硫化物电解质包覆的锂硅合金复合负极材料及其制备方法与流程

文档序号:17494874发布日期:2019-04-23 21:10阅读:137来源:国知局

本发明涉及负极材料领域技术,尤其是指一种硫化物电解质包覆的锂硅合金复合负极材料及其制备方法。



背景技术:

锂二次电池被广泛应用于移动电话、笔记本、数码产品等便携式电子设备以及新能源电动车等,主要是由于其良好的功率密度、能量密度、循环性能和环境友好等优点。

但是,传统的锂离子电池主要以有机液体为电解质,有机液体电解质存在的安全隐患包括:高温失效、电极材料的体积膨胀、电解液氧化、正极材料的析氢、过渡金属的溶解以及负极材料的sei膜持续生长和锂枝晶的过度生长等。过度生长的锂枝晶极有可能造成电路短路,从而降低电池的安全属性。与液态锂离子电池相比,全固态锂电池具有一系列优势:安全性能高、能量密度高、循环寿命长、回收方便、工作温度宽、电化学窗口宽、具备柔性等优势。

然而,全固态锂电池所涉及的固体电解质材料离子电导率偏低,固体电解质和电极界面间阻抗大,界面相容性较差,电极材料在充放电过程中体积膨胀和收缩,导致界面分离,质量能量密度和体积能量密度需提升等缺陷有待解决。全固态锂电池负极材料主要包括:金属锂、碳基、硅基和锡基负极和氧化物负极材料等。其中,金属锂因其高容量和低电位的优点成为全固态电池最主要的负极材料之一,然而金属li在循环过程中会有锂枝晶的产生,不但会使可供嵌/脱的锂量减少,更严重的是会造成短路等安全问题。因此有必要研发新型的全固态电池复合电极或者制备工艺对复合电极材料进行结构或表面修饰,以获得更能满足实际应用的全固态锂离子电池负极材料。



技术实现要素:

有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种硫化物电解质包覆的锂硅合金复合负极材料及其制备方法,其极大提高全固态锂电池的安全性能,同时改善电解质和电极材料两相界面间的离子传输的界面问题,提高锂离子的传输效率、减少离子传输的阻力。

为实现上述目的,本发明采用如下之技术方案:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

(1)在氩气气氛将硅粉末和锂金属颗粒加入球磨机球磨;

(2)将合成硫化物电解质的原料与锂硅合金在溶剂中混合、反应;

(3)将步骤(2)中的反应混合物进行减压、蒸馏、干燥、烧结,得到复合电极材料;

(4)将步骤(3)中得到的复合电极材料利用磁控溅射设备将其溅射至固态硫化电解质上。

作为一种优选方案,所述步骤(1)中球磨条件为球料比为10-200:1、球磨速度为100-400rpm、球磨时间为1-72h。

作为一种优选方案,所述步骤(2)中的合成硫化物电解质为li2s–sis2,li2s–ges2,li2s–p2s5中的一种或几种。

作为一种优选方案,所述步骤(2)中的溶剂为包括乙腈、四氢呋喃、乙二醇二甲醚和n-甲基甲酰胺中的一种或几种。

作为一种优选方案,所述步骤(2)中的合成硫化物电解质和锂硅合金的混合质量比为(99-70):(1-30)。

作为一种优选方案,所述步骤(2)中的溶剂与复合电极材料的混合质量比为5-100:1。

作为一种优选方案,所述步骤(2)中的反应温度为40-300℃,反应时间为0.5-80h。

作为一种优选方案,所述步骤(3)中的烧结温度为60-800℃,烧结时间为0.5-100h,烧结气氛包括氩气、氮气和氦气中的一种或者几种。

一种硫化物电解质包覆的锂硅合金复合负极材料,由锂硅合金及包覆在外层的硫化物电解质组成,并采用前述硫化物电解质包覆的锂硅合金复合负极材料的制备方法制得。

本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知:

通过高能球磨混合硅粉末和锂金属颗粒制备锂硅合金,同时利用硫化物电解质原料进行包覆,实现全固态锂电池复合负极材料的制备,从而改善固态电解质和电极的界面阻抗,提高电极材料的比容量;相比于直接使用锂金属作为负极材料,锂硅合金复合负极材料具有更佳的电化学性能和安全性能。本发明方法操作简单,制备条件可控,可通过改变工艺参数而调控产物的性质性能,适合规模化生产。

具体实施方式

本发明揭示了一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

(1)在氩气气氛将硅粉末和锂金属颗粒加入球磨机球磨;球磨条件为球料比为10-200:1、球磨速度为100-400rpm、球磨时间为1-72h。

(2)将合成硫化物电解质的原料与锂硅合金在溶剂中混合、反应;合成硫化物电解质为li2s–sis2,li2s–ges2,li2s–p2s5中的一种或几种,溶剂为包括乙腈、四氢呋喃、乙二醇二甲醚和n-甲基甲酰胺中的一种或几种;合成硫化物电解质和锂硅合金的混合质量比为(99-70):(1-30),溶剂与复合电极材料的混合质量比为5-100:1;反应温度为40-300℃,反应时间为0.5-80h。

(3)将步骤(2)中的反应混合物进行减压、蒸馏、干燥、烧结,得到复合电极材料;烧结温度为60-800℃,烧结时间为0.5-100h,烧结气氛包括氩气、氮气和氦气中的一种或者几种。

(4)将步骤(3)中得到的复合电极材料利用磁控溅射设备将其溅射至固态硫化电解质上。

本发明还公开了一种硫化物电解质包覆的锂硅合金复合负极材料,由锂硅合金及包覆在外层的硫化物电解质组成,并采用前述一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法制得。

下面以多个实施例对本发明作进一步详细说明:

实施例1:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

第一步:将800mg硅粉末、800mg金属锂、氧化锆球分别加入氧化锆容器中。

第二步:保持球料比为50:1,球磨速度为200rpm,球磨时间为48h。

第三步:称取3.29g的lis和1.51g的p2s5电解质原料。

第四步:加入30ml乙腈溶剂混合锂硅合金和电解质原料。

第五步:将以上混合物密封在石英反应瓶中,在磁力搅拌器上加热60℃,反应20h。

第六步:反应结束后利用真空泵在50℃下减压蒸馏除去溶剂,然后放在70℃烘箱内干燥12h。

第七步:用研钵将干燥后的复合电极材料研磨成粉末状并转移至al2o3坩埚中,将坩埚放在马弗炉里,在氩气气氛下进行烧结,烧结温度为260℃,烧结时间为1h。

第八步:利用磁控溅射设备将复合电极溅射至固态硫化电解质上。

以磷酸铁锂为对电极,将所得复合物作为负极组装成电池并测试性能。充放电曲线图显示电流密度为100ma/g时首次放电比容量为335mah/g,首次库伦效率为86%,循环性能图显示循环200次后可逆容量保持率为85.9%,显示出优异的电化学性能。

实施例2:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

第一步:将500mg硅粉末、500mg金属锂和氧化锆球分别加入氧化锆容器中。

第二步:保持球料比为60:1,球磨速度为200rpm,球磨时间为36h。

第三步:称取2.29g的lis和1.01g的p2s5电解质原料。

第四步:加入20ml乙腈溶剂混合锂硅合金和电解质原料。

第五步:将以上混合物密封在石英反应瓶中,在磁力搅拌器上加热60℃,反应20h。

第六步:反应结束后利用真空泵在50℃下减压蒸馏除去溶剂,然后放在70℃烘箱内干燥12h。

第七步:用研钵将干燥后的复合电极材料研磨成粉末状并转移至al2o3坩埚中,将坩埚放在马弗炉里,在氩气气氛下进行烧结,烧结温度为260℃,烧结时间为1h。

第八步:利用磁控溅射设备将复合电极溅射至固态硫化电解质上。

以磷酸铁锂为对电极,将所得复合物作为负极组装成电池并测试性能。充放电曲线图显示电流密度为100ma/g时首次放电比容量为321mah/g,首次库伦效率为88%,循环性能图显示循环200次后可逆容量保持率为89%,显示出优异的电化学性能。

实施例3:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

第一步:将900mg硅粉末、900mg金属锂和氧化锆球分别加入氧化锆容器中。

第二步:保持球料比为50:1,球磨速度为200rpm,球磨时间为48h。

第三步:称取3.59g的lis和1.71g的p2s5电解质原料。

第四步:加入40ml乙腈溶剂混合锂硅合金和电解质原料。

第五步:将以上混合物密封在石英反应瓶中,在磁力搅拌器上加热60℃,反应20h。

第六步:反应结束后利用真空泵在50℃下减压蒸馏除去溶剂,然后放在70℃烘箱内干燥12h。

第七步:用研钵将干燥后的复合电极材料研磨成粉末状并转移至al2o3坩埚中,将坩埚放在马弗炉里,在氩气气氛下进行烧结,烧结温度为260℃,烧结时间为1h。

第八步:利用磁控溅射设备将复合电极溅射至固态硫化电解质上。

以磷酸铁锂为对电极,将所得复合物作为负极组装成电池并测试性能。充放电曲线图显示电流密度为100ma/g时首次放电比容量为342mah/g,首次库伦效率为82%,循环性能图显示循环200次后可逆容量保持率为82.8%,显示出优异的电化学性能。

实施例4:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

第一步:将1000mg硅粉末、1000mg金属锂和氧化锆球分别加入氧化锆容器中。

第二步:保持球料比为50:1,球磨速度为200rpm,球磨时间为48h。

第三步:称取4.09g的lis和1.91g的p2s5电解质原料。

第四步:加入50ml乙腈溶剂混合锂硅合金和电解质原料。

第五步:将以上混合物密封在石英反应瓶中,在磁力搅拌器上加热60℃,反应20h。

第六步:反应结束后利用真空泵在60℃下减压蒸馏除去溶剂,然后放在80℃烘箱内干燥12h。

第七步:用研钵将干燥后的复合电极材料研磨成粉末状并转移至al2o3坩埚中,将坩埚放在马弗炉里,在氩气气氛下进行烧结,烧结温度为260℃,烧结时间为1h。

第八步:利用磁控溅射设备将复合电极溅射至固态硫化电解质上。

以磷酸铁锂为对电极,将所得复合物作为负极组装成电池并测试性能。充放电曲线图显示电流密度为100ma/g时首次放电比容量为353mah/g,首次库伦效率为89%,循环性能图显示循环200次后可逆容量保持率为90.9%,显示出优异的电化学性能。

实施例5:

一种硫化物电解质包覆的锂硅合金复合负极材料的制备方法,包括有以下步骤:

第一步:将600mg硅粉末、600mg金属锂和氧化锆球分别加入氧化锆容器中。

第二步:保持球料比为50:1,球磨速度为200rpm,球磨时间为48h。

第三步:称取3.19g的lis和1.35g的p2s5电解质原料。

第四步:加入20ml乙腈溶剂混合锂硅合金和电解质原料。

第五步:将以上混合物密封在石英反应瓶中,在磁力搅拌器上加热60℃,反应20h。

第六步:反应结束后利用真空泵在50℃下减压蒸馏除去溶剂,然后放在80℃烘箱内干燥12h。

第七步:用研钵将干燥后的复合电极材料研磨成粉末状并转移至al2o3坩埚中,将坩埚放在马弗炉里,在氩气气氛下进行烧结,烧结温度为260℃,烧结时间为1h。

第八步:利用磁控溅射设备将复合电极溅射至固态硫化电解质上。

以磷酸铁锂为对电极,将所得复合物作为负极组装成电池并测试性能。充放电曲线图显示电流密度为100ma/g时首次放电比容量为325mah/g,首次库伦效率为84%,循环性能图显示循环200次后可逆容量保持率为86.6%,显示出优异的电化学性能。

本发明的设计重点在于:通过高能球磨混合硅粉末和锂金属颗粒制备锂硅合金,同时利用硫化物电解质原料进行包覆,实现全固态锂电池复合负极材料的制备,从而改善固态电解质和电极的界面阻抗,提高电极材料的比容量;相比于直接使用锂金属作为负极材料,锂硅合金复合负极材料具有更佳的电化学性能和安全性能。本发明方法操作简单,制备条件可控,可通过改变工艺参数而调控产物的性质性能,适合规模化生产。

以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1