚合物阴离子,如聚羧酸或聚磺酸(如聚苯乙烯磺酸(“pss”))。此类聚合物阴离子的分子量一般是大约1,000–大约2,000,000,在一些实施例中,是大约2,000–大约500,000。

当采用时,在给定涂层中的此类反离子和取代聚噻吩的重量比一般是大约0.5:1–大约50:1,在一些实施例中是大约1:1–大约30:1,在一些实施例中是大约2:1–大约20:1。上述参考重量比中提到的取代聚噻吩的重量指的是占使用单体部分的重量,假设单体在聚合期间完全转化。

分散体可能还包括一种或多种粘结剂,以进一步增强聚合层的粘合性,还可以提高分散体内部颗粒的稳定性。该粘结剂可以是有机的,如聚乙烯醇、聚乙烯吡咯烷酮、聚氯乙烯、聚醋酸乙烯酯、聚乙烯丁酸酯、聚丙烯酸酯、聚丙烯酰胺、聚甲基丙烯酸酯、聚甲基丙烯酸酰胺、聚丙烯腈、苯乙烯/丙烯酸酯、乙酸乙烯酯/丙烯酸酯和乙烯/乙酸乙烯酯共聚物、聚丁二烯、聚异戊二烯、聚苯乙烯、聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚砜、三聚氰胺-甲醛树脂、环氧树脂、硅酮树脂或纤维素。还可采用交联剂来增强粘结剂的粘附能力。此类交联剂包括,例如,三聚氰胺化合物、封闭异氰酸酯或功能硅烷,如3-缩水甘油氧基丙基三烷基硅烷、四乙氧基硅烷和四乙氧基硅烷水解产物或可交联的聚合物,如聚氨酯、聚丙烯酸酯或聚烯烃和随后的交联。正如本领域所熟知的那样,分散体中还可以包括其它组分,如分散剂(如水)、表面活性物质等。

如果要求的话,可以重复上述一个或多个涂覆步骤,直到达到要求的涂层厚度。在一些实施例中,一次只形成相对较薄的一层涂层。涂层的总目标厚度通常取决于电容器要求的性能。一般说来,所得到的导电聚合物涂层的厚度是大约0.2微米(“μm”)–大约50μm,在一些实施例中是大约0.5μm–大约20μm,在一些实施例中是大约1μm–大约5μm。应该理解的是,部件上所有位置的涂层厚度并不一定相同。但是,基板上涂层的平均厚度通常位于以上所述范围之内。

导电聚合物层可任选进行愈合。愈合可以在导电聚合物层每次涂覆之后进行或在整个导电聚合物涂层涂覆完成之后进行。在一些实施例中,导电聚合物可通过将部件浸入到电解质溶液中,然后,对溶液施加恒定的电压,直到电流降低到预先选择的水平而进行愈合。如果需要的话,这种愈合可在多个步骤中完成。例如,电解质溶液可以是单体、催化剂和掺杂剂在醇溶剂(如乙醇)中的稀溶液。如果要求的话,还可以清洗涂层,以清除各种副产品、过量试剂等。

如果需要的话,电容器还可以包含本领域熟悉的其它层。例如,可任选在介质层和电解质之间涂覆一层保护涂层,如一层由相对绝缘的树脂材料(天然树脂或合成树脂)形成的保护涂层。此类材料的比电阻约大于10ω/cm,在一些实施例中,约大于100ω/cm,在一些实施例中,约大于1,000ω/cm,在一些实施例中,约大于1×105ω/cm,在一些实施例中,约大于1×1010ω/cm。本发明可以采用的某些树脂材料包括但不限于聚氨酯、聚苯乙烯、不饱和或饱和脂肪酸的酯(如甘油酯)等。例如,合适的脂肪酸酯包括但不限于月桂酸酯、肉豆蔻酸酯、棕榈酸酯、硬脂酸酯、桐酸酯、油酸酯、亚油酸酯、亚麻酸酯、紫胶桐酸酯、紫胶酸酯等。人们发现,这些脂肪酸酯在用于相对复杂的组合中形成“干性油”时特别有用,能够使得到的膜迅速聚合形成稳定层。所述干性油可能包括甘油单酯、甘油二酯与/或甘油三酯,其具有甘油骨架,分别带一个、两个和三个被酯化的脂肪酰残基。例如,可以使用的某些合适的干性油包括但不限于橄榄油、亚麻子油、蓖麻油、桐油、豆油和紫胶。这些保护涂层材料及其它保护涂层材料在fife等人的美国专利us6,674,635中有更详细的说明,其全文以引用的方式并入到本专利中。

部件还可分别涂覆碳层(如石墨)和银层。例如,银层作为电容器的可焊接导体、接触层与/或电荷收集器,碳层可以限制银层与固体电解质接触。这类涂层可以覆盖部分或整个固体电解质。

一般来说,本发明的电容器元件基本上不含传统固体电解电容器通常采用的封装电容器元件的树脂。此外,电容器元件的封装会导致其在极端环境,如高温(如大约超过175℃)与/或高压(如大约超过35伏特)条件下不稳定。

ii.外壳

如上所述,所述电容器元件被密封在一外壳内。可以采用任何类型的不同材料来形成外壳,例如金属、塑料、陶瓷等。例如,在一个实施例中,外壳包括一层或多层金属,例如钽、铌、铝、镍、铪、钛、铜、银、钢(如不锈钢)及各自的合金(如导电氧化物)、各自的复合物(如涂覆导电氧化物的金属)等。在另一个实施例中,外壳可能包括一层或多层陶瓷材料,如氮化铝、氧化铝、氧化硅、氧化镁、氧化钙、玻璃等以及它们的组合。

外壳还可以具有任何要求的形状,如圆柱形、d-形、矩形、三角形、棱形等。例如,参考图1-3,图中示出了包括外壳122和并列放置的电容器元件120a和120b的电容器组件100的一个实施例。在这个具体实施例中,外壳122通常是矩形。一般而言,外壳和电容器元件具有相同的或类似的形状,这样,电容器元件才容易放进内部空腔内。例如,在所示实施例中,外壳122及电容器元件120a和120b通常为矩形。

通常选择电容器元件在外壳内的布置方式,以降低它们受到振动力时出现剥离的可能性。例如,在所示实施例中,电容器元件120a和120b并排放置,电容器元件120a的侧表面403a相邻并朝向电容器元件120b的侧表面403b,因而电容器元件120a的侧表面405a远离电容器元件120b的侧表面405b。除彼此并列相邻之外,电容器元件120a和120b还是对齐的,这样,它们的主要表面(如面积最大的表面)水平排列。例如,电容器元件120a和电容器元件120b均具有主要表面181和183,所述主要表面181和183沿它们的宽度(–x向)和长度(–y向)定义的平面延伸。通过这种方式,电容器元件的主要表面通常共平面,并且沿与其连接的外壳122的长相同的方向延伸(如,-y向)。这样做可提供诸多益处,包括能够增大电容器元件和外壳之间的接触表面积,有助于它们更好地耐受振动力。当然,还应该理解的是,电容器元件也可以这样布置:即其主要表面并不共平面,而是在某个方向彼此垂直,如在–z向或–x向。此外,电容器元件并不需要沿同一个方向延伸。

如果要求的话,本发明的电容器组件可以具有相对较高的体积效率。为了促进较高的体积效率,电容器元件通常占据外壳内部空腔的大部分体积。例如,电容器元件可能占外壳内部空腔的大约30vol%或更高,在一些实施例中,大约占50vol%或更高,在一些实施例中,大约占60vol%或更高,在一些实施例中,大约占70vol%或更高,在一些实施例中,占大约80vol%至大约98vol%,在一些实施例中,占大约85vol%至大约97vol%。为此,电容器元件某些尺寸和外壳定义的内部空腔之间的尺寸之差通常相对较小。

例如,参考图3,电容器元件120a的长度(不包括阳极引线6的长度)与外壳122定义的内部空腔126的长度比较相似。例如,阳极长度和内部空腔长度之比大约为0.40–1.00,在一些实施例中,大约为0.50–0.99,在一些实施例中,大约为0.60–0.99,在一些实施例中,大约为0.70–0.98。电容器元件120a的长度是大约5毫米至大约10毫米,内部空腔126的长度是大约6毫米至大约15毫米。同样,电容器元件120a的高度(-z方向)和内部空腔126的高度之比大约为0.40–1.00,在一些实施例中,大约为0.50–0.99,在一些实施例中,大约为0.60–0.99,在一些实施例中,大约为0.70–0.98。例如,电容器元件120a的高度是大约0.5毫米至大约2毫米,内部空腔126的高度是大约0.7毫米至大约6毫米。

虽然并不要求,但是,电容器元件可以以这样的方式与外壳连接:共同的阳极端子与共同的阴极端子在外壳外面形成,以便以后集成到电路中。各端子的具体结构取决于指定用途。例如,在一个实施例中,电容器组件是这样形成的:它可以表面贴装,但仍然具有机械稳定性。例如,电容器元件的阳极引线可与外部、表面可贴装阳极端子和阴极端子(如垫、片、板、架等)电连接。这种端子可穿过外壳与电容器连接。通常选择端子的厚度或高度,以降低电容器组件的厚度。例如,端子的厚度为大约0.05毫米–大约1毫米,在一些实施例中为大约0.05毫米–大约0.5毫米,在一些实施例中为大约0.1毫米–大约0.2毫米。如本领域所熟悉的那样,如果要求的话,端子表面可电镀镍、银、金、锡等,确保最终部件可贴装到电路板上。在一个具体的实施例中,各端子分别镀有亮镍和亮银,而贴装表面也镀有锡焊层。在另一个实施例中,各端子在基础金属层(如铜合金层)上沉积薄薄的外金属层(如金层),以进一步提高电导率。

在某些实施例中,在外壳的内部空腔内可以使用连接元件,以方便以机械稳定的方式与各端子连接。例如,再次参考图1,电容器组件100可包括由第一部分167与第二部分165形成的连接元件162。连接元件162可由类似外部端子的导电材料形成。第一部分167和第二部分165可以是一个整体或者是独立部件,独立部件可以是直接连接在一起或通过其它导电元件(如金属)连接在一起的。在所示实施例中,第二部分165位于通常与每个电容器元件的引线6延伸的侧向(即-y向)平行的平面中。第一部分167是“直立的”,即其位于通常与引线6引出侧向垂直的平面中。采用这种方式,第一部分167可以限制引线6在水平方向的移动,增强表面接触和使用时的机械稳定性。如果要求的话,在电容器元件的引线6周围可以使用一种绝缘材料7(如teflontm垫片)。

第一部分167可以有一个与各电容器元件120a或120b的阳极引线6连接的贴装区(未画出)。该区为“u-形”,用于进一步增强引线6的表面接触和机械稳定性。贴装区与引线6的连接可采用任何已知的技术完成,例如,焊接、激光焊接、导电粘合剂粘接等。例如,在一个具体实施例中,贴装区是通过激光焊接到阳极引线6上。然而,不管选择哪种技术,第一部分167可以将阳极引线6保持大体上水平对齐,进一步增强了电容器组件100的尺寸稳定性。

再次参考图1,图中示出了本发明的一个实施例,其中连接元件162和各自的电容器元件120a或120b分别通过阳极端子127和阴极端子129与外壳122连接。阳极端子127包含位于外壳122内并与连接元件162电连接的第一区127a及位于外壳122外并提供一贴装表面201的第二区127b。同样,阴极端子129包含位于外壳122内并与电容器元件120的固体电解质电连接的第一区129a及位于外壳122外并提供一贴装表面203的第二区129b。应该理解的是,这些区不需要整个部分均位于外壳内或外壳外。

在所示实施例中,导电迹线127c沿外壳外壁123延伸,以连接第一区127a和第二区127b。同样,导电迹线129c沿外壳外壁123延伸,以连接第一区129a和第二区129b。导电迹线与/或端子区可以是独立的或整体的。除延伸通过外壳外壁外,迹线还可位于其它位置,如外壁外部。当然,本发明并不限于使用导电迹线来形成要求的端子。

不管具体采用什么结构,端子127和129与电容器元件120a和120b的连接可采用任何已知的技术完成,如焊接、激光焊接、导电粘合剂等。例如,在一个具体的实施例中,采用导电粘合剂131将连接元件162的第二部分165与阳极端子127连接。同样,采用导电粘合剂133将电容器元件120的阴极与阴极端子129连接。导电粘合剂可由树脂组合物中包含的导电金属颗粒形成。金属颗粒可以是银、铜、金、铂、镍、锌、铋等。树脂组合物包括热固性树脂(如环氧树脂)、固化剂(如酸酐)和偶联剂(如硅烷偶联剂)。合适的导电粘合剂在osako等人公开的美国专利us2006/0038304中有所说明,其全文以引用的方式并入到本专利中。

还可任选一种聚合物限制材料与电容器元件的一个或多个表面接触,如后表面、前表面、上表面、下表面、侧表面或任何它们的组合。这种聚合物限制材料可以降低电容器元件从外壳剥离的可能性。在这方面,聚合物限制材料可具有某种即使在电容器受到振动力时也能够将电容器元件保持在相对固定位置的某种强度,但强度并不大到使其开裂的程度。例如,聚合物限制材料在温度大约25℃时测定的拉伸强度是大约1兆帕至大约150兆帕(“mpa”),在一些实施例中是大约2mpa至大约100mpa,在一些实施例中是大约10mpa至大约80mpa,在一些实施例中是大约20mpa至大约70mpa。通常要求聚合物限制材料是不导电的。

虽然可以使用具有上述强度的任何材料,但是,我们发现,可固化的热固性树脂尤其适合用于本发明。此类树脂的实例包括,例如,环氧树脂、聚酰亚胺、蜜胺树脂、脲醛树脂、聚氨酯、硅酮聚合物、酚醛树脂等。例如,在某些实施例中,聚合物限制材料可以使用一种或多种聚硅氧烷。这些聚合物中使用的含硅有机基团可能包含一价烃基团与/或一价卤代烃基团。此类一价基团通常含有1个至大约20个碳原子,优选1个至10个碳原子,以下述基团示例表示,但并不受这些示例基团的限制:烷基(如甲基、乙基、丙基、戊基、辛基、十一烷基和十八烷基);环烷基(如环己基);烯基(如乙烯基、烯丙基、丁烯基和己烯基);芳基(如苯基、甲苯基、二甲苯基、苄基和2-苯乙基);及卤化烃基团(如3,3,3-三氟丙基、3-氯丙基和二氯苯基)。一般说来,至少50%,更优选至少80%有机基团是甲基。此类甲基聚硅氧烷的实例可能包括,例如聚二甲硅氧烷(“pdms”)、聚甲基氢硅氧烷(polymethylhydrogensiloxane)等。其它合适的甲基聚硅氧烷可包括二甲基二苯基聚硅氧烷、二甲基/甲基苯基聚硅氧烷、聚甲基苯基硅氧烷、甲基苯基/二甲基硅氧烷、乙烯基二甲基封端的聚二甲基硅氧烷、乙烯基甲基/二甲基聚硅氧烷、乙烯基二甲基封端的乙烯基甲基/二甲基聚硅氧烷、二乙烯基甲基封端的聚二甲基硅氧烷、乙烯基苯基甲基封端的聚二甲基硅氧烷、二甲基氢封端的聚二甲基硅氧烷、甲基氢/二甲基聚硅氧烷、甲基氢封端的甲基辛基聚硅氧烷、甲基氢/苯基甲基聚硅氧烷等。

有机聚硅氧烷还可以包含一个以上赋予聚合物某种程度亲水性的极性官能团侧基与/或端基,如羟基、环氧基、羧基、氨基、烷氧基、甲基丙烯酸基或巯基。例如,有机聚硅氧烷可能包括至少一个羟基,及任选每分子平均至少两个含硅羟基(硅醇基)。此类有机聚硅氧烷的实例包括,例如,二羟基聚二甲基硅氧烷、羟基-三甲基硅烷氧基聚二甲基硅氧烷等。其它羟基改性的有机聚硅氧烷在kleyer等人公开的美国专利us2003/0105207中进行了描述。该专利以全文的形式引入本专利中。还可以采用烷氧基改性的有机聚硅氧烷,如二甲氧基聚二甲基硅氧烷、甲氧基-三甲基硅烷氧基聚二甲基硅氧烷、二乙氧基聚二甲基硅氧烷、乙氧基-三甲基硅烷氧基-聚二甲基硅氧烷等。其它合适的有机聚硅氧烷是那些采用至少一个氨基官能团改性的有机聚硅氧烷。此类氨基官能团聚硅氧烷的实例包括,例如,带二氨基-官能团的聚二甲基硅氧烷。有机聚硅氧烷的其它合适的极性官能团还在plantenberg等人公开的美国专利us2010/00234517中进行了描述。该专利以全文的形式引入到本专利中。

环氧树脂也尤其适合用作聚合物限制材料。合适的环氧树脂的实例包括,例如,缩水甘油醚型环氧树脂,如双酚a型环氧树脂、双酚f型环氧树脂、苯酚酚醛型环氧树脂、邻甲酚醛型环氧树脂、溴化环氧树脂和联苯环氧树脂;环脂环氧树脂;缩水甘油酯型环氧树脂;缩水甘油胺型环氧树脂;甲酚醛环氧树脂;萘型环氧树脂;苯酚芳烷基型环氧树脂;环戊二烯型环氧树脂;杂环环氧树脂等。其它合适的导电粘合剂树脂还在osako等人公开的美国专利us2006/0038304和chacko的美国专利us7,554,793中进行了描述,以上专利以全文的形式引入到本专利中。

如果需要的话,在聚合物限制材料中还可以使用固化剂,以帮助促进固化。固化剂一般占聚合物限制材料的大约0.1wt%至大约20wt%。固化剂的例子包括,例如,氨、过氧化物、酐、酚类化合物、硅烷、酸酐化合物及它们的组合。合适的固化剂具体实例有双氰胺、1-(2氰乙基)2-乙基-4-甲基咪唑、1-苄基2-甲基咪唑、乙基氰基丙基咪唑、2-甲基咪唑、2-苯基咪唑、2-乙基-4-甲基咪唑、2-十一烷基咪唑、1-氰乙基-2-甲基咪唑、2,4-二氰基-6,2-甲基咪唑基-(1)-乙基-均三嗪和2,4-二氰基-6,2-十一烷基咪唑基-(1)-乙基-均-三嗪、咪唑盐(如1-氰乙基-2-十一烷基偏苯三酸盐、2-甲基咪唑异氰尿酸盐、2-乙基-4-甲基咪唑四苯基硼酸盐和2-乙基-1,4-二甲基咪唑四苯基硼酸盐等)。其它有用的固化剂包括膦化合物,如三丁基膦、三苯基膦、三(二甲氧基苯基)膦、三(羟苯基)膦和三(氰乙基)膦;磷盐,如四苯硼酸四苯基磷、四苯硼酸甲基三丁基磷和四苯硼酸甲基三氰乙基磷);胺,如2,4,6-三(二甲氨基甲基)苯酚、甲基苄胺、四甲基丁基胍、n-甲基哌嗪和2-二甲氨基-1-吡咯啉;铵盐,如三乙基四苯基硼酸铵;二氮杂双环化合物,如1,5-二氮杂双环[5,4,0]-7-十一碳烯、1,5-二氮杂双环[4,3,0]-5-壬烯和1,4-二氮杂双环[2,2,2]-辛烷;二氮杂双环化合物的盐,如四苯基硼酸盐、酚盐、酚醛盐;等等。

还可以使用其它添加剂,如光引发剂、粘度改进剂、悬浮助剂、颜料、应力降低剂、偶合剂(如硅烷偶合剂)、非导电性填料(如粘土、二氧化硅、氧化铝等)、稳定剂等。合适的光引发剂包括,例如,安息香、安息香甲基醚、安息香乙醚、安息香正丙醚、安息香异丁醚、2,2-二羟基-2-苯基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-2-苯基苯乙酮、2,2-二乙氧基苯乙酮、二苯甲酮、4,4-二烷基氨基二苯甲酮(dialkylaminobenzophenone)、4-二甲基氨基苯甲酸、烷基4-二甲基氨基苯甲酸盐、2-乙基蒽醌、氧杂蒽酮、噻吨酮、2-氯噻吨酮等。采用这些添加剂时,其含量通常是总组分的大约0.1wt%至大约20wt%。

例如,再次参考图1-3,图中示出了一个实施例,其中单块聚合物限制材料197与电容器元件120a及120b的上表面181和后表面177接触。虽然各元件中所示为单块聚合物限制材料,但是,应该理解的是,为了完成同样的功能,也可以使用分开的聚合物限制材料。实际上,更普通的是,可以使用任何数量的聚合物限制材料,使其接触电容器元件的任何要求表面。当使用几块聚合物限制材料时,它们可能彼此接触或实际上保持分开。例如,在一个实施例中,采用与电容器元件120a的上表面181和前表面179接触的第二聚合物限制材料(未画出)。第一聚合物限制材料197和第二聚合物限制材料(未画出)可能互相接触或者不互相接触。而在另一个实施例中,聚合物限制材料还与电容器元件120a的下表面183与/或侧表面403a和405a接触,同时还接触其它表面或代替其它表面。

不管如何应用,通常都希望聚合物限制材料还接触外壳的至少一个表面,以帮助进一步机械稳定电容器元件,防止可能的剥离。例如,聚合物限制材料可与一个或多个侧壁、外壁、盖等的内表面接触。例如,在图1-3中,聚合物限制材料197与外壳122的内部表面107和109接触。虽然与外壳接触,但是,不过仍然希望外壳定义的内腔至少一部分仍然保持未被占据,以允许惰性气体流过空腔,并限制固体电解质与氧气接触。例如,至少大约5%的空腔体积通常仍然保持未被电容器元件和聚合物限制材料占据,在一些实施例中,大约10%至大约50%空腔体积未被占据。

一旦按照要求的方式连接,将所得封装按照上文所述进行密封。例如,再次参考图1-3,外壳122还可以包括一个盖子125。电容器元件120a和120b在外壳122内放好后,将盖子125盖在侧壁124和525的上表面上。盖子125可由陶瓷、金属(如铁、铜、镍、钴等及它们的合金)、塑料等形成。如果要求的话,可在盖子125与侧壁124和525之间放置一密封元件187,以帮助提供良好的密封。例如,在一个实施例中,密封元件可能包括玻璃-金属密封、环(goodfellowcamridge,ltd.)等。侧壁124和525的高度通常应使盖子125不与电容器元件120a和120b的任何表面接触,这样,它就不会被污染。任选的聚合物限制材料197可以接触或不接触盖子125。当放置在要求的位置时,采用已知的方法,如焊接(如电阻焊、激光焊等)和钎焊等将盖子125密封侧壁124和525。

密封通常在包含至少一种惰性气体的气体氛围中进行,以抑制固体电解质在使用期间的氧化。惰性气体可能包括,例如,氮气、氦气、氩气、氙气、氖气、氪气、氡气等及它们的混合物。一般说来,惰性气体占外壳内气氛的大多数,例如占气氛的大约50wt%–大约100wt%,在一些实施例中是大约75wt%–大约100wt%,在一些实施例中是大约90wt%–大约99wt%。50wt.%至100wt.%,在一些实施例中,大约占75wt.%至100wt.%,在一些实施例中,大约占90wt.%至大约99wt.%。如果需要的话,也可以采用相对少量的非惰性气体,如二氧化碳、氧气、水蒸汽等。不过,在这种情况下,非惰性气体通常占外壳气氛的15wt%或更低,在一些实施例中,大约占10wt%或更低,在一些实施例中,大约占5wt%或更低,在一些实施例中,大约占1wt%或更低,在一些实施例中,占大约0.01wt%至大约1wt%。例如,水分含量(以相对湿度表示)可能是大约10%或更低,在一些实施例中,是大约5%或更低,在一些实施例中,大约是1%或更低,在一些实施例中,是大约0.01至大约5%。

应该理解的是,所述实施例仅用于示范,本发明还可以采用其它各种结构。例如,上文讨论的实施例采用类似的连接元件与阳极端子及阴极端子连接。但是,并不要求这样做,每个不同的电容器元件可以采用任何不同的连接机构。同样,也可以使用不同的端子。例如,在一个实施例中,可以采用引线插头(terminalpin)而不是表面可贴装的外部端子。这种引线插头可任选延伸通过外壳的外壁。

即使暴露在高温和高压环境中,本发明的电容器组件仍然具有优异的电气性能。例如,电容器组件具有相对较高的“击穿电压”(电容器失效时的电压),如大约35v或更高,在一些实施例中是大约50v或更高,在一些实施例中是大约60v或更高,在一些实施例中是大约60v-大约100v。击穿电压是以3v的增量增加施加电压,直到漏电流达到1ma时测定的电压。同样,电容器还能够耐受高压应用中常见的相对较高的浪涌电流。例如,浪涌电流峰值大约是额定电流的2倍或更高,例如大约是40a或更高,在一些实施例中是大约60a或更高,在一些实施例中是大约120a至大约250a。

同样,电容大约为1毫法拉/平方厘米(“mf/cm2”)或更高,在一些实施例中,约为2mf/cm2或更高,在一些实施例中,约为5–50mf/cm2,在一些实施例中,约为8–20mf/cm2。电容在工作频率120hz、温度25℃条件下测定。此外,电容器组件还具有相对较高的湿电容百分比,使其在环境湿度条件下仅有少量电容损失与/或波动。这种性能由“干湿电容百分比”定量,由下述公式确定:

干湿电容比=(1-([湿电容–干电容]/湿电容))×100

例如,本发明的电容器组件的干湿电容百分比是大约80%或更高,在一些实施例中,是大约85%或更高,在一些实施例中,是大约90%或更高,在一些实施例中,是大约92%至100%。

在工作频率100khz测定时,电容器组件的等效串联电阻(“esr”)大约低于50欧姆,在一些实施例中,大约低于25欧姆,在一些实施例中,约为0.01–10欧姆,在一些实施例中约为0.05–5欧姆。此外,漏电流通常指的是从一个导体通过一个绝缘体流向附近一个导体的电流,它也可以保持在相对较低的水平。例如,本发明电容器的归一化漏电流,在一些实施例中大约低于1μa/μf*v,在一些实施例中,大约低于0.5μa/μf*v,在一些实施例中,约低于0.1μa/μf*v,其中μa是微安,uf*v是电容和额定电压的乘积。

如上所述,甚至在高温老化较长时间后,以上电气性能仍然能够得到保持。例如,在温度大约100℃–250℃,在一些实施例中,在大约100℃–225℃时(如100℃、125℃、150℃、175℃或200℃)时,这些数值可保持大约100小时或更长,在一些实施例中,可保持300小时–3000小时,一些实施例中,可保持400小时–2500小时(如500小时、600小时、700小时、800小时、900小时、1000小时、1100小时、1200小时或2000小时)。

通过下述实施例可以更好地理解本发明。

试验程序

等效串联电阻(esr)

等效串联电阻可以采用带kelvin引线的keithley3330精密lcz测试仪,在直流偏压2.2伏特、峰-峰正弦信号0.5伏特时进行测定。工作频率采用100khz,温度采用23℃±2℃。

电容

电容可以采用带kelvin引线的keithley3330精密lcz测试仪,在直流偏压2.2伏特、峰-峰正弦信号0.5伏特时进行测定。工作频率采用120hz,温度采用23℃±2℃。

振动试验:

将部件在20分钟内经历10hz至2.000hz的整个频率范围,然后反过来返回到10hz。在3个方向的每个方向完成此循环12次(共36次),施加的振动大约12小时。振幅是从10hz的3.0mm到更高的穿越频率,然后20g加速到2.000hz。将十(10)个电容器样品焊接到试验板上进行此次试验。

实例1

将一个钽阳极(4.80mm×5.25mm×2.60mm)在液体电解质中在30v阳极氧化到150μf。然后,将整个阳极浸入到聚(3,4-乙烯基二氧噻吩)(“pedt”)分散体(cleviostmk,固含量1.1%)中,形成导电聚合物涂层。然后,将部件在125℃干燥20分钟。重复此过程10次。然后,将部件以0.1mm/s的速度浸到pedt分散体(固含量2.8%)中,使分散体达到部件的肩部,如图3所示。让部件在分散体中停留10秒,并在125℃干燥30分钟,然后冷却到室温。重复此过程5次。然后,在部件上涂覆石墨和银。采用铜基引线框架材料完成组装工艺。采用银粘合剂,将单个阴极连接元件与电容器元件的下表面连接。然后,将电容器元件的钽线激光焊接到阳极连接元件上。

按照上述方式形成两个电容器元件,然后,将各自的引线框架的阳极连接元件焊接到金阳极端子上,阴极连接元件粘到金阴极端子上,这些端子位于长11.00mm、宽12.50和厚5.40mm的陶瓷外壳内。陶瓷外壳内部底面有镀金焊盘。阴极连接使用的粘合剂是银膏(epo-teke3035),粘合剂只在引线框架部分和镀金焊盘之间使用。阳极连接采用的焊接是电阻焊,并在90ms期间向引线框架部分和陶瓷外壳镀金焊盘之间施加190w能量。然后,将组件放进对流回流焊炉内,以焊接焊膏。在回流后,将聚合物限制材料(dow736耐热密封剂)放在电容器元件的阳极部分和阴极部分上面,并在165℃干燥1.5小时。在此之后,将长度9.95mm、宽度4.95mm及厚度0.10mm的盖子放在电容器顶部,紧靠在陶瓷外壳的密封环(厚度0.30mm的环)上,这样,盖子内表面和所连接的电容器的外表面之间不存在直接接触。将所得组件放进焊接室,并用氮气吹扫120分钟,然后,对密封环和盖子之间进行缝焊。在缝焊后,不再进行其它老化或愈合。采用这种方式制备了多个部件(50个)。

实例2

将一个钽阳极(4.80mm×10.50mm×2.60mm)在液体电解质中在30v阳极氧化到150μf。然后,将整个阳极浸入到聚(3,4-乙烯基二氧噻吩)(“pedt”)分散体(cleviostmk,固含量1.1%)中,形成导电聚合物涂层。然后,将部件在125℃干燥20分钟。重复此过程10次。然后,将部件以0.1mm/s的速度浸到pedt分散体(固含量2.8%)中,使分散体达到部件的肩部。让部件在分散体中停留10秒,并在125℃干燥30分钟,然后冷却到室温。重复此过程5次。然后,在部件上涂覆石墨和银。采用上文所述相同的方式,由电容器元件形成五十(50)个电容器组件。

然后,在“振动试验”之前和之后,按照上文所述在温度25℃测试实例1和实例2部件的电气性能(即电容“cap”)和等效串联电阻(“esr”)。中值结果如下表。

如表中所示,包含单个大阳极(长度10.5mm)的实例2的电容器组件,在极端条件下比实例1更小的多阳极组件(长度5.25mm)更不稳定。

上文对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1