倒装芯片、面光源及采用该面光源的显示装置的制作方法

文档序号:17746514发布日期:2019-05-24 20:40阅读:189来源:国知局
倒装芯片、面光源及采用该面光源的显示装置的制作方法

本实用新型涉及显示装置等领域,具体涉及一种倒装芯片、面光源及采用该面光源的显示装置。



背景技术:

随着科技的不断发展,人们与电子设备的接触越来越频繁,对显示装置(或称显示屏)的要求也不断的变高。miniLED显示装置作为未来市场OLED显示装置(有机电致发光二极管显示装置)的强有力竞争产品,MiniLED显示装置具有高亮、柔性可弯曲、可制作高动态对比度显示技术、窄边框显示技术、异形显示技术等诸多优点,已成为市场研究热点。

然而,目前miniLED显示装置在出光效率、混光均匀性、成本、模组厚度等方面与常规产品背光及OLED显示装置相比还有一些差距。就光效而言,miniLED显示装置采用柔性电路板(Flexible Printed Circuit简称FPC)或印制电路板(Printed Circuit Board,简称PCB)作为基板的直下式背光架构,由于材料的折射率差异,导致面光源一部分光线在光学膜片和基板之间被限制而无法出射,光线在光学膜片之间经多次折射和反射,导致光能的损失和光效的下降。即使在microLED显示装置或miniLED显示装置中采用一些功能性的膜片架构,也只能保证microLED显示装置或miniLED显示装置在正视方向的出光亮度,而在大视角方向上,仍无法满足高出光效率的要求。对于该问题,目前暂未有较好的解决方式。



技术实现要素:

本实用新型所要解决的技术问题是,提供一种倒装芯片、面光源及采用该面光源的显示装置,其通过加入金属线栅层和旋光物质层,使芯片出射光线具有线偏振光特性,并结合带通滤波膜系结构,保证面光源在更大视角范围内的有较高的出光效率,扩大面光源的可视角范围。

为了解决上述技术问题,本实用新型提供了一种倒装芯片,包括金属栅层,具有若干相互平行排列的金属线;晶片衬底,设于所述金属栅层的下方;N掺杂层及负极导线,均设于所述晶片衬底的下方;量子阱层,设于所述N掺杂层的下方;P掺杂层,设于所述量子阱层的下方;旋光物质层,设于所述P掺杂层的下方;反射层,设于所述旋光物质层的下方;正极导线,设于所述反射层的下方。

在本实用新型一实施例中,所述倒装芯片为蓝光倒装芯片、红光倒装芯片和绿光倒装芯片中的一种。

在本实用新型一实施例中,相对于所述晶片衬底,所述金属线在所述蓝光倒装芯片中的排列方向垂直于所述金属线在所述红光倒装芯片中的排列方向,或所述金属线在所述蓝光倒装芯片中的排列方向垂直于所述金属线在所述绿光倒装芯片中的排列方向。

在本实用新型一实施例中,所述金属线为纳米线;所述金属线选用银纳米线、铜纳米线、镍纳米线、钴纳米线、铝纳米线和氧化铝纳米线中的一种。

在本实用新型一实施例中,相邻所述金属线之间的间距为50nm-200nm。

在本实用新型一实施例中,所述金属栅层的厚度为50nm-100nm。

本实用新型还提供了一种面光源,包括基板;芯片层,其中具有所述的倒装芯片,所述倒装芯片之间具有间隙;带通滤光膜,溅镀于所述基板上且位于所述间隙中;光学膜片层,设于所述芯片层上。

在本实用新型一实施例中,所述芯片层中分布有若干蓝光倒装芯片、红光倒装芯片以及绿光倒装芯片。

在本实用新型一实施例中,所述蓝光倒装芯片中的金属线排列方向垂直于所述红光倒装芯片或绿光倒装芯片中的金属线排列方向。

本实用新型还提供了一种采用该面光源的显示装置,包括有所述面光源,以及一位于所述面光源上方的显示面板。

本实用新型的有益效果是:本实用新型的倒装芯片、面光源及及采用该面光源的显示装置,通过在倒装芯片中加入金属栅层和旋光物质层,保证倒装芯片能够高效出射线偏振光,如P偏振光或S偏振光,通过优化带通滤波膜结构,有效提升了面光源在大角度方向的出光效率,扩大了面光源的可视角范围。

附图说明

下面结合附图和实施例对本实用新型作进一步解释。

图1是本实用新型一实施例的蓝光倒装芯片层状结构图。

图2是本实用新型一实施例的红光倒装芯片或者绿光倒装芯片的层状结构图。

图3是本实用新型一实施例的面光源层状结构图。

图4是本实用新型一实施例的面光源中带通滤光膜的带通滤光示意图。

图5是本实用新型一实施例的光线透过率频谱。

图6是本实用新型一实施例的显示装置的示意图。

附图标记:

10面光源;

1基板; 2芯片层;

3荧光膜; 4带通滤光膜;

5光学膜片层;

51扩散片; 52增亮膜;

20倒装芯片; 210蓝光倒装芯片;

220红光倒装芯片; 230绿光倒装芯片;

201金属栅层; 202晶片衬底;

203N掺杂层; 204量子阱层;

205P掺杂层; 206旋光物质层;

207反射层; 208负极导线;

209正极导线; 2011金属线;

100显示装置; 30显示面板;

601第一曲线; 602第二曲线;

603第三曲线。

具体实施方式

以下实施例的说明是参考附加的图式,用以例示本实用新型可用以实施的特定实施例。本实用新型所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本实用新型,而非用以限制本实用新型。

如图1、图2所示,在其中一实施例中,本实用新型的倒装芯片20,根据面光源的光线基色设计要求,本实施例中,所述倒装芯片20为蓝光倒装芯片210、红光倒装芯片220和绿光倒装芯片230中的一种。其中图1为本实用新型一实施例的蓝光倒装芯片210的层状结构图,而图2为本实用新型一实施例的红光倒装芯片220或者绿光倒装芯片230的层状结构图。

如图1、图2所示,每一所述倒装芯片20从上至下依次包括金属栅层201、晶片衬底202、N掺杂层203、量子阱层204、P掺杂层205、旋光物质层206、以及反射层207。所述倒装芯片20还包括有负极导线208以及正极导线209,其中所述负极导线208设于所述晶片衬底202的下方,所述正极导线209设于所述反射层207的下方。

所述金属栅层201具有若干金属线2011;所述金属线2011相互平行排列并分布在所述晶片衬底202上形成金属栅层201。根据芯片设计要求,一般所述金属栅层201的厚度为50nm-100nm。相邻所述金属线2011之间的间距为50nm-200nm。所述金属线2011为纳米线;本实施例中,所述纳米线选用银纳米线、铜纳米线、镍纳米线、钴纳米线、铝纳米线和氧化铝纳米线中的一种。

相对于所述晶片衬底202,在不同基色的倒装芯片20中,所述金属线2011在晶片衬底202上的排布方向也不同。本实施例中,同时参见图1和图2,所述金属线2011在所述蓝光倒装芯片210中的排列方向垂直于所述金属线2011在所述红光倒装芯片220中的排列方向,或所述金属线2011在所述蓝光倒装芯片210中的排列方向垂直于所述金属线2011在所述绿光倒装芯片230中的排列方向。

所述晶片衬底202设于所述金属栅层201的下方。本实施例中,所述晶片衬底202选用蓝宝石衬底。

所述N掺杂层203设于所述晶片衬底202的下方。所述量子阱层204设于所述N掺杂层203的下方;所述P掺杂层205设于所述量子阱层204的下方;

所述旋光物质层206设于所述P掺杂层205的下方。光线通过旋光物质层206后,其振动面将以光的传播方向为轴线转过一定的角度。一般情况下,凡能使线偏振光通过后将其振动面旋转一定角度的物质,称作旋光性物质。本实施例中,所述旋光物质层206中的旋光物质可为液晶材料、云母(石英石)或有机小分子旋光材料。

所述反射层207设于所述旋光物质层206的下方;所述正极导线209设于所述反射层207的下方,所述负极导线208设于所述晶片衬底202的下方。

以所述蓝光倒装芯片210为例,对所述量子阱层204发出的出射光的光路进行说明:所述量子阱层204的出射光为近似自然光的非偏振光,非偏振光经所述金属栅层201后,所述金属栅层201可看似一偏振分光单元,非偏振光被分为首级的第一偏振光和第二偏振光;如第一偏振光为P偏振光,第二偏振光为S偏振光,此时,只有第一偏振光可以透过所述金属栅层201,第二偏振光不能透过所述金属栅层201而被反射回来;当被反射回的第二偏振光在经过所述旋光物质层206时,其偏振方向发生改变,并再次进入所述金属栅层201,此时,进入所述金属栅层201的第二偏振光被分成又被分为下一级的第一偏振光和第二偏振光,同样的,只有该级的第一偏振光可以透过所述金属栅层201,而该级的第二偏振光被反射回来,如此多次往复,所述旋光物质层206逐级将第二偏振光完全转变成第一偏振光从所述金属栅层201透出,从而有效提高从所述量子阱层204发出的出射光的透出率。

以所述红光倒装芯片220为例,对所述量子阱层204发出的出射光的光路进行说明:由于所述金属线2011在所述蓝光倒装芯片210中的排列方向垂直于所述金属线2011在所述红光倒装芯片220中的排列方向,因此,所述量子阱层204的出射光为近似自然光的非偏振光,非偏振光经所述金属栅层201后,所述金属栅层201可看似一偏振分光单元,非偏振光被分为首级的第二偏振光和第一偏振光;此时,只有第二偏振光可以透过所述金属栅层201,第一偏振光不能透过所述金属栅层201而被反射回来;当被反射回的第一偏振光在经过所述旋光物质层206时,其偏振方向发生改变,并再次进入所述金属栅层201,此时,进入所述金属栅层201的第一偏振光被分成又被分为下一级的第二偏振光和第一偏振光,同样的,只有该级的第二偏振光可以透过所述金属栅层201,而该级的第一偏振光被反射回来,如此多次往复,所述旋光物质层206逐级将第一偏振光完全转变成第二偏振光从所述金属栅层201透出,从而有效提高从所述量子阱层204发出的出射光的透出率。

由于所述金属线2011在所述蓝光倒装芯片210中的排列方向同样垂直于所述金属线2011在所述绿光倒装芯片230中的排列方向;因此,在所述绿光倒装芯片230中,其出射光的光路可参照所述红光倒装芯片220的示例,对此不再一一赘述。

如图3所示,为了利用上述实施例中的所述倒装芯片20,完整的实现其在面光源中能够更大视角范围内的提高的出光效率,扩大面光源的可视角范围,本实用新型还公开了一种面光源10,其包括基板1、芯片层2、带通滤光膜4以及光学膜片层5。

所述基板1可以是FPC基板或PCB基板。在本实施例中,所述基板1为FPC柔性基板。

所述芯片层2中具有若干所述倒装芯片20,所述倒装芯片20之间具有间隙。所述芯片层2中分布有若干蓝光倒装芯片210、红光倒装芯片220以及绿光倒装芯片230。所述蓝光倒装芯片210、红光倒装芯片220以及绿光倒装芯片230之间分别依次间隔排列。如其排列顺序依次为蓝光倒装芯片210、红光倒装芯片220、绿光倒装芯片230,如此循环,形成阵列矩阵。在所述芯片层2中,所述蓝光倒装芯片210中的金属线2011排列方向垂直于所述红光倒装芯片220或绿光倒装芯片230中的金属线2011排列方向。

所述带通滤光膜4是采用低温镀膜工艺制备而成。更具体地讲,所述带通滤光膜4是通过将带通滤光材料低温溅镀于一荧光膜表面上而形成的。所述带通滤光膜4位于所述倒装芯片20之间的所述间隙中。所述带通滤光材料成膜在面光源上,且所述倒装芯片20上方未被所述带通滤光膜4覆盖。

所述光学膜片层5是配置于所述倒装芯片20上,本实施例中,所述光学膜片包括扩散片51、增亮膜52。扩散片51设于所述芯片层2上;所述增亮膜52设于所述扩散片51上。

图4为正视方向上所述带通滤光膜4的带通滤光示意图,从所述倒装芯片20发出的光在经过上层的所述扩散片51后,部分反射光进入到所述带通滤光膜4,所述带通滤光膜4对长波长的红光和绿光实现全反射,从而提升了红光和绿光利用率。

如图5所示,图5中的第一曲线601为所述带通滤波膜在正视方向上,具体透过率频谱。倘若面光源的芯片采用常规结构芯片,则在大角度方向上,一般的带通滤波膜未能达到理想的蓝光高透过、红绿光高反射效果,但若对芯片的出光偏振态进行改进,搭配合适的带通滤光膜4系结构,即可在大角度范围内实现较好的出光效率。图5中的第二曲线602为在70°视角时P偏振光透过率频谱,第三曲线603为70°视角时S偏振光透过率频谱。本实施例中,若所述面光源采用如图1所示的蓝色倒装芯片,即可实现所述蓝色倒装芯片中蓝光的P偏振光出射,若所述面光源采用如图2所示的所述红色倒装芯片或所述绿色倒装芯片,可实现所述红色倒装芯片中红光的S偏振光出射或所述绿色倒装芯片中绿光的S偏振光出射,从而保证在大角度范围内蓝光的高透过率和红绿光的高反射率。

如图6所示,本实用新型显示装置100包括有所述的面光源10及一位于该面光源上方的显示面板30,其中所述面光源10为所述显示面板提供光线。在其中一实施例中,所述显示面板30为一液晶显示面板。由于本实用新型的重点在于所述面光源10,以及所述倒装芯片20,因此对于显示装置的其他构件(例如基座、框架或其它改善光学品质的膜片等)就不在此处一一赘述。

以上仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1