一种双面电路晶元的制作方法

文档序号:15788797发布日期:2018-10-30 23:21阅读:411来源:国知局
一种双面电路晶元的制作方法

本实用新型涉及半导体领域晶元设计、制作、及封装加工,具体涉及一种双面电路晶元。



背景技术:

半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

晶元,是生产集成电路所用的载体,多指单晶硅圆片,还有砷化镓、碳化硅、氮化镓、磷化铟等化合物圆片。半导体制造工艺中,晶元通常为单面设计制造。但随着各类功能集成的需求越来越多越来越高,对晶体管集成密度要求也越来越高,越来越有挑战性。

半导体晶元设计和封装主要取决于晶元制程和封装加工能力,晶元单面设计通常为晶元基底单面增长电路,而封装加工取决晶元的设计结构。

采用各种方法来提高晶体管的集成密度,成为一个流行的课题,其中晶元的制作和封装工艺的提升也是解决该问题的一个方向。

本实用新型拟通过整合晶元制程和封装加工能力,选用晶元通孔工艺及侧面封装工艺可实现晶元单面电路设计变为双面设计加工制作。晶元设计阶段将传统单面电路,及焊盘位于周边,更改为双面电路晶元设计,并且双面焊盘位于晶元同一侧边缘位置,内部电路通过通孔工艺实现。从而实现晶元功能高集成度低密度设计制作。



技术实现要素:

为了改进半导体晶元设计、制造的工艺,缩小体积、降低成本、隔离干扰等目的,本实用新型拟提供一种双面电路晶元,根据晶元化合物或单晶硅等各类基底材质及制程能力应用于多种半导体功能器件相关领域,在晶元集成工艺能力不变状态下延伸电路设计面积,节省半导体材料耗用成本。

本实用新型提供一种双面电路晶元,其特征在于,包括载板、晶元,所述晶元包括基底、第一表面电路、第二表面电路、侧面、顶面、导通元件,其中:

所述载板与所述基底封装,用于承载所述晶元;

所述基底封装在所述载板上,是所述晶元的底面;

所述第一表面电路与所述基底相连,用于设计及制作晶元电路;

所述第二表面电路与所述基底相连,用于设计及制作晶元电路,所述第二表面电路与所述第一表面电路相对;

所述侧面与所述基底、所述第一表面电路、所述第二表面电路、所述顶面相连,用于安装所述导通元件;

所述顶面与所述第一表面电路、所述第二表面电路、所述侧面相连,是所述晶元的顶面;

所述导通元件安装在所述侧面,用于组成晶元电路。

进一步地,所述导通元件的金属端子,一端焊接在所述第一表面电路或第二表面电路上的焊盘上,另一端焊接在载板焊盘上,所述焊盘间距≥60um,焊盘长度≥50um。

进一步地,所述晶元的厚度为200um~300um;所述晶元的宽度为300um~500um;所述晶元的长度为750um~1000um。

进一步地,所述第一表面电路与所述第二表面电路之间通过通孔实现内联导通。

本实用新型取得了以下有益效果:

通过整合晶元制程和封装加工能力,使得晶元制造工艺上能够缩小一半有效面积,从而大幅度降低近原料成本;可以有效将单面设计中电路间干扰有效隔离;能够将封装贴片和焊线两道工艺流程简化为一道侧装流程,并且省去封装贴片胶和焊线材料使用,从而再次降低加工成本;侧装易焊性高于传统焊线易焊性,从而有效保持性能稳定。

附图说明

图1是本实用新型设计和封装整合示意图。

图2是本实用新型焊盘设计示意图。

图3是本实用新型晶元设计工艺示意图。

图4是本实用新型晶元封装工艺示意图。

具体实施方式

以下结合附图和实施例,对本实用新型的具体实施方式进行更加详细的说明,以便能够更好地理解本实用新型的方案以及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本实用新型的限制。本实用新型可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本实用新型的构思下进行各种修改与变更。另外,本实用新型的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。

一种双面电路晶元,如图3所示,图3是本实用新型晶元设计工艺示意图。包括载板1、晶元2,晶元2包括:基底21、第一表面电路22、第二表面电路23、第一侧面24、第二侧面25、顶面26、导通元件(未示出),其中:所述载板1与所述基底21封装,用于承载晶元2;所述基底21封装在所述载板1上,是晶元2的底面;所述第一表面电路22与基底21相连,用于设计及制作晶元电路;所述第二表面电路23与基底21相连,用于设计及制作晶元电路,所述第二表面电路23与所述第一表面电路22相对,通过通孔27实现内联导通;所述第一侧面24与所述基底21、所述第一表面电路22、所述第二表面电路23、所述顶面相连26,用于安装导通元件;所述第二侧面25与所述基底21、所述第一表面电路22、所述第二表面电路23、所述顶面26相连,用于安装导通元件;所述顶面26与所述第一表面电路22、所述第二表面电路23、所述第一侧面24、所述第二侧面25相连,是晶元2的顶面26;所述导通元件安装在所述第一侧面24、所述第二侧面25,用于组成晶元电路。

一种双面电路晶元设计及封装方法,如图1所示,图1是本实用新型设计和封装整合示意图。整体体现了从设计到晶元的安装到封装所涉及到的主要技术。其具体实施方式包括以下步骤。

步骤S1,将晶元按照双面电路进行设计并制作。

现有技术中,晶元设计为单面电路,且焊盘位于周边,本实用新型中晶元按照双面电路设计,并且双面焊盘位于晶元同一侧边缘位置,内部电路通过通孔工艺实现。从而实现晶元功能高集成度低密度设计制作。

如图2所示,图2是本实用新型焊盘设计示意图,所述晶元第一表面电路22和第二表面电路23的表面焊盘28设计在同侧,靠近一个侧面边缘布置,所述焊盘281、焊盘282之间的间距≥60um(微米),焊盘28长度≥50um,例如焊盘281和焊盘282所示,这样可以通过基板绿油开窗设计及涂覆非导电胶相互隔离,有效避免后续制程封装侧装的短路问题。

受限于当前封装侧装吸嘴大小,所述晶元2的厚度≥200um最佳,受限于晶元通孔工艺,所述晶元2的厚度≤300um最佳,考虑到晶元有效面积利用率,所述晶元2的宽度≥300um最佳,受限于侧装晶元抗模流冲击稳定性,所述晶元2的宽度≤500um最佳,随着技术提升,晶元通孔工艺瓶颈或将拓宽,封装工艺也进一步加强,届时将更适合大面积晶元产品。

因此,所述晶元2的厚度与宽度制作需满足如下所述:所述晶元2的宽度在300um~500um之间,所述晶元2的厚度在200um~300um,所述晶元2的长度可选750um~1000um之间。

所述双面电路加工时,优先选用双面同步加工工艺,以提高制作效率,但是也可以根据实际的功能需求差异选用分步单面加工工艺。

所述双面电路晶元制作方式包括以下步骤。

S11,单晶硅或化合物基底选用750um或675um厚度圆片,圆片尺寸分6寸、8寸、12寸。

S12,研磨晶元厚度到封装侧装标准;200um~300um。低于200um,封装侧装吸嘴真空开口过小,不易制作,通用吸嘴会有漏气问题不能吸取或吸牢晶粒。高于300um时晶粒过重,封装真空吸力不足,会有不能吸取或贴片前掉落问题,过厚也不利于封装集成空间设计;且基于部分基底材料需使用镭射切割晶粒,晶元厚度不易过厚,如砷化镓晶元,厚度300um时,需在双面切割道各镭射三次才能完成;镭射温度较高,同一位置停留时间越长,切割越深,热量越高,易烧坏晶元。

S13,电路加工可根据工艺差别,选择部分工艺双面电路同步制作,此时,需在电路制作前利用含氯或含氟气体干蚀出双面对位孔,利于双面电路制作位置校准。

S14,根据双面晶元功能及设计需要,通过业内成熟工艺如PN结、异质结、MOS场效应等晶体管结构方式,及常用氧化薄膜制备、扩散或离子注入掺杂、图形光刻制板、外延生长、金属化层沉淀互联等工艺加工内层电路。

S15,双面表层金属及钝化层制作,内部电路层、介质层、钝化层完成后,电镀表面金属层,如金、铝金属;电镀前需溅射钛层,利于金属与钝化层结合。

S16,如需双面电路内联,在晶元电路设计初始需预留通孔孔径及孔盘尺寸;通孔工艺通常在内层电路完成后加工,单晶硅基底常用含氟气体干蚀,化合物基底常用含氯气体干蚀。

S17,通孔后,晶元表面钝化层溅射一层含钛金属基,覆感光膜,通过曝光、显影、选择性蚀刻出顶层电路槽,露出含钛金属基,电镀表层金属金或铝元素,蚀刻残留感光膜及多余钛层。

S18,覆晶元表层钝化层,开窗钝化层露出金属焊盘;可有效保护晶元细窄电路损伤并防止电路氧化,此掩模为有机成分组成,具有亲油特性。

S19,切割晶粒,单晶硅基底晶元通常选用切割刀切割,晶粒间切割道宽度通常预留80um,部分含低介质层晶元会采用镭射激光和切割刀两种方式合作切割;化合物基底晶元通常选用镭射激光切割,切割道宽度通常为40um到60um之间,基底越厚镭射切割次数越多。

步骤S2,侧面安装导通元件,封装晶元及载板,包括以下步骤。

S21,依据晶元2的焊盘28的开窗位置及尺寸制作封装侧装的载板1,如印刷电路板、框架等,所述载板的焊盘11设计需与所述晶元2的焊盘28尺寸及间距一致。

如图4所示,图4是本实用新型晶元封装工艺示意图。所述导通元件的金属端子,一端焊接在所述第一表面电路22或第二表面电路23上的焊盘28上,另一端焊接在载板1的焊盘11上。

S22,所述晶元2的焊盘28与所述载板1的焊盘11可用导电胶烤箱加热烘烤固化焊接,将所述载板1与所述晶元2连接处的焊盘点导电胶,通过封装侧装设备将晶片旋转90度,安装在已点胶的载板焊盘11开窗表面,所述晶片贴片位置需使晶元焊盘28一侧贴于点取导电胶的对应位置,导电胶通过毛细管效应吸附,快速导通载板焊盘与晶元焊盘,传送至高温烤箱烘烤使导电胶固化。

S23,待与载板1导通且固化后,完成封装将得到终端元件产品。

在步骤S22中,还可选用锡料回流焊接,依据晶元焊盘28和载板焊盘11设计制作锡膏印刷网板,网板开窗尺寸与载板焊盘11开窗尺寸保持一致,通过钢网将锡膏3印刷在载板焊盘11,通过封装侧装设备将晶片旋转90度,安装在已印刷锡膏3的载板焊盘开窗表面,通过回流焊炉升温区及保温区使锡膏3液化,利用毛细管效应使载板焊盘11与所述晶元的焊盘28导通,侧装完成后传送到回流焊炉回流再固化,回流焊过程连接晶元焊盘28与载板焊盘11,使晶元2与载板1相互导通且固定晶元。在步骤S22中,所述晶片安装时,贴片位置需使晶元焊盘28一侧贴于印刷锡膏或导电胶点取对应位置。

需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1