一种太阳能电池的制作方法

文档序号:17134146发布日期:2019-03-19 20:36阅读:107来源:国知局
一种太阳能电池的制作方法

本实用新型涉及太阳能电池领域,特别涉及一种太阳能电池。



背景技术:

太阳能电池,是通过光电效应或者光化学效应直接把光能转化成电能的装置。

现有技术中,太阳能电池包括晶硅衬底、依次设置在晶硅衬底上的本征薄膜、掺杂硅基薄膜和电极。其中,掺杂硅基薄膜完整地沉积在本征非晶硅基薄膜上,覆盖本征薄膜。

设计人发现现有技术中至少存在以下问题:

掺杂硅基薄膜具有短波吸收的作用,当入射光照射太阳能电池时,掺杂硅基薄膜会吸收一部分短波(波长为300-600nm),而阻碍外量子效率(EQE)的提升,进而限制了电池效率的提高。



技术实现要素:

本实用新型提供了一种太阳能电池,可解决上述技术问题。

具体而言,包括以下的技术方案:

一方面,本实用新型提供了一种太阳能电池,所述太阳能电池包括:

晶硅衬底;

依次设置在所述晶硅衬底的至少一面上的本征薄膜层、掺杂硅基薄膜层、透明导电层和电极;

所述掺杂硅基薄膜层的面积小于所述本征薄膜层的面积。

在一种可能的设计中,所述本征薄膜层上未覆盖掺杂硅基薄膜层的区域填充有透明导电层。

在一种可能的设计中,所述掺杂硅基薄膜层包括至少两个掺杂硅基薄膜单元,且所述至少两个掺杂硅基薄膜单元不连续。

在一种可能的设计中,在所述至少两个掺杂硅基薄膜单元不连续的区域上填充有透明导电层。

在一种可能的设计中,所述掺杂硅基薄膜单元呈条状。

在一种可能的设计中,所述掺杂硅基薄膜层包括镂空区。

在一种可能的设计中,所述镂空区填充有透明导电层。

在一种可能的设计中,所述掺杂硅基薄膜层为n型掺杂层或p型掺杂层。

在一种可能的设计中,所述晶硅衬底为n型单晶硅片或p型单晶硅片;和/ 或所述本征薄膜层包括本征非晶硅薄膜;和/或所述透明导电层包括透明导电氧化物层;和/或所述电极包括银栅和/或铜电极。

在一种可能的设计中,在所述晶硅衬底的不同面上的所述掺杂硅基薄膜层的导电类型不同。

本实用新型实施例提供的技术方案带来的有益效果至少包括:

本实用新型实施例提供的太阳能电池,通过设置掺杂硅基薄膜层的面积小于本征薄膜层的面积,使得部分入射光可透过透明导电层和本征薄膜层直接进入晶硅衬底,而不经过掺杂硅基薄膜层,减少了掺杂硅基薄膜层对短波光的吸收损耗,从而促进电池效率的提高。

附图说明

为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本实用新型实施例提供的一种太阳能电池的结构示意图;

图2为本实用新型实施例提供的另一种太阳能电池的结构示意图;

图3为本实用新型实施例提供的另一种太阳能电池的结构示意图;

图4为图3基础上的一种太阳能电池的结构示意图;

图5为图3基础上的另一种太阳能电池的结构示意图;

图6为图3的太阳能电池的制备流程示意图;

图7为图4的太阳能电池的制备流程示意图;

图8为图5的太阳能电池的制备流程示意图。

图中的附图标记分别表示:

1-晶硅衬底;

2-本征薄膜层;

3-掺杂硅基薄膜层;

4-透明导电层;

5-电极;

6-保护层。

具体实施方式

为使本实用新型的技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地详细描述。除非另有定义,本实用新型实施例所用的所有技术术语均具有与本领域技术人员通常理解的相同的含义。

本实用新型实施例提供了一种太阳能电池,如图1所示,该太阳能电池包括:晶硅衬底1;

依次设置在晶硅衬底1的至少一面上的本征薄膜层2、掺杂硅基薄膜层3、透明导电层4和电极5;

掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

可以理解的是,本征薄膜层2、掺杂硅基薄膜层3、透明导电层4依次层叠在晶硅衬底1的至少一面上,电极5设置在透明导电层4上。

当入射光照射该太阳能电池时,由于掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,部分入射光可透过透明导电层4和本征薄膜层2直接进入晶硅衬底 1,当入射光射到晶硅衬底1和掺杂硅基薄膜层3形成的PN结上时,产生载流子,载流子通过本征薄膜层2和掺杂硅基薄膜层3被收集在透明导电层4中,然后再由电极5导出。其中,本征薄膜层2用于钝化晶硅衬底1表面缺陷。

本实用新型实施例提供的太阳能电池,通过设置掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,使得部分入射光可透过透明导电层4和本征薄膜层2直接进入晶硅衬底1,而不经过掺杂硅基薄膜层3,减少了掺杂硅基薄膜层3对入射光中短波光的吸收损耗,从而促进电池效率的提高。

在上述的太阳能电池中,掺杂硅基薄膜层3层叠在本征薄膜层2上,且掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,可以理解的是,本征薄膜层2上具有未被掺杂硅基薄膜层3覆盖的区域,也就是说,掺杂硅基薄膜层3所在的层上可存在空白区,部分入射光可透过该空白区进入晶硅衬底1。

其中,本征薄膜层2上未被掺杂硅基薄膜层3覆盖的区域可以为空白区,也可以填充为其他材料。考虑到该太阳能电池制备时的方便性,可使该本征薄膜层2上未覆盖掺杂硅基薄膜层3的区域填充有透明导电层4。透明导电层4可允许入射光顺利通过,而不会造成对短波光的吸收损耗。

在上述的太阳能电池中,使掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,可通过多种方式来实现。

在一种可能的实施方式中,如图1所示,可通过缩减掺杂硅基薄膜层3的四周面积,在掺杂硅基薄膜层3的四周形成空白区,来使得掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

进一步地,可在掺杂硅基薄膜层3的四周对应本征薄膜层2的空白区处填充透明导电层4。

应用时,部分入射光可透过透明导电层4,通过掺杂硅基薄膜层3的四周的空白区,直接经本征薄膜层2进入晶硅衬底1,使这部分光不经过掺杂硅基薄膜层3,减少了掺杂硅基薄膜层3对入射光中短波光的吸收损耗,从而促进电池效率的提高。

在另一种可能的实施方式中,如图2所示,可使掺杂硅基薄膜层3包括镂空区。即,可在掺杂硅基薄膜层3的内部设置空白区,使掺杂硅基薄膜层3形成具有镂空区的连续薄膜,来使得掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,技术人员可根据需要设置该镂空区的形状。示例地,该镂空区可以为位于掺杂硅基薄膜层3的内部的空白矩形或空白圆形(如图2所示)。

进一步地,可在镂空区填充有透明导电层4。

应用时,部分入射光可透过透明导电层4,通过掺杂硅基薄膜层3上的镂空区,直接经本征薄膜层2进入晶硅衬底1,使这部分光不经过掺杂硅基薄膜层3,减少了掺杂硅基薄膜层3对入射光中短波光的吸收损耗,从而促进电池效率的提高。

在又一种可能的实施方式中,如图3所示,还可使掺杂硅基薄膜层3包括至少两个掺杂硅基薄膜单元,且该至少两个掺杂硅基薄膜单元不连续。也就是说,通过使相邻两个掺杂硅基薄膜单元之间具有间隙,来使得掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,技术人员可根据需要设置掺杂硅基薄膜单元的形状,示例地,可使掺杂硅基薄膜单元为大小不同的方环状或圆环状,多个方环状或多个圆环状掺杂硅基薄膜单元套设在一起构成掺杂硅基薄膜层3。另外,考虑到制备工艺的便捷性,还可使掺杂硅基薄膜单元呈条状(如图3所示),示例地,可以为直条状,或者弧形条状等。如此设置,不仅便于工艺制备,还有便于后续设置电极5以收集载流子。

进一步地,可在至少两个掺杂硅基薄膜单元不连续的区域上填充有透明导电层4。

应用时,部分入射光可透过透明导电层4,通过相邻两个掺杂硅基薄膜单元之间的间隙,直接经本征薄膜层2直接进入晶硅衬底1,使这部分光不经过掺杂硅基薄膜层3,减少了掺杂硅基薄膜层3对入射光中短波光的吸收损耗,从而促进电池效率的提高。

在上述的太阳能电池中,为了便于收集和引出载流子,可使电极5与掺杂硅基薄膜层3对应。

应用时,透明导电层4形成在掺杂硅基薄膜层3上,并覆盖本征薄膜层2上未覆盖掺杂硅基薄膜层3的区域,电极5形成在透明导电层4上,使电极5位于掺杂硅基薄膜层3的上方,与掺杂硅基薄膜层3对应。在一种可能的实施方式中,可使电极5与掺杂硅基薄膜单元一一对应。

在上述的太阳能电池中,掺杂硅基薄膜层3可形成在晶硅衬底1的一面上,也可以形成在晶硅衬底1的两面上。其中,杂硅基薄膜层3与晶硅衬底1之间形成PN结,晶硅衬底1可以为p型单晶硅片或n型单晶硅片,相应地,掺杂硅基薄膜层3可以为n型掺杂层或p型掺杂层。以下对上述所涵盖的太阳能电池进行示例性说明。

在一种可能的实施方式中,如图1-3所示,该太阳能电池包括:晶硅衬底1;

依次设置在晶硅衬底1的一面上的本征薄膜层2、掺杂硅基薄膜层3、透明导电层4和电极5;掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,当晶硅衬底1选为p型单晶硅片时,掺杂硅基薄膜层3可为n型掺杂层;当晶硅衬底1选为n型单晶硅片时,掺杂硅基薄膜层3可为p型掺杂层。

应用时,将掺杂硅基薄膜层3的一面作为受光面,由于掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,部分入射光可透过透明导电层4和本征薄膜层2 直接进入晶硅衬底1,而不经过掺杂硅基薄膜层3,从而可减少掺杂硅基薄膜层3 对入射光中短波光的吸收损耗,促进电池效率的提高。

需要说明的是:图1-图3中仅展示了太阳能电池的第一面的结构示意图,与第一面相对的第二面的结构并未展示;图1-图3中的太阳能电池第二面上的结构可为现有技术,也可与第一面的结构相同。

在另一种可能的实施方式中,如图4所示,该太阳能电池包括:晶硅衬底1;

依次设置在晶硅衬底1的两面上的本征薄膜层2、掺杂硅基薄膜层3、透明导电层4和电极5;掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,晶硅衬底1可以为p型单晶硅片或n型单晶硅片,且形成在晶硅衬底 1的不同面上掺杂硅基薄膜层3的导电类型不同,即,在晶硅衬底1的一面上形成n型掺杂层,在晶硅衬底1的相对的另一面上形成p型掺杂层。

应用时,将掺杂硅基薄膜层3中的任意一面作为受光面(相对的另一面为背光面),由于掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,部分入射光可透过位于电池两侧的透明导电层4和本征薄膜层2直接进入晶硅衬底1,而不经过掺杂硅基薄膜层3,从而可减少掺杂硅基薄膜层3对入射光中短波光的吸收损耗,促进电池效率的提高。如此设置,可同时减少电池受光面和背光面的光吸收损失,提高电池效率。

实际上,考虑到太阳能电池在背光面接触到的入射光较少,为了节省工艺,节约制备成本,还可对位于背光面的掺杂硅基薄膜层3不进行处理,即,如图5 所示,使位于背光面的掺杂硅基薄膜层3的面积与本征薄膜层2的面积相同,仅使位于受光面上的掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,掺杂硅基薄膜层3可选自a-Si:H、a-SiOx:H、μc-SiOx:H等中的任一种,优选为a-Si:H。

另外,本征薄膜层2可包括本征非晶硅薄膜。示例地,本征薄膜层2可选自非晶硅膜(a-Si:H)或非晶硅氧合金薄膜(a-SiOx:H)等。

另外,透明导电层4可包括透明导电氧化物层,示例地,透明导电层4可选自ITO薄膜(掺锡的氧化铟透明导电膜)、IWO薄膜(掺钨的氧化铟透明导电膜) 或者ICO薄膜(掺铯的氧化铟透明导电膜)等。

另外,电极5可包括银栅和/或铜电极。

与现有的太阳能电池相比,本实用新型提供的太阳能电池,可明显提升电池在整个波段的光学响应,特别是在短波300-600nm范围内,使电池短波电流密度提升0.5mA/cm2以上,从而提升了电池效率。

在实际应用中,可采用多种方法制备上述太阳能电池,示例如下:

制备上述太阳能电池的方法可包括:

步骤101、在晶硅衬底1的至少一面上形成本征薄膜层2;

步骤102、在本征薄膜层2上形成面积小于本征薄膜层2的掺杂硅基薄膜层 3;

步骤103、在掺杂硅基薄膜层3上形成透明导电层4;

步骤104、在透明导电层4上形成电极5。

采用该制备方法能够得到掺杂硅基薄膜层3的面积小于本征薄膜层2的面积的太阳能电池,该太阳能电池使得部分入射光可透过透明导电层4和本征薄膜层 2直接进入晶硅衬底1,而不经过掺杂硅基薄膜层3,减少了掺杂硅基薄膜层3对入射光中短波光的吸收损耗,促进电池效率的提高;且该制备方法简单,便于生产。

对于步骤101而言,可通过化学气相沉积法(例如,PECVD沉积法)在晶硅衬底1的至少一面上沉积形成本征薄膜层2,其中,晶硅衬底1可选用n型单晶硅片或p型单晶硅片,优选地,选用n型单晶硅片作为晶硅衬底1,且可使n 型单晶硅片的厚度为90-300μm,电阻率1-12Ωcm。本征薄膜层2可选自非晶硅膜(a-Si:H)或非晶硅氧合金薄膜(a-SiOx:H),且本征薄膜层2的厚度可以为3-15nm。

另外,可以理解的是,在沉积本征薄膜层2之前,可对晶硅衬底1进行损伤层、碱制绒、RCA清洗等处理,以在硅片表面形成金字塔尺寸,减少电池表面光的反射损失,并去除硅片表面的有机物、颗粒和金属离子等污染。

对于步骤102而言,可首先在本征薄膜层2上沉积掺杂硅基薄膜层3。

在上述的制备方法中,掺杂硅基薄膜层3可沉积在晶硅衬底1的一面上,也可以沉积在晶硅衬底1的两面上。当掺杂硅基薄膜层3沉积在晶硅衬底1的一面上时,掺杂硅基薄膜层3可基于晶硅衬底1的类型,选择为n型掺杂硅基薄膜或 p型掺杂硅基薄膜,以与晶硅衬底1形成PN结;而当掺杂硅基薄膜层3沉积在晶硅衬底1的两面上时,可在晶硅衬底1的一面上沉积n型掺杂层,在晶硅衬底 1的相对的另一面上沉积p型掺杂层。

其中,掺杂硅基薄膜层3可选自a-Si:H、a-SiOx:H、μc-SiOx:H等中的任一种,且当掺杂硅基薄膜层3为n型掺杂硅基薄膜时,其厚度可以为4-20nm,当为p 型掺杂硅基薄膜时,其厚度可以为5-30nm。

然后再使掺杂硅基薄膜层3的面积小于本征薄膜层2的面积,该过程可通过多种方式实现。

在一种可能的实施方式中,可采用激光法或光刻法刻蚀掺杂硅基薄膜层3,使掺杂硅基薄膜层3上形成空白区,从而使得所形成的掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

在另一种可能的实施方式中,也可通过设置掩膜来实现:

示例地,可在掺杂硅基薄膜层3上设置保护层6,在保护层6上设置图案;

去除图案内的掺杂硅基薄膜层3;

去除保护层6。

其中,保护层6可以为SiOx薄膜,可以理解的是,在保护层6上设置图案即是去除所设置的图案内的保护层6,暴露出掺杂硅基薄膜层3。

制备时,可根据实际需要,在晶硅衬底1的一面或两面上的掺杂硅基薄膜层 3的上沉积保护层6,然后采用激光划刻的方法在保护层6上刻划出所需要的图案;再采用化学刻蚀法,将晶硅衬底1上设置有保护层6的面浸入第一刻蚀溶液 (例如碱溶液和去离子水)中,去除图案内(也即是未被保护层6掩盖)的掺杂硅基薄膜层3,再将该面浸入第二刻蚀溶液(例如HF溶液)中,除去保护层6,从而可使所形成的掺杂硅基薄膜层3的面积小于本征薄膜层2的面积。

其中,SiOx薄膜的沉积温度可以为180-240℃,射频功率为13.56MHz或者 40MHz,功率密度为0.03W/cm2-25W/cm2,另外,CO2/SiH4=0.5-10,H2/SiH4=1-1000。

在保护层6上所刻划的图案可以将保护层6分割成彼此连续或者不连续的保护单元。相应地,在保护层6的掩膜作用下,所形成的掺杂硅基薄膜层3可以为连续薄膜,也可以为不连续薄膜。

示例地,该图案可以为位于保护层6的中部的矩形或圆形,如此设置,可使掺杂硅基薄膜层3形成具有镂空区的连续薄膜;该图案也可以为位于保护层6上、且贯穿保护层6的多个长条形,或者为位于保护层6上的多个大小不等的长框形或圆环形,如此设置,可使掺杂硅基薄膜层3形成为具有多个掺杂硅基薄膜单元的不连续薄膜。

对于步骤103而言,可通过化学气相沉积法在掺杂硅基薄膜层3上沉积形成透明导电层4,其中,透明电极层4可以为透明导电氧化物层,如ITO薄膜、IWO 薄膜或者ICO薄膜等,且透明导电层4的厚度可以为70-80nm。

考虑到实际制备的方便性,可使该制备方法进一步包括:在本征薄膜层2上未覆盖掺杂硅基薄膜层3的区域形成透明导电层4。透明导电层4可允许入射光顺利通过,而不会造成对短波的吸收损耗。

制备时,当在掺杂硅基薄膜层3上沉积透明导电层4时,透明导电层4同样形成在本征薄膜层2上未覆盖掺杂硅基薄膜层3的区域上,并填充该区域。

对于步骤104而言,在导电层4上制备电极5,可包括:

在透明导电层4上形成银栅和/或铜电极。

制备时,可通过丝网印刷在透明电极层4上印刷银栅;和/或通过电镀在透明电极层4上制备铜电极。银栅和/或铜电极作为电极5。

为了更清楚地说明上述制备方法,以下示例性地对图3-图5所示的太阳能电池的制备流程进行说明。

图3为掺杂硅基薄膜层3沉积在晶硅衬底1的一面上的太阳能电池,其制备流程如图6所示,可包括以下步骤:

在晶硅衬底1的一面上沉积本征薄膜层2,并在本征薄膜层2上沉积掺杂硅基薄膜层3;

在掺杂硅基薄膜层3上沉积保护层6,并在保护层6上刻划出多个不连续的长条形图案,使保护层6形成多个不连续的条状保护单元,同时暴露出掺杂硅基薄膜层3;

采用单面刻蚀的方法,将具有保护层6的一面浸入第一刻蚀溶液中,去除暴露出(未被保护层6掩盖)的掺杂硅基薄膜层3;

再将该面浸入第二刻蚀溶液中,去除保护层6;

在掺杂硅基薄膜层3上沉积透明导电层4,所沉积的透明导电层4填充本征薄膜层2上未被掺杂硅基薄膜层3覆盖的区域;

通过丝网印刷或者电镀的方式在透明导电层4上制备电极5,即可得到如图 3所示的太阳能电池。

图4为掺杂硅基薄膜层3沉积在晶硅衬底1的两面上的太阳能电池,其制备流程如图7所示,可包括以下步骤:

在晶硅衬底1的两面上分别沉积本征薄膜层2,并在本征薄膜层2上分别沉积掺杂硅基薄膜层3,其中,一面为n型掺杂层,相对的另一面为p型掺杂层;

在掺杂硅基薄膜层3上分别沉积保护层6,并在保护层6上刻划出多个不连续的长条形图案,使保护层6形成多个不连续的条状保护单元,同时暴露出掺杂硅基薄膜层3;

采用刻蚀的方法,将晶硅衬底1的两面分别浸入第一刻蚀溶液中,去除暴露出(未被保护层6掩盖)的掺杂硅基薄膜层3;

再将该两面分别浸入第二刻蚀溶液中,去除保护层6;

在掺杂硅基薄膜层3上分别沉积透明导电层4,所沉积的透明导电层4填充本征薄膜层2上未被掺杂硅基薄膜层3覆盖的区域;

通过丝网印刷或者电镀的方式在透明导电层4上分别制备电极5,即可得到如图4所示的太阳能电池。

考虑到太阳能电池在背光面接触到的入射光较少,为了节省工艺,节约制备成本,可对位于背光面的掺杂硅基薄膜层3不进行处理,如图5所示的太阳能电池,其制备流程如图8所示,可包括以下步骤:

在晶硅衬底1的两面上分别沉积本征薄膜层2,并在本征薄膜层2上分别沉积掺杂硅基薄膜层3,其中,一面为n型掺杂层,相对的另一面为p型掺杂层;

在其中一面的掺杂硅基薄膜层3上沉积保护层6,并在保护层6上刻划出多个不连续的长条形图案,使保护层6形成多个不连续的条状保护单元,同时暴露出掺杂硅基薄膜层3;

采用单面刻蚀的方法,将具有保护层6的一面浸入第一刻蚀溶液中,去除暴露出(未被保护层6掩盖)的掺杂硅基薄膜层3;

然后将该面浸入第二刻蚀溶液中,去除保护层6;

在掺杂硅基薄膜层3上沉积透明导电层4,所沉积的透明导电层4填充本征薄膜层2上未被掺杂硅基薄膜层3覆盖的区域;

通过丝网印刷或者电镀的方式在透明导电层4上制备电极5,即可得到如图 5所示的太阳能电池。

与现有的太阳能电池相比,采用上述制备方法制备得到的太阳能电池,可明显提升电池在整个波段的光学响应,特别是在短波300-600nm范围内,使电池短波电流密度提升0.5mA/cm2以上,从而提升电池效率。

可以理解的是,对于本实用新型实施例中所涉及的SiOx,x可以为1-2。

以上所述仅是为了便于本领域的技术人员理解本实用新型的技术方案,并不用以限制本实用新型。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1