频率快速锁定装置、频率合成器以及频率快速锁定方法

文档序号:7509365阅读:132来源:国知局
专利名称:频率快速锁定装置、频率合成器以及频率快速锁定方法
技术领域
本发明是有关于一种频率合成,特别是有关于一种快速锁定系统,使用于频率合成器。
背景技术
手机通讯系统的快速成长提高了对于高效能积体无线电频率(RF)装置的需求。这些系统中最重要系统方块之一为本地震荡器(local oscillator,OL)。在现在的RF接收器中,震荡器通常嵌入合成器环境中,以便实现输出频率的精确限定。相锁回路(phase-locked loop,PLL)技术已广泛地使用于频率合成器,以符合无线电规范的严格需求,这是因为,由于在锁定的状况下,PLL的输出频率与输入频率两者间具有精确的关系。
以PLL为基础的合成技术提供高整合、低功率消耗、较小的芯片面积、高可靠度、以及可预期的效能。在一些美国专利中,例如,专利编号6,150,891等等,其揭露不同种类的频率合成器。我们已知,当通讯系统打算改变频道时,合成器需要在有限的时间以建立新的频率。而通讯系统的效能,是根据频率合成器的锁定时间而定。此锁定时间是表示新的频率稳定下来所需的时间,此参数在快速跳频率系统中是格外的重要。

发明内容
本发明主要目的在于提供一种快速锁定的系统及方法,适用于频率合成。
为达上述目的,本发明提供一种频率快速锁定装置,其包括转变侦测器以及两脉宽侦测器。转变侦测器接收第一脉波信号及第二脉波信号,其中,第一脉波信号表示输入信号的相位领先参考信号的相位,且第二脉波信号表示输入信号的相位落后参考信号的相位。状态信号因此而产生,其中,状态信号表示第一脉波信号的有意义转变是否领先于第二脉波信号的有意义转变。根据第一脉波信号,一脉宽侦测器产生第一脉宽信号,其表示第一脉波信号的脉宽落在多个第一预设脉宽范围中的何者。根据第二脉波信号,另一脉宽侦测器产生第二脉宽信号,其表示该第二脉波信号的脉宽落在多个第二预设脉宽范围中的何者。此外,快速锁定装置更包括控制逻辑,用以产生校准信号,其中,校准信号是用以根据状态信号、第一脉宽信号以及第二脉宽信号来调整输入信号的频率。
本发明另提供一种频率合成器,其包括相移信号产生器、相位延迟电路、以及相位鉴频器。相移信号产生器由参考信号产生多个时脉信号,且根据输入信号的相位以自多个时脉信号中选择一参考时脉信号,其中,多个时脉信号的相位是以递增地方式偏移。相位延迟电路接收输入信号及参考时脉信号。相位延迟电路根据输入信号以产生相位延迟输入信号,其中,相位延迟输入信号的相位调整为接近参考时脉信号的相位。相位鉴频器包括转变侦测器以及两脉宽侦测器。转变侦测器接收第一脉波信号及第二脉波信号,其中,第一脉波信号表示相位延迟输入信号的相位领先参考时脉信号的相位,且第二脉波信号表示相位延迟输入信号的相位落后参考时脉信号的相位。状态信号因此而产生,且状态信号表示第一脉波信号的有意义转变是否领先于第二脉波信号的有意义转变。根据第一脉波信号,一脉宽侦测器产生第一脉宽信号,其中,第一脉宽信号表示第一脉波信号的脉宽落在多个第一预设脉宽范围中的何者。根据第二脉波信号,另一脉宽侦测器产生第二脉宽信号,其中,第二脉宽信号表示第二脉波信号的脉宽落在多个第二预设脉宽范围中的何者。此外,相位鉴频器更包括控制逻辑,其产生校准信号,其中,校准信号是根据状态信号、第一脉宽信号以及第二脉宽信号来调整压控震荡器(voltage controlled oscillator,VCO)的输出频率。
本发明的有益效果是当频率合成器建立新的频率,以使通讯系统改变频道时,可缩短新的频率稳定下来所需的时间,从而提高通讯系统的效能。


图1表示频率合成器的一实施例。
图2表示相移信号产生器的一实施例。
图3是图2中相移信号产生器的时序图。
图4表示相位延迟电路的一实施例。
图5是图4的相位延迟电路的时序图。
图6表示相位鉴频器的一实施例。
图7A表示脉宽侦测器的一实施例。
图7B表示脉宽侦测器的一实施例。
图8是脉宽侦测器的时序。
100~频率合成器 110~相位/频率侦测器120~电荷泵 130~回路滤波器140~VCO150~预除频器160~相移信号产生器 170~相位延迟电路180~相位鉴频器 190~可变电压产生器210~除频器 220~移位缓存器2201...2303~正反器 2301...2303~正反器240~编码器 250~多任务器4101...4103~延迟组件 4201...4203~正反器430~编码器 440~多任务器610~转变侦测器 612、614~正反器620a、620b~脉宽侦测器 630~控制逻辑712a、712b、714a、714b、716a、716b~延迟组件722a、722b、724a、724b、726a、726b~正反器
SW1...SW3~开关具体实施方式
提供一快速锁定模式,以非连续的方式调整两信号CKdivCKref间的相位差。待两信号间的向位差小于一默认值则恢复正常锁频模式。
参阅图1,其表示频率合成器的实施例,且以标号100来表示。如图所示,输出信号CKout由预除频器150所接收,且预除频器150将该输出信号CKout的频率作除以N的除频以产生除频的信号CKdiv,并提供至相移信号产生器160以及相位延迟电路170。相移信号产生器160接收参考信号CKref,并输出相移参考信号CKref0至相位延迟电路170以及相位/频率侦测器110。相位延迟电路170延迟该除频信号CKdiv的相位用以产生信号CKpd,其中,该信号CKpd的相位较该除频信号CKdiv的相位更接近于信号CKref0的相位。相位/频率侦测器110侦测信号CKpd与信号CKref0间的相位差与频率差,且由此产生两控制信号UP及DN。一般来说,信号UP及DN为脉波信号,其脉波宽度或脉波持续期间,是根据相位差而定。相位/频率侦测器110通过两开关SW1及SW2,而选择性地耦接电荷泵120或耦接于相位鉴别器(discriminator)180。当频率合成器100开始建立新的频率时,在一快速锁频模式下,相位鉴频器180可根据信号UP及DN产生校准信号CTRL,用以调整输出信号CKout的频率。校准信号CTRL控制至可变电压产生器190,产生一控制电压V1。该控制电压V1,经由开关SW3,可以选择性地耦接压控震荡器(voltage controlled oscillator,VCO)140。在此实施例中,可变电压产生器190能产生多个电压准位,并根据该校准信号CTRL,来选择该多个电压准位的其中之一为控制电压V1。该控制电压的准位实质上与VCO 140的输出频率成比例。此外,这些电压准位之间的差异不需相同。在快速锁定模式下,可变电压产生器190所输出的控制电压V1耦接至该压控震荡器,以设定一调整电压VTUNE的初始值。该调整电压用以控制VCO 140所产生的输出信号CKout的频率。在一些实施例中的VCO 140,包括电容器数组(未显示),做离散式(discrete)的频率调整。因此,校准信号CTRL也可以提供于具有电容器数组的VCO 140,以改变输出信号CKout的频率。在一般操作中,信号UP及DN表示电荷泵120提供电流IC至回路滤波器130或是接收来自回路滤波器130的电流IC,以调整电压VTUNE,由此精确地调整VCO 140的输出频率。
图2表示相移信号产生器160的实施例。相移信号产生器160包括除频器210、编码器240、多任务器250、以及多个D型正反器2201至230M。除频器210接收参考信号CKref,且以M来除以参考信号CKref的频率。除频器210的输出信号P0提供至M-位移位缓存器220。举例来说,假使M等于3,3-位移位缓存器220则是由三个正反器2201至2203。移位缓存器220的每一正反器皆以参考信号CKref来计数。另外的M个正反器2301至230M皆接收来自预除频器150的信号CKdiv。在M等于3的相同例子中,正反器2301至2303分别以正反器2201至2203的三位输出信号P1至P3来计数。每一相位移位信号P1至P3具有相同的频率,但是相位以递增地方式偏移。由正反器2301至2303,可以具有相同频率而相位偏移的多个独立的信号来对信号CKdiv取样。编码器240接收来自正反器2301至2303的3-位输出信号Q[2∶0],由此产生选择信号SELx,其中,选择信号SELx是表示,移位缓存器220的哪一输出信号,其相位接近于信号CKdiv的相位。根据选择信号SELX,多任务器250选择相位移位信号P1至P3的一个,作为信号CKref0。图3表示时序图,参阅图2及图3,可帮助了解相移信号产生器160的动作。
参考图4,其是以方块系统来表示相位延迟电路170的实施例。相位延迟电路170包括编码器430、多任务器440、L个延迟组件4101至410L、以及L个D型正反器4201至420L。举例来说,假设L等于3。具有相同延迟时间Td的延迟组件4101至4103以堆栈方式耦接,且第一延迟组件4101接收来自预除频器150的信号CKdiv。正反器4201至4203皆以来自相移信号产生器160的信号CKref0来计数。由延迟组件4101至4103所产生,且为信号CKdiv的不同延迟型态的信号D1至D3,分别提供至正反器4201至4203。接着,编码器430接收来自正反器4201至4203的3-位输出信号Q’[2∶0],由此产生选择信号SELY,其中,选择信号SELY表示,在延迟型态的信号D1至D3与原始信号CKdiv中的哪一个,其相位接近于信号CKref0的相位。此外,CKdiv的原始及延迟型态信号皆输入至多任务器440,以作为其输入信号。多任务器440根据选择信号SELY以选择多个输入信号的一个,由此建立CKpd信号。图5表示时序图,参阅图4及图5,可帮助了解相位延迟电路170的动作。在此方式下,输入至位/频率侦测器110的信号的相位,粗糙地调整为彼此接近。
图6表示相位鉴频器180的方块图。相位鉴频器180包括转变侦测器610以及两脉宽侦测器620a及620b。在快速锁定模式下,相位鉴频器180被激活,使得转变侦测器610接收来自相位/频率侦测器110的信号UP及DN。在此实施例中,当信号UP为高位准时,表示信号CKref0的相位领先于信号CKpd的相位;且当信号DN为高位准时,表示信号CKref0的相位落后于信号CKpd的相位。参阅图6,转变侦测器610包括两D型正反器612及614,用以侦测信号UP及DN中哪一个先具有有意义的转变(上升缘或下降缘)。有意义的转变是指上升缘或下降缘。正反器612接收信号UP,并以信号DN来计数;相对地,正反器614接收信号DN,并以信号UP来计数。转变侦测器610因此产生2-位状态信号UD[1∶0],其中,状态信号UD表示信号UP的有意义转变是否领先于信号DN的有意义转变。信号UP及DN也提供至脉宽侦测器620a及620b。根据信号UP,脉宽侦测器620a可以产生脉宽信号,其表示信号UP的脉宽是落在哪一范围内。脉宽范围是根据时间来预先设定。此外,举例来说,脉宽范围不需以一致的刻度来划分,使得可在不同相位的侦测下提供不同的解析。同样地,根据信号DN,脉宽侦测器620b可以产生另一脉宽信号,其表示信号DN的脉宽是落在哪一范围内。例如,预设的脉宽范围为四个部分0<W≤W1、W1<W≤W2、W2<W≤W3、以及W3<W。因此,脉宽信号WU以及WD使用3位,以便表示四个脉宽范围的任一个。虽然预设脉宽范围的相同设定,被脉宽侦测器620a及620b应用于侦测信号的宽度,可以了解的是,预设脉宽范围的不相同设定,也可考量来应用于脉宽侦测器620a及620b。
脉宽侦测器620a及620b的详细说明电路分别由图7A及图7B并结合图8来表示。假设预设的脉宽范围有四个,脉宽侦测器620a包括延迟组件712a至716a以及三个D型正反器722a至726a,如图7A所示。延迟组件712a至716a以堆栈方式耦接,且第一个接收来自相位/频率侦测器110的信号UP。在此方式中,延迟组件712a至716a产生三个信号UP的延迟型态的信号DU1至DU3。特别的是,延迟组件712a提供延迟时间Td1给信号UP,延迟组件714a提供另一延迟时间Td2给信号UP,且延迟组件716a再提供另一延迟时间Td3给信号UP。延迟组件可建立数个延迟,且延迟时间并非全部相等,因此可决定脉宽范围。就这一点而言,W1由延迟时间Td1所指定、W2由延迟时间(Td1+Td2)所指定、以及W3由延迟时间(Td1+Td2+Td3)所指定,以订出先前所提出的脉宽范围。正反器722a至726a分别以信号UP的三延迟型态的信号来计数。每一正反器722a至726a也接收信号UP,使得正反器722a至726a产生3-位的脉宽信号WU[2∶0],以表示哪一预设脉宽范围包含信号UP的脉宽。参阅图7B,脉宽侦测器620b具有与脉宽侦测器620a相同的结构。三个延迟组件712b至716b以堆栈方式耦接,且第一个接收来自相位/频率侦测器110的信号DN。因此,延迟组件712b至716b产生三个信号DN的延迟型态的信号DD1至DD3。正反器722b至726b分别以信号DN的三延迟型态的信号来计数。每一正反器722b至726b也接收信号DN,使得正反器722b至726b产生3-位的脉宽信号WD[2∶0],以表示哪一预设的脉宽范围包含信号DN的脉宽。图8表示脉宽侦测器620a及620b的时序图,可帮助了解脉宽侦测器620a及620b的动作。其中,标号X是表示“U”或“P”。在图8的实施例中,举例来说,当状态信号UD[1∶0]=“01”时,具有脉宽W的信号UP导致脉宽信号WU[2∶0]=“001”。其中,UD[1∶0]=“01”表示信号UP的脉波上升缘领先于信号DN的脉波上升缘。此外,WU[2∶0]=“001”是指信号UP的脉波宽度落在第二预设的范围,换言之,是落在W1<W≤W2。
参阅图6,相位鉴频器180也包括控制逻辑630,用以根据状态信号UD[1∶0]以及脉宽信号WU[2∶0]及WD[2∶0],来产生校准信号CTRL。在快速锁定模式下,控制逻辑630通过校准信号CTRL命令可变电压产生器190,使其以适当的ΔV来提升或降低电压VTUNE,而接着,其会导致VCO 140增加或减少输出信号CKout的频率。在下面的表1,其说明了控制逻辑630的状态例子,用以控制可变电压产生器190。

表1在表1中,当脉宽信号WU或WD表示信号CKref0与CKpd间具有较大的相位差时,校准信号CTRL引发可变电压产生器190以较大的ΔV去调整电压VTUNE。在此方式下,电压差可以快速地接近于零。图1的频率合成器100维持在快速锁定模式,直到WU[2∶0]与WD[2∶0]皆等于“000”。就其本身而论,在信号CKref0与CKpd间的相位差异变为够小,使得频率合成器100进入一般操作模式。
本发明虽以较佳实施例揭露如上,然其并非用以限定本发明的范围,任何熟习此项技艺者,在不脱离本发明的精神和范围内,当可做些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。
权利要求
1.一种频率快速锁定装置,适用于频率合成,其特征在于,包括一转态侦测器,接收一第一脉波信号及一第二脉波信号,并产生一状态信号,其中,第一脉波信号表示一输入信号的相位领先一参考信号的相位,第二脉波信号表示所述输入信号的相位落后所述参考信号的相位,且状态信号表示第一脉波信号的状态转换是否领先于第二脉波信号的状态转换;一第一脉宽侦测器,根据第一脉波信号的脉波宽度而产生一第一脉宽信号,其中,该第一脉宽信号表示第一脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第一脉宽范围中的其中之一;一第二脉宽侦测器,根据第二脉波信号的脉波宽度而并产生一第二脉宽信号,其中,该第二脉宽信号表示第二脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第二脉宽范围中的其中之一;以及一控制逻辑,根据状态信号、第一脉宽信号以及第二脉宽信号而产生一校准信号,其中,该校准信号用以调整该输入信号的频率。
2.如权利要求1所述的频率快速锁定装置,其特征在于,所述的转态侦测器、第一脉宽侦测器以及第二脉宽侦测器在操作上耦接一相位/频率侦测器,其中,该相位/频率侦测器用以产生所述的第一及第二脉波信号。
3.如权利要求1所述的频率快速锁定装置,其特征在于,所述的控制逻辑耦接一可变电压产生器,该可变电压产生器提供多个电压准位,并根据校准信号以选择所述的多个电压准位的其中之一作为一控制电压。
4.如权利要求3所述的频率快速锁定装置,其特征在于,在一快速锁定模式期间,所述的可变电压产生器选择性地耦接一压控震荡器;以及其中,在该快速锁定模式期间,所述的压控震荡器根据控制电压以控制输入信号的频率。
5.如权利要求4所述的频率快速锁定装置,其特征在于,所述的控制逻辑耦接一压控震荡器;以及其中,该压控震荡器根据校准信号以控制输入信号的频率。
6.如权利要求1所述的频率快速锁定装置,其特征在于,所述的第一脉宽侦测器包括多个延迟组件,接收第一脉波信号,以产生第一脉波的多个延迟信号;以及多个正反器,耦接所述的多个延迟组件,该多个正反器接收第一脉波信号且分别以第一脉波的多个延迟信号作计数,以产生第一脉宽信号,用以表示第一脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第一脉宽范围中的其中之一。
7.如权利要求6所述的频率快速锁定装置,其特征在于,所述的多个延迟组件具有的延迟长度不全相同,以此决定所述的多个第一脉宽范围。
8.如权利要求1所述的频率快速锁定装置,其特征在于,所述的第二脉宽侦测器包括多个延迟组件,接收第二脉波信号,以产生第二脉波的多个延迟信号;以及多个正反器,耦接所述的多个延迟组件,该多个正反器接收第二脉波信号且分别以第二脉波的多个延迟信号作计数,以产生第二脉宽信号,用以表示第二脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第二脉宽范围中的其中之一。
9.如权利要求8所述的频率快速锁定装置,其特征在于,所述的多个延迟组件具有的产生延迟长度不全相同,以此决定所述的多个第二脉宽范围。
10.一种频率合成器,其特征在于,包括一相移信号产生器,根据一参考信号而产生多个时脉信号,且根据一输入信号的相位,选择该多个时脉信号的其中之一为一参考时脉信号,其中,该多个时脉信号分别具有依序递增的相位偏移;一相位延迟电路,接收输入信号及参考时脉信号,并将该输入信号作相位延迟以产生一相位延迟输入信号,其中,该相位延迟输入信号的相位较输入信号的相位更接近于参考时脉信号的相位;以及一相位鉴别器,包括一转态侦测器,接收一第一脉波信号及一第二脉波信号,并产生一状态信号,其中,第一脉波信号表示相位延迟输入信号的相位领先参考时脉信号的相位,第二脉波信号表示相位延迟输入信号的相位落后参考时脉信号的相位,且状态信号表示第一脉波信号的状态转换是否领先于第二脉波信号的状态转换;一第一脉宽侦测器,根据第一脉波信号的脉波宽度而产生一第一脉宽信号,其中,第一脉宽信号表示第一脉波信号的脉波宽度属于一脉宽范围,脉宽范围为预设的多个第一预设脉宽范围中的其中之一;一第二脉宽侦测器,根据第二脉波信号的脉波宽度而产生一第二脉宽信号,其中,第二脉宽信号表示第二脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第二预设脉宽范围中的其中之一;以及一控制逻辑,根据状态信号、第一脉宽信号以及第二脉宽信号而产生一校准信号,其中,校准信号用以调整输入信号的频率。
11.如权利要求10所述的频率合成器,其特征在于,所述的相位鉴别器耦接一相位/频率侦测器,其中,该相位/频率侦测器用以产生第一及第二脉波信号。
12.如权利要求10所述的频率合成器,其特征在于,所述的相位鉴别器耦接一可变电压产生器,该可变电压产生器提供多个电压准位,并根据校准信号以选择该多个电压准位的其中之一作为一控制电压。
13.如权利要求12所述的频率合成器,其特征在于,在一快速锁定模式期间,所述的可变电压产生器选择性地耦接一压控震荡器;以及其中,在该快速锁定模式期间,该压控震荡器根据控制电压以控制输入信号的频率。
14.如权利要求13所述的频率合成器,其特征在于,所述的控制逻辑耦接一压控震荡器;以及其中,该压控震荡器根据校准信号以控制输入信号的频率。
15.如权利要求10所述的频率合成器,其特征在于,所述的第一脉宽侦测器包括多个延迟组件,接收第一脉波信号,以产生第一脉波的多个延迟信号;以及多个正反器,耦接所述的多个延迟组件,该多个正反器接收第一脉波信号且分别以第一脉波的多个延迟信号作计数,以产生第一脉宽信号,用以表示第一脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第一脉宽范围的其中之一。
16.如权利要求15所述的频率合成器,其特征在于,所述的多个延迟组件具有的延迟长度不全相同,以此决定所述的多个第一预设脉宽范围。
17.如权利要求10所述的频率合成器,其特征在于,所述的第二脉宽侦测器包括多个延迟组件,接收第二脉波信号,以产生第二脉波的多个延迟信号;以及多个正反器,耦接所述的多个延迟组件,该多个正反器接收第二脉波信号且分别以第二脉波的多个延迟信号作计数,以产生第二脉宽信号,用以表示第二脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第二脉宽范围中的其中之一。
18.如权利要求17所述的频率合成器,其特征在于,所述的多个延迟组件具有的延迟长度不全相同,以此决定所述的多个第二脉宽范围。
19.一种频率快速锁定方法,适用于频率合成,其特征在于,包括接收一第一脉波信号,其中,该第一脉波信号表示一相位延迟输入信号的相位领先一参考时脉信号的相位;接收一第二脉波信号,其中,该第二脉波信号表示所述相位延迟输入信号的相位落后所述参考时脉信号的相位;产生一状态信号,其中,该状态信号表示第一脉波信号的状态转换是否领先于第二脉波信号的状态转换;根据第一脉波信号的脉波宽度而产生一第一脉宽信号,其中,该第一脉宽信号表示第一脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第一脉宽范围中的其中之一;根据第二脉波信号的脉波宽度而并产生一第二脉宽信号,其中,该第二脉宽信号表示第二脉波信号的脉波宽度属于一脉宽范围,该脉宽范围为预设的多个第二脉宽范围中的其中之一;以及根据状态信号、第一脉宽信号以及第二脉宽信号,产生一校准信号,用以控制输入信号的频率。
20.如权利要求19所述的频率快速锁定方法,其特征在于,更包括接收一参考信号及一输入信号;根据参考信号,产生多个时脉信号,其中,该多个时脉信号具有依序递增的相位偏移;根据输入信号的相位,选择所述的多个时脉信号的其中之一为一参考时脉信号;以及根据输入信号作相位延迟以产生一相位延迟输入信号,其中,该相位延迟输入信号的相位较输入信号的相位更接近于参考时脉信号的相位。
全文摘要
一种频率合成的快速锁定装置及方法。转变侦测器接收第一脉波信号及第二脉波信号,并产生状态信号。其中,第一脉波信号表示输入信号的相位领先参考信号的相位,第二脉波信号表示输入信号的相位落后参考信号的相位,且状态信号表示第一脉波信号的有意义转变是否领先于第二脉波信号的有意义转变。一脉宽侦测器产生第一脉宽信号,其是表示第一脉波信号的脉宽落在多个第一预设脉宽范围中的何者。另一脉宽侦测器产生第二脉宽信号,其是表示该第二脉波信号的脉宽落在多个第二预设脉宽范围中的何者。根据状态信号、第一脉宽信号以及第二脉宽信号,控制逻辑产生校准信号用以来调整输入信号的频率。
文档编号H03L7/18GK1801624SQ20051009713
公开日2006年7月12日 申请日期2005年12月30日 优先权日2005年1月3日
发明者萧启明, 郭仓甫 申请人:联发科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1