结晶性氧化物半导体薄膜以及半导体装置的制作方法

文档序号:18807291发布日期:2019-10-08 22:37阅读:213来源:国知局
结晶性氧化物半导体薄膜以及半导体装置的制作方法

本发明涉及结晶性层叠结构体以及半导体装置。



背景技术:

在被成膜样品上形成结晶性高的氧化镓系薄膜的方法有:使用雾cvd(mistcvd)法等水微粒(waterfineparticles)的成膜方法。在该方法中,将乙酰丙酮镓(galliumacetylacetonate)等镓化合物溶解于盐酸等酸中而制成原料溶液。将该原料溶液微粒化,由此形成原料微粒,将该原料微粒以载气向被成膜样品的成膜面供给,使原料雾(mist)反应而在成膜面上形成薄膜,由此在被成膜样品上形成结晶性高的氧化镓系薄膜。

为了使用氧化镓系薄膜而形成半导体设备,控制氧化镓系薄膜的导电性是必要的。专利文献1及非专利文献1[electricalconductivecorundum-structuredα-ga2o3thinfilmsonsapphirewithtin-dopinggrownbyspray-assistedmistchemicalvapordeposition(japanesejournalofappliedphysics51(2012)070203)]中,公开了一种向α-氧化镓薄膜掺入杂质的技术(technologiesfordoping)。



技术实现要素:

但是,根据专利文献1及非专利文献1方法,虽然可以形成导电性出色的α-氧化镓薄膜,不过存在膜表面不平滑的特有问题,作为用于半导体装置来说还不能很好地满足使用。另外,为了使膜表面平滑,可以考虑进行蚀刻法等表面处理,然而出现的问题是:薄膜受损,半导体特性损坏。

本发明的目的是提供一种半导体特性出色的结晶性层叠结构体。

本发明的另一目的在于提供所述结晶性层叠结构体的制备方法。

本发明的再一目的在于提供一种半导体装置。

本发明人为了达成上述目进行了认真研究,发现通过使用异常粒抑制剂的掺杂(doping)处理,可以得到结晶性氧化物半导体薄膜表面平滑之结晶性层叠结构体,进一步进行反复研究从完成本发明。

本发明提供一种结晶性层叠结构体,具备底层基板(basesubstrate),以及直接或介由其他层设置于该底层基板上的结晶性氧化物薄膜,且该结晶性氧化物薄膜具有刚玉结构,所述结晶性氧化物薄膜的表面粗糙度(ra)是0.1μm以下。优选地,所述结晶性氧化物半导体薄膜含有:由br以及i中的至少1种组成的异常粒抑制剂。优选地,所述结晶性氧化物半导体薄膜至少含有镓。

优选地,所述结晶性氧化物半导体薄膜的膜厚是1μm以上。

更优选地,所述膜厚为1~20μm。

优选地,所述底层基板为c面蓝宝石基板。

本发明还提供一种形成结晶性层叠结构体的制造方法,其中,将原料溶液微粒化而生成原料微粒,将该原料微粒以载气向成膜室供给,在配置于所述成膜室内的底层基板上形成具有刚玉结构的结晶性氧化物薄膜;并且,其中,所述结晶性氧化物薄膜的表面粗糙度ra是0.1μm以下;于所述结晶性氧化物薄膜使用异常粒抑制剂而进行掺杂处理。

优选地,在所述原料溶液中含有异常粒抑制剂而进行掺杂处理。

本发明进一步提供一种半导体装置,是使用前述的结晶性层叠结构体而构成该半导体装置。

本发明取得的有益效果:就本发明的结晶性层叠结构体而言,结晶性氧化物半导体薄膜的表面平滑,半导体特性出色。

附图说明

【图1】表示本发明的一个实施方式的结晶性层叠结构体的构成图。

【图2】是本发明的实施例中使用的雾cvd装置的构成图。

具体实施方式

本发明的结晶性层叠结构体,具备底层基板,以及直接或介由其他层设置于该底层基板上的结晶性氧化物薄膜,且该结晶性氧化物薄膜具有刚玉结构,所述结晶性氧化物薄膜的表面粗糙度(ra)是0.1μm以下。所述表面粗糙度(ra)如果是0.1μm以下的话就没有特别限定,在本发明中优选为30nm以下,更加优选为10nm以下。另外表面粗糙度(ra)是根据jisb0601测得的算术平均粗糙度值。

所谓「结晶性层叠结构体」,是含有一层以上的结晶层的结构体,也可以含有结晶层之外的层(例如∶无定形层(amorphouslayer))。并且结晶层优选为单晶层,也可以是多结晶层。所述结晶性氧化物薄膜可以是成膜后进行退火处理的,通过退火处理,在结晶性薄膜和欧姆电极(ohmicelectrode)之间也可以形成欧姆电极氧化的金属氧化物薄膜。欧姆电极有例如铟或钛等。

<底层基板>

就底层基板而言,如果成为上述结晶性氧化物薄膜的支持体的话就没有特别限定,通常为绝缘体基板,本发明中优选为具有刚玉结构的基板。具有刚玉结构的基板有例如蓝宝石基板(例如∶c面蓝宝石基板(c-planesapphiresubstrate)),或α型氧化镓基板等。另外,不具有刚玉结构的底层基板有例如具有六方晶结构(hexagonalstructure)的基板(例如∶6h-sic基板,zno基板,gan基板)等。优选为在具有六方晶结构的基板上,直接或介由其他层(例如∶缓冲层)形成结晶性氧化物薄膜。底层基板的厚度在本发明中没有特别限定,优选为50~2000μm,更优选为200~800μm。

<结晶性氧化物半导体薄膜>

就结晶性氧化物薄膜而言,如果是具有刚玉结构的结晶性氧化物的膜的话就没有特别限定,就本发明中的所述结晶性氧化物薄膜而言,磁性金属(例如fe,co,ni等)不作为含有的主要成分而非磁性金属(例如ga,ti,v,in等)作为主要成分含有,其半导体特性更加出色,是优选的。并且,所述结晶性氧化物薄膜,优选为单晶,也可以为多结晶。就所述结晶性氧化物薄膜的组成而言,优选为所述薄膜中含有的金属元素中的镓,铟,铝及铁共计的原子比(相对于所有金属元素)为0.5以上,更加优选为金属元素中镓的原子比为0.5以上。该优选的原子比具体而言是例如0.5,0.6,0.7,0.8,0.9,1中任意一个数值,也可以在上述例举的任意2个数值间的范围内。

原子比为所述优选的原子比的话,可以更适当地使上述原料溶液中的异常粒抑制剂的功能得以发挥,可以更加降低所述结晶性氧化物半导体薄膜的表面粗糙度。

另外,就结晶性氧化物薄膜的组成而言,例如优选为inxalygazfevo3(0≤x≤2.5,0≤y≤2.5,0≤z≤2.5,0≤v≤2.5,x+y+z+v=1.5~2.5),1≤z。更加优选为x,y,z以及v,分别具体为例如0,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5中任意一个数值。另外x+y+z+v优选为,具体而言例如是1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5中任意一个数值。另外所述x,y,z,v,以及x+y+z+v也可以分别在此例举的任意2个数值的范围内。另外上述一般式,表示具有刚玉结构的网格点上的原子组成,没有表示为「x+y+z+v=2」,这也是明显的,也可以含有非化学计量氧化物,也可以含有金属不足氧化物(metal-deficientoxide),氧不足氧化物(oxygen-deficientoxide)。

结晶性氧化物薄膜,可以直接形成于底层基板上,也可以介由其他层而形成。其他层有例如其他组成的刚玉结构结晶薄膜、刚玉结构以外的结晶薄膜或无定形(amorphous)薄膜等。

就结晶性氧化物薄膜而言,在其至少一部分(更具体而言是厚度方向的一部分)掺入杂质是优选的,结构可以是单层结构,也可以是多层结构。为多层结构时,结晶性氧化物薄膜由例如绝缘性薄膜和导电性薄膜层叠而构成,但本发明不受其限定。另外,由绝缘性薄膜和导电性薄膜层叠而构成多层结构时,绝缘性薄膜和导电性薄膜的组成,可以相同也可以相互不同。绝缘性薄膜和导电性薄膜的厚度比没有特别限定,优选为(导电性薄膜的厚)/(绝缘性薄膜的厚)的比为0.001~100,更加优选为0.1~5。进一步优选的厚度比具体而言例如是0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,3,4,5中任意一个数值,也可以是在此例举的任意2个值间的范围内。

导电性薄膜掺入赋予导电性的杂质也是可以的。就杂质的掺入浓度而言,根据对于导电性膜所要求的特性而适当的决定,例如为1e15/cm3~1e20/cm3。另外,对于掺入的杂质种类没有特别限定,例如为由ge,sn,si,ti,zr及hf中的至少1种组成的掺杂剂等。就绝缘性薄膜而言,通常不需要掺入杂质,不过也可以在不呈现导电性的程度内掺入杂质。

结晶性氧化物半导体薄膜的厚度没有特别限定,可以是不到1μm,也可以是1μm以上,不过本发明中所述结晶性氧化物半导体薄膜的膜厚优选为1μm以上,更加优选为1~20μm。在这样优选的膜厚下,不仅不损害半导体特性,表面平滑性更加出色,而且退火处理时可以降低电阻,可以得到更好的半导体特性。

就本发明的结晶性层叠结构体而言,将原料溶液微粒化而生成原料微粒,将该原料微粒以载气向成膜室供给,在配置于所述成膜室内的底层基板上形成具有刚玉结构的结晶性氧化物薄膜时,于所述结晶性氧化物半导体薄膜使用异常粒抑制剂而进行掺杂处理,由此制造出所述结晶性氧化物半导体薄膜的表面粗糙度(ra)为0.1μm以下。在本发明中优选为:在所述原料溶液中含有异常粒抑制剂而进行掺杂处理。通过在所述原料溶液中含有异常粒抑制剂而进行掺杂处理,可以高效率地制得结晶性层叠结构体,且结晶性层叠结构体具备工业上有益的表面粗糙度为0.1μm以下的结晶性氧化物半导体薄膜。

异常粒抑制剂是指,具有在成膜过程中抑制产生副产物粒子(grainsasbyproducts)之效果,如果可以使结晶性氧化物半导体薄膜表面粗糙度为0.1μm以下的话就没有特别限定,在本发明中优选由br以及i中的至少1种组成的异常粒抑制剂。为了稳定地形成膜,于薄膜中导入异常粒抑制剂br或i的话,可以抑制由异常粒成长导致的表面粗糙度的恶化。另外本发明中,异常粒抑制剂最优选为br,使用br使得特别是含有的主要成分为α-ga2o3的结晶性氧化物半导体薄膜表面可以非常平滑。异常粒抑制剂的添加量如果可以抑制异常粒的话就没有特别限定,优选为在原料溶液中体积比为50%以下,更加优选为30%以下,最优选为10~20%的范围内。在这样的优选的范围内使用异常粒抑制剂,可以使得异常粒抑制剂功能得以发挥,由此抑制结晶性氧化物半导体薄膜的异常粒的成长,使表面平滑。

对于结晶性氧化物薄膜的形成方法没有特别限定,可以是将例如镓化合物,铟化合物,铝化合物以及铁化合物,对应于结晶性氧化物薄膜的组成而进行组合,将得到的组合原料化合物进行酸化反应,从而可以形成。由此,在底层基板上可以从底层基板侧结晶生长出结晶性氧化物薄膜。镓化合物以及铟化合物也可以是:将镓金属或铟金属作为起始材料在刚要成膜之前变为镓化合物及铟化合物。镓化合物,铟化合物,铝化合物以及铁化合物有例如:各种金属的有机金属络合物(例如∶乙酰丙酮(acetylacetonate)络合物)或卤化物(氟化,氯化,溴化或碘化物)。

更具体而言,就结晶性氧化物薄膜而言,从溶解有原料化合物的原料溶液生成原料微粒,将该原料微粒向成膜室供应,在所述成膜室内使所述原料化合物反应,由此可以得以形成。原料溶液的溶剂优选为水,过氧化氢水(hydrogenperoxidewater),有机溶剂。如果向薄膜掺杂杂质时,在掺杂剂原料的存在下,使上述原料化合物进行氧化反应即可。掺杂剂原料优选为包含于原料溶液中,且与原料化合物一起被微粒化。

掺杂剂原料有例如:掺入的杂质之金属单体或化合物(例如卤化物,氧化物)等。为了控制导电性有ge,sn,si,ti,zr,hf等n型掺杂剂,不过不受其限定。导入异常粒抑制剂br或i的10倍以上的n型掺杂剂使得荷载密度(carrierdensity)容易控制。在本发明中,需要使异常粒抑制剂的功能得以发挥,所以就掺杂剂原料而言,通常使用与异常粒抑制剂不同之物。

在本发明中,所述结晶性氧化物半导体薄膜中的所述异常粒抑制剂的含量优选为3e+15~7e+18(atoms/cc),更加优选为3e+15~3e+18(atoms/cc),最优选为1e+16~2e+18(atoms/cc)。

在本发明中,也可以在成膜后进行退火处理。退火处理的温度没有特别限定,不过优选为600℃以下,更加优选为550℃以下,最优选为500℃以下。在这样优选的温度下进行退火处理,可以更适当地降低上述结晶性氧化物半导体薄膜的电阻。就退火处理的处理时间而言,如果不阻碍本发明的目的就没有特别限定,优选为10秒~10小时,更加优选为10秒~1小时。

<结晶性层叠结构体的构成例子>

本实施方式的结晶性层叠结构体及使用它的半导体装置的合适的例子如图1所示。在图1的例子中,底层基板1上形成结晶性氧化物薄膜3。就结晶性氧化物薄膜3而言,从底层基板1侧开始按顺序层积绝缘性薄膜3a和导电性薄膜3b而被构成。在导电性薄膜3b上形成栅极绝缘膜(gateinsulatorfilm)5。在栅极绝缘膜5上形成栅电极(gateelectrode)7。并且在导电性薄膜3b上,夹住栅电极7,形成源极和漏极电极9(sourceanddrainelectrodes)。以这样的构成,通过施加于栅电极7的栅极电压可以控制形成于导电性薄膜3b的耗尽层(depletionlayer),晶体管工作(fet设备)成为可能。

使用本实施方式的结晶性层叠结构体所形成的半导体装置有例如mis或hemt等晶体管、tft、使用半导体-金属连接的肖特基势垒二极管(schottkybarrierdiode)、与其他p层组合的pn或pin二极管、或发受光元件(lightemittingandreceivingelement)。

【实施例】

以下说明本发明的实施例。以下的实施例中,根据雾cvd法形成掺入杂质的结晶性氧化物薄膜,不过本发明不受这些实施例的限定。

1.cvd装置

首先以图2说明本实施例中使用的cvd装置19。cvd装置19具备:安置有底层基板等被成膜样品20的样品台21、供给载气的载气源22、对于从载气源22送出的调节载气流量进行调节的流量调节阀23、收纳原料溶液24a的雾发生源24、容纳水25a的容器25、安装于容器25底面的超声振荡子26、由内径40mm的石英管组成的成膜室27、以及设置于膜室27周边的加热器28。样品台21由石英组成,安置被成膜样品20的面从水平面开始倾斜。成膜室27和样品台21均由石英制得,由此抑制了:形成于被成膜样品20上的薄膜内混入装置带来的杂质。

2.原料溶液的制造

调制溴化镓和氧化锗水溶液,使得锗相对于镓的原子比为1:0.05。这时为了促进溶解氧化锗,含有体积比为10%的48%溴化氢溶液。

另外,分别使用碘化镓以及碘化氢溶液以代替溴化镓以及溴化氢溶液,其他条件与上述相同,调整水溶液。

3.成膜准备

接着,作为被成膜样品20,边长为10mm的正方形且厚600μm的c面蓝宝石基板被设置于样品台21上,使加热器28工作,使成膜室27内的温度上升到500℃。接着,开启流量调节阀23,从载气源22向成膜室27内供给载气,成膜室27的气体环境被载气充分置换后,调节载气流量为5l/min。载气用的是氧气。

4.薄膜形成

接着,使超声振荡子26以2.4mhz的频率振荡,该振荡通过水25a传播到原料溶液24a,由此使原料溶液24a微粒化而生成原料微粒。该原料微粒由载气被导入成膜室27内,在成膜室27内反应,在被成膜样品20的成膜面中的cvd反应使得薄膜形成于被成膜样品20上。

5.评估

对于形成的薄膜的相进行鉴定。该鉴定使用薄膜用xrd衍射装置,以从15度到95度的角度进行2θ/ω扫描。使用cukα线进行检测。该结果是:形成的薄膜是具有刚玉结构的α-氧化镓。

将直径0.5mm的铟电极按照1mm的端子间距离进行压接(pressure-bonded)后,在氮气环境下进行500℃下20分钟的退火处理。退火后进行xrd测量,确认结果如下:不发生相变,维持α-氧化镓的结晶结构。

另外本实施例的薄膜的膜厚以干涉式膜厚计进行测量。

6.表面粗糙度

得到厚度1.5μm的α-氧化镓薄膜样品,使用显微镜测量含有以及不含有异常粒抑制剂(br、i)的样品之表面粗糙度。如表1所示,不含异常粒抑制剂的样品凹凸得厉害;然而含有异常粒抑制剂的情况为:显示为几nm到几十nm的ra值,且没有观察到异常粒,表面平滑性出色的厚膜。

【表1】

另外作为比较例,以cmp法对没有异常粒抑制剂的α-氧化镓薄膜样品(厚1μm以下)进行表面处理的情况下,薄膜消失,蓝宝石基板呈现出全部露出的状态。

(试验例)

与上述同样,得到具有异常粒抑制剂的各种样品分别约10个。针对得的样品,使用sims分析膜中的异常粒抑制剂的含有量(原子比)之范围,结果如表2所示。

【表2】

本发明的结晶性层叠结构体可以用于mis或hemt等晶体管、tft、使用半导体-金属连接的肖特基势垒二极管(schottkybarrierdiode)、与其他p层组合的pn或pin二极管、或发受光元件(lightemittingandreceivingelement)等半导体装置中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1