一种HAC电池用铜电镀栅线的掩膜结构及其制备方法与流程

文档序号:20670678发布日期:2020-05-08 17:18阅读:757来源:国知局
一种HAC电池用铜电镀栅线的掩膜结构及其制备方法与流程

本发明属于太阳电池和半导体器件领域,涉及晶体硅太阳电池的技术,具体涉及一种hac电池用铜电镀栅线的掩膜结构及其制备方法。



背景技术:

目前,非晶硅/晶体硅异质结太阳电池(以下简称hac)的金属栅线的技术路线主要有两条,一是采用丝网印刷结合烘干烧结的方法制备的银栅线,该技术以低温银浆作为原材料,制备技术路线简单、易于掌握,工序少,工艺成本低,但消耗大量的银浆;二是采用光刻结合电镀的技术制备铜栅线,该技术以铜和化学溶液作为主要原材料,但光刻过程需要使用到光刻胶且掩膜制备、曝光、去胶等工序很多,工艺难度大,工艺成本高,但作为栅线主材的铜成本低。综合比较,二者各有优缺点,在实际成本方面无明显的优劣。

对于铜电镀技术,如能简化其工序,以更有效、低成本的技术取得现有的光刻技术制备镀铜掩膜,其在成本方面将远低于银栅线技术,并且可节省大量的贵重原材料。

另外,hac太阳电池表面的透明导电氧化层(transparentconductiveoxide以下简称tco)主要是以铟的氧化物主材的物质,如锡掺杂三氧化铟(以下简称ito),其要兼顾导电与减反射效果,导致其减反射效果无法做到最优,这也限制了hac太阳电池性能的提高,如能通过复合膜层的方法提高其减反射效果,对hac太阳电池性能的提升也是非常有意义的。



技术实现要素:

针对现有技术中的不足与难题,本发明旨在提供一种一种hac电池用铜电镀栅线的掩膜结构及其制备方法。

本发明通过以下技术方案予以实现:

一种hac电池用铜电镀栅线的掩膜结构,在电池片的两面tco层表面制备氮化硅或者氧化硅或者氮化硅-氧化硅的复合薄膜作为铜电镀栅线的掩膜,掩膜在铜电镀栅线制备完成后留在电池片的表面,不移除;掩膜与tco的折射率相互匹配。

进一步地,采用氮化硅作为掩膜并采用ito作为tco材料;氮化硅的折射率为1.86~2.13、厚度为30nm~70nm;ito的折射率为2.0~2.2、厚度为15nm~70nm。

优选地,ito/氮化硅的折射率匹配为2.11/1.86。

进一步地,采用氧化硅作为掩膜并采用ito作为tco材料,氧化硅的折射率为1.4~1.5、厚度为60nm~150nm,ito的折射率为2.0~2.2、厚度为15nm~70nm。

优选地,ito/氧化硅的折射率匹配为2.08/1.46。

进一步地,采用氮化硅、氧化硅的复合膜层作为掩膜并采用ito作为tco材料;ito的折射率为2.0~2.2、厚度为20nm~60nm;氮化硅的折射率为1.86~2.09、厚度为10nm~20nm;氧化硅的折射率为1.4~1.5、厚度为60nm~150nm。

优选地,ito/氮化硅/氧化硅的折射率匹配为2.13/1.91/1.46。

本发明还提供了一种hac电池用铜电镀栅线的掩膜制备方法,上述掩膜采用pecvd法或者热丝cvd法制备,在电池片的两面tco层表面制备氮化硅或者氧化硅或者氮化硅-氧化硅的复合薄膜作为铜电镀栅线的掩膜;掩膜在铜电镀栅线制备完成后留在电池片的表面,不移除。

进一步地,掩膜的开槽采用在镀膜时在电池片表面放置硬质掩膜或者在镀膜结束后采用刻蚀剂刻蚀的方法完成;

进一步地,采用刻蚀剂刻蚀掩膜情况下只刻蚀掩膜材料,不刻蚀tco材料;刻蚀栅线的宽度为0.1~80μm;铜电镀栅线的厚度为0.2~20μm,允许铜电镀栅线有不连续。

与现有技术相比,本发明有益效果包括:

(1)本发明实现了以比光刻法工序短的方法制备镀铜栅线的掩膜,所得掩膜在栅线制备完成后保留在电池片表面改善tco的减反射效果。

(2)本发明该技术相比于光刻法可节省大量成本,并且适宜规模化生产。

附图说明

图1为本发明实施例一中ito/氮化硅层的反射率曲线;

图2为本发明实施例二中ito/氧化硅层的反射率曲线;

图3为本发明实施例三中ito/氮化硅/氧化硅层的反射率曲线。

具体实施方式

下面结合附图,对本发明作进一步地说明。

实施例1氮化硅作为掩膜层

在沉积了非晶硅的晶体硅片的两个表面各沉积一层ito薄膜作为tco层,然后采用板式pecvd的方法在两个ito薄膜表面各沉积一层的氮化硅作为铜电镀栅线的掩膜层;掩膜的开槽采用在镀膜时在电池片表面放置硬质掩膜;

氮化硅薄膜沉积的时候采用固态掩膜的方式形成线宽为40μm,线间距为400μm的细栅线图案,采用电镀法制备细栅线,铜电镀栅线的厚度为0.2~20μm,制备过程中允许铜电镀栅线有不连续;

氮化硅掩膜层在铜电镀栅线制备完成后留在电池片的表面,不移除。

对多组实例样品进行分析,其样品参数见表1。

所得ito/氮化硅的减反射谱如附图1所示。

表1氮化硅掩膜结构的不同参数样品

结合表1和图1数据可以看出,以折射率为2.0~2.2(λ=600nm)、厚度为15nm~70nm的ito薄膜作为tco层,且以折射率为1.86~2.13(λ=600nm)、厚度为40nm~70nm的氮化硅作为掩膜层,所得掩膜在栅线制备完成后保留在电池片表面改善tco的减反射效果,尤其以ito/氮化硅的折射率匹配为2.11/1.86最佳。

实施例2氧化硅作为掩膜层

在沉积了非晶硅的晶体硅片的两个表面各沉积一层ito薄膜作为tco层,然后采用板式pecvd的方法在两个ito薄膜表面各沉积一层的氧化硅作为铜电镀栅线的掩膜层;并在镀膜结束后采用刻蚀剂刻蚀的方法完成掩膜的开槽;

氧化硅薄膜沉积结束后采用丝网印刷法印刷氧化硅刻蚀剂对氧化硅膜进行刻蚀,该过程只刻蚀掩膜材料且不刻蚀tco材料,形成线宽为30μm,线间距为1mm的细栅线图案,和线宽为1.0mm的主栅线图案,采用电镀法制备细栅线,铜电镀栅线的厚度为0.2~20μm,允许铜电镀栅线有不连续;

氧化硅掩膜层在铜电镀栅线制备完成后留在电池片的表面,不移除。

对多组实例样品进行分析,其样品参数见表2。

所得ito/氧化硅的减反射谱如附图2所示。

表2氧化硅掩膜结构的不同参数样品

结合表2和图2数据可以看出,以折射率为2.0~2.2(λ=600nm)、厚度为15nm~70nm的ito薄膜作为tco层,且以折射率为1.4~1.5(λ=600nm)、厚度为60nm~150nm的氧化硅作为掩膜层,所得掩膜在栅线制备完成后保留在电池片表面改善tco的减反射效果,尤其以ito/氧化硅的折射率匹配为2.08/1.46最佳。

实施例3氮化硅-氧化硅作为掩膜层

在沉积了非晶硅的晶体硅片的两个表面各沉积一层ito薄膜作为tco层,然后采用热丝cvd的方法在两个ito薄膜表面先各沉积一层的氮化硅薄膜、再各沉积一层氧化硅薄膜,作为铜电镀栅线的掩膜层;

薄膜沉积结束后采用丝网印刷法印刷氧化硅刻蚀剂对氧化硅膜进行刻蚀,形成线宽为10μm,线间距为1mm的细栅线图案,和线宽为1.0mm的主栅线图案,采用电镀法制备细栅线,铜电镀栅线的厚度为0.2~20μm,制备过程中允许铜电镀栅线有不连续;

对多组实例样品进行分析,其样品参数见表3。

所得ito/氮化硅/氧化硅的减反射谱如附图3所示。

表3氮化硅-氧化硅复合掩膜结构的不同参数样品

综合表3和图3数据可以看出,以折射率为2.0~2.2(λ=600nm),厚度为20nm~60nm的ito薄膜作为tco层;以氧化硅折射率为1.4~1.5(λ=600nm),厚度为60nm~150nm,氮化硅的折射率为1.86~2.09(λ=600nm),厚度为10nm~20nm,形成的氮化硅-氧化硅复合薄膜作为掩膜层;所得掩膜在栅线制备完成后保留在电池片表面改善tco的减反射效果,尤其以ito/氮化硅/氧化硅的折射率匹配为2.13/1.91/1.46时效果最佳。

以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1