高频信号接收装置及其制造方法

文档序号:7848007阅读:413来源:国知局
专利名称:高频信号接收装置及其制造方法
技术领域
本发明涉及接收电视信号等的高频信号的高频信号接收装置及其制造方法。
背景技术
下面,说明以往的高频信号接收装置。
图25是以往的高频信号接收装置的框图。
该高频信号接收装置按以下方式构成。
棒状天线1接收用数字信号调制后的高频信号。选台部2接收来自棒状天线1的信号。解调部3与选台部2的输出连接。维托毕修正部(viterbi校正部)4与解调部3的输出连接。里德-所罗门修正部(reed-solomon校正部)5与维托毕修正部4的输出连接。输出端子6与里德-所罗门修正部5的输出连接。判断部7也与维托毕修正部4的输出连接。控制部8插入到判断部7与解调部3之间。这里,维托毕修正部4和里德-所罗门修正部5包含在修正部102中。控制部8和判断部7包含在控制块104中。
这样的高频信号接收装置已在例如特开2001-77713号公报中公开。
在这样的以往高频信号接收装置中,控制部8仅控制解调部3。因此,在误码率大时,控制部8,对误码率的改善是有限的。
另外,在将该高频信号接收装置应用于移动体或便携式设备时,有时对于建筑物的遮挡引起的电波状态的变化以及随着移动引起的电波状态等的变化,不能灵活而迅速地应对。

发明内容
本发明的目的旨在提供以小的误码率接收包含数字电视广播的广播信号等高频信号的高频信号接收装置。
在本发明的高频信号接收装置中,高频信号输入选台部。选台部的输出信号输入解调部。解调部的输出信号输入错误修正部(校正部)。判断部判断从错误修正部输入的误码率是否在预先设定的值以上。控制部根据上述判断部的判断结果控制构成高频信号接收装置的多个部分。控制部有选择地控制多个部分中的某一个,以降低误码率。
另外,本发明的制造方法将窄频带滤波器的通过频带的与干扰信号对应的频率变化存储到与控制部耦合的存储部中。
按照本发明,可以提供误码率小的高频信号接收装置。


图1是本发明的一个实施例的高频信号接收装置的框图。
图2表示向实施例2的高频接收装置输入的信号的频率特性的概况。
图3是实施例2的高频接收装置的框图。
图4A、图4B表示实施例2的高频放大器的特性。
图5表示实施例2的向高频放大器输入的输入信号水平与中频放大器的增益的关系。
图6是实施例3的高频接收装置的框图。
图7是实施例4的高频接收装置的框图。
图8是实施例5的高频接收装置的框图。
图9是实施例6的高频接收装置的框图。
图10表示实施例6的高频放大器的特性。
图11也表示实施例6的高频放大器的特性。
图12也表示实施例6的高频放大器的特性。
图13是实施例7的高频接收装置的框图。
图14是实施例8的高频接收装置的框图。
图15表示向实施例8的高频接收装置输入的高频信号的频率特性的概况。
图16A、B、C表示高频接收装置中的中间频率移动时的频率特性。
图17A、B、C表示高频接收装置中的中间频率移动时的频率特性。
图18表示控制部的逻辑表。
图19是实施例9的高频接收装置的框图。
图20为了说明实施例9的控制部的动作而表示本地振荡器的频率特性。
图21也同样为了说明实施例9的控制部的动作的本地振荡器的频率特性。
图22表示实施例9的本地振荡器的频率特性。
图23A、B、C表示实施例9的高频信号接收器的动作。
图24为了说明实施例9的高频信号接收器的动作而表示接收信号的概略的频率特性。
图25是以往的高频信号接收装置的框图。
具体实施例方式
实施例1.
下面,参照

本发明的实施例1。
图1是本发明的一个实施例的高频信号接收装置的电路框图。
在图1中,调谐天线20具有接收经数字信号调制而成的高频信号的不平衡型的输入调谐部。该输入调谐部通过电感20a和变容二极管20b的并联连接而构成。电感20a以导体图案形成在电介质上。变容二极管20b,其电容值根据供给给控制端子20c的控制电压而变化。因此,天线20的调谐频率随该控制电压而变化。这里,当接收的希望信号的频率与调谐天线20的调谐频率一致时,输入调谐部就使希望信号通过,抑制希望信号以外的噪音。
调谐天线20,为了提高其接收灵敏度,最好设在在接收状态下位于机器的上方的位置上。
另外,构成输入调谐部的电感20a和变容二极管20b以不致相互带来噪音影响的程度相接近地设置。因此,噪音难以串入(混入)供给给选台部的高频信号中,所以,可以减小误码率。
不平衡·平衡变换电路21将由调谐天线20供给的不平衡的高频信号向平衡的高频信号变换。
即使调谐天线20与希望信号调谐、抑制不需要的高频信号,但调谐天线20与选台部22的距离越远,则在连接在其间的线路等中越容易串入新的干扰噪音等。因此,调谐天线20和不平衡·平衡变换电路21,以使该调谐天线20与不平衡·平衡变换电路21之间的线路的电感减小、且在该线路中不接收高频信号的程度靠近地配置。这样,该接收装置就增强了抗干扰性,即使对于噪音等,误码率也不会增大。另外,不平衡·平衡变换电路21与选台部22之间用抗干扰性强的平衡线路连接。因此,即使该线路的距离增长,由来自外部的噪音引起的误码率也不会增大。
选台部22与不平衡·平衡变换电路21的输出连接。选台部22对由天线20选择的频率进行频率变换,并进行I/Q解调。
选台部22包含输入端子23a及23b、高频放大器24、本地振荡器25、混合器(混频器)26、表面弹性波(声表面波)(SAW)滤波器27、I/Q解调器28、PLL电路31和石英振荡器32。
这里,I/Q解调器28由本地振荡器29和混合器30构成。PLL电路31与本地振荡器25连接成环路。石英振荡器32生成PLL电路31的基准信号。输入端子23a、23b作为平衡输入端子工作。
高频放大器24放大由调谐天线20选择的频率。高频放大器24通过改变控制端子24a的电压而改变其放大率。
在混合器26中,高频放大器24的输出与其一方的输入端子连接,而本地振荡器25的输出与其另一方的输入端子连接。混合器26将本地振荡器25的振荡信号和高频放大器24的输出信号混合,向接收信号的最大频率(约900MHz)的约1.5倍的中间频率信号变换。在本实施例中,中间频率信号的频率为1.2GHz。因此,该接收装置不易受到由电视广播信号和本地振荡器的输出信号的高次谐波产生的2次畸变、3次畸变等引起的干扰。
SAW滤波器27中输入混合器26的输出信号。SAW滤波器27以中间频率为中心,将例如作为NTSC制式电视广播信号的带宽的6MHz作为其通过频带。SAW滤波器27具有非常陡的衰减特性,所以,可以良好地仅使所需要的频率信号通过。因此,可以可靠地排除不需要的干扰。
另外,在数字窄频带电视广播信号的情况下,其带宽约为428kHz。
此外,因为作为中间频率而使用1.2GHz这样的非常高的频率,所以,可以使SAW滤波器27缩小,从而高频信号接收装置可以实现小型化。
在I/Q解调器28中,SAW滤波器27的输出信号输入混合器30的一方的输入端子,而本地振荡器29的输出信号输入另一方的输入端子。
混合器30由图1中未示出的第1混合器和第2混合器形成。第1混合器将来自本地振荡器29的信号与来自SAW滤波器27的信号混合。第2混合器将把来自本地振荡器29的信号相位反转90度后的信号与来自SAW滤波器27的信号混合。通过用各个混合器将信号混合,I信号和Q信号直接被解调。因此,不必另外设置检波器等,所以,可以得到小型的高频信号接收装置。这里,作为本地振荡器29的振荡频率,采用与中间频率信号的频率基本上相同的频率,由此,I信号和Q信号直接被解调。
PLL电路31包含可编程计数器33、基准计数器34、比较器35、PLL控制部36和滤波器52。
可编程计数器33与本地振荡器25连接,将本地振荡信号分频。基准计数器34将石英振荡器32的输出分频。比较器35的一方的端子与可编程计数器33的输出连接,基准计数器34的输出与另一方的端子连接,比较这两个输出信号的频率。
PLL控制部36插入在比较器35的输出与本地振荡器25之间,根据比较器35的结果控制本地振荡器25。
这里,以2线式构成的控制端子33a与可编程计数器33连接。通过将数据赋予控制端子33a,改变上述可编程计数器33的分频比,改变频率。即,当控制端子33a的数据变更时,产生由可编程计数器33分频的值与基准计数器34的输出的差。PLL控制部36根据比较器35对其差进行比较的结果来控制本地振荡器25的振荡频率。
当由可编程计数器33分频的值与基准计数器34的输出一致时,PLL控制部36从输出端子36a输出锁定信号。
解调部37接收I/Q解调器28的输出信号。解调部37由OrthogonalFrequency DiVision Multiplexing(OFDM)解调部38和控制该OFDM解调部38的寄存器39构成。这里,解调部38根据输入寄存器39的端子39a的数据进行控制。
错误修正部40的输出与输出端子41连接。错误修正部40由维托毕修正器42和里德-所罗门修正器43构成。维托毕修正器42与解调部37的输出连接。维托毕修正器42的输出与里德-所罗门修正器43连接。
维托毕修正器42判断解调后的数字信号是否不违反预先决定的规则,并对违反的部分进行信号的修正(校正)、复原。里德-所罗门修正器43进而对由维托毕修正器42修正过的数字信号进行修正、复原。用于由里德-所罗门修正器43进行修正的里德-所罗门数据预先附加到发送来的图像信号数据上。里德-所罗门修正器43根据该里德-所罗门数据和所发送来的图像信号,修正、复原数字信号。
此外,构成其图像信号的数字信号的位数、里德-所罗门数据的位数随各国的广播制式而不同。但是,通常在维托毕修正器42的输出中的误码率在0.0002以下时,可以将里德-所罗门修正器43的输出的误码率设为0。
微型计算机(以下,称为CPU)44具有判断部45、控制部46、存储器47和开关49。判断部45与维托毕修正器42的输出连接。控制部46与判断部45的输出连接。开关49与控制部46的输出连接,并切换向控制端子20c、24a、33a、39a的信号。
判断部45监视经过维托毕修正后的误码率,在该值超过0.0002并且判定为误码率稳定时,控制部46就选择控制端子20c、24a、33a、39a中的某一个,输出控制信号。
接收装置的各部分根据来自控制部46的信号进行控制。
这里,判断部45仅进行误码率的判断。因此,不能判断各部分(调谐天线20、高频放大器24、PLL电路31、解调部37)处于什么样的状态。在该状态下,如果尽管误码率在0.0002以下,但控制部46仍进行各部分的控制,则有时特性也向误码率恶化的方向变化。即,控制部46对所选择的控制的各部分改变控制电压以使之暂时向某一方向变化,判断部45检测其结果并判断误码率是增大还是减小。
判断部45不进行各部是否在最佳的状态下动作的判断。因此,控制电压不一定向误码率良好的方向变化。在被控制部的控制电压处于最佳点时,误码率会因为使电压变化而增大。
这样,若在判断部45中的误码率在0.0002以下时进行新的控制时,则会因该新的控制而引起特性向误码率恶化的方向变化。
另外,在判断部45未作出已成为稳定状态的判断且控制部46进行新的控制时,有时在由前面进行的控制引起的误码率的改善结果达到稳定状态之前就进行了新的控制。这种情况下,控制就变得不稳定,反而使误码率恶化。这时,由于误码率的增加而发生的黑噪音的改善就需要一定时间。因此,控制部46在判定判断部45已稳定之后,才开始进行新的控制。这样,可利用稳定的控制迅速改善黑噪音。
因此,控制部46,在判断部45作出误码率超过0.0002并且误码率已稳定的判定时,再开始进行控制。
另外,当控制部46进行控制、误码率减少时,就进一步将控制电压向相同方向变更。但是,当进行控制的结果是误码率增大时,则向相反方向进行控制电压的变更。各部的控制电压存在误码率的最低点、即最佳点,若超过该点使控制电压进一步变化,误码率反而将增大。这样,找出各部的最佳的控制点,以最良好的状态进行接收,就可以减小误码率。
下面,说明在判断部45中如何作出误码率已稳定的判断。
判断部45定期地监视维托毕修正器42的输出信号,并将误码率存储到存储器47中。判断部45进行前次存储到存储器47中的误码率与新的误码率的比较。在两者没有差时,判断部45就作出误码率已稳定的判定。
这里,如果判断部45只进行该比较,则在因外部干扰等引起误码率增大时也不进行新的控制,直至外部干扰引起的误码率稳定为止。因此,误码率达到稳定需要一定的时间。
因此,在变更控制电压时,各部各自达到稳定的稳定时间也存储到存储器47中。在即使超过了该稳定时间误码率仍不稳定时,就进行视为稳定的判断,并开始进行新的控制。
即,在即使超过了对各部设定的稳定时间,误码率仍不稳定的情况下,就认为是控制以外的别的原因或新的外部干扰引起的。这时,就设定为开始进行新的控制。这样,即使由于突发的电波状况或接收状态的变化等引起的误码率增大,也可以迅速地重新进行控制。
这里,在要是经过了各部达到稳定状态的时间中最长的时间就判定为稳定状态的情况下,就不需要存储与各部的条件符合的时间。因此,存储器47的存储容量可以较小。从而可以使用廉价的存储器。
端子36a将来自PLL控制部36的锁定信号向控制部46输出。这时,控制部46识别出PLL电路31已锁定。这样,就识别出选台部22的稳定状态,从而可以可靠地进行PLL电路31的控制。
此外,当从PLL电路31输出表示由于振荡频率的偏移等引起锁定偏离的信号时,接收到该信号的控制部46可以不判断误码率而根据该信号进行向选台部的控制。因此,可以迅速地使数据的误码率稳定。这样,即使由于选台部22的锁定偏离引起的黑噪音而发生图像的丢失,也可以在短时间内修复图像。
利用上述结构,控制部46选择控制调谐天线20、高频放大器24、PLL电路31和解调部38。从而,可以有效地改善误码率。
因此,在接收数字电视广播信号时,不易发生因接收信号数据的误码率增大而引起的图像的黑噪音。这时,可以以优异的画质显示广播的内容。
这里,控制部46从经控制而使误码率达到稳定状态的速度快的部分开始顺序进行控制。即,从所控制的部分达到稳定的时间、与其后段的电路的处理所必需的时间之和最短的部分开始进行控制。这样,就可以较快地做到误码率的改善。因此,通过误码率的降低,可以较迅速地抑制发生的画面的黑噪音。这样,就可以缩短因黑噪音引起的图像的丢失时间。此外,即使图像信息有丢失,也可以改善画质,达到识别不出该丢失的程度。
另外,再控制各部时的各部分达到稳定的时间与各部分的处理时间相比非常短的情况下,若从靠近判断部45的解调部37开始进行控制,则判断部45可以较早地进行判断。
其理由如下再控制部46进行控制后直到判断部45进行判断的时间基本上等于再控制的部分的处理时间与其后段的处理时间的总和。因此,通过从靠近判断部45的部分开始顺序进行控制,可以较迅速地使误码率稳定。
另外,信号通过从天线20到维托毕修正器42的各部分的电路,并被处理。因此,例如,若从位于信号流的上游的天线20侧开始进行控制,则在控制之后直到判断部45判断其结果为止需要一定的时间。因此,如果从位于信号流的下游的维托毕修正器42开始进行控制,判断部45就可以较迅速地检测其结果,从而可以使数据的误码率较快地稳定。因此,即使发生因黑噪音引起的图像丢失,也可以在短时间内修复。结果,即使画面有丢失等也可以改善到不能将其认出的程度。
这里,需要控制各部中的多个部分时,例如,在接收频道变更时,反而从误码率达到稳定的时间长的部分开始顺序传送控制信号。这样,便可迅速地使控制稳定。或者,也可以在控制部46发送出所有的控制信号之后,判断误码率是否已稳定。
此外,控制部46在根据判断部判定误码率在0.0002以下时不进行控制。因此,仅在误码率超过0.0002时消耗控制电流。这样,就可以减小使用功率。在高频接收装置应用于由电池驱动的便携式设备时可特别有利地工作。
另外,高频放大器24、本地振荡器25、混合器26、SAW滤波器27、本地振荡器29、混合器30的输入输出及连接在它们之间的线路全部平衡地构成。
即,混合器26和SAW滤波器27由抗干扰能力强的平衡电路形成。因此,即使例如本地振荡器25、29的振荡信号及其高次谐波等向混合器26、30或SAW滤波器27等中串入,干扰也可以被消除。
因此,由于抗干扰能力强,所以可以改善电路的S/N比。
另外,可以不发生干扰地缩短本地振荡器25及29与混合器26及30或SAW滤波器27等的距离。
另外,可以不需要或简易地构成本地振荡器25及29与混合器26及30或SAW滤波器27间的金属制的隔板或屏蔽框体等。因此,高频信号接收装置可以小型化,从而其成本也可以降低。
即,具有复杂的隔板的框也不必需要,只要用仅能够将从外部辐射进去或或从该高频信号接收装置辐射出来的高频泄漏信号遮蔽的简单的罩子即可,因此,可以提供廉价的高频信号接收装置。
另外,如上所述,电路整体由平衡电路形成。因此,即使减小各个电路间的距离,也不会相互带来干扰。因此,由于本地振荡器25、29的振荡信号干扰而产生的电路的S/N比不会恶化。因此,也可以将高频放大器24、混合器26及30、本地振荡器25及29、PLL电路31设成一体的IC。这样,便可得到小型且易于生产加工的高频信号接收装置。
另外,在接收希望频道的附近具有强输入信号时,可加以控制使得在调谐天线20的调谐频率向消除强输入信号的方向偏离后的状态下进行接收。这时,就防止了因强输入信号引起的误码率的恶化。
此外,因为调谐天线20抑制接收希望以外的频道的信号,所以,在高频放大器24中不易发生信号的畸变(失真)。因此,高频放大器24可以使用廉价的双极型的晶体管构成。即,高频放大器24和混合器26及30、本地振荡器25及29、PLL电路31可以集成为1个双极型IC。这样,便可提供小型且易于生产加工性的的高频信号接收装置。
另外,在来自电视台的高频信号的频率根据地域而有意地偏离基准进行广播时,通过变更PLL电路31的可编程计数器33的数据便可应对。
实施例2.
下面,参照

实施例2的高频接收装置。
图2表示向实施例2的高频接收装置输入的信号的一例的频谱(spectrum)。
数字广播中利用的频率为从约90MHz至约900MHz,使用既有的模拟广播的频带宽度。
在该广播频带内,混合存在既有的模拟广播信号120及121和利用模拟广播不使用的间隙的频带宽度122进行广播的数字广播信号123。这里,数字广播信号123的信号水平124设定得比模拟广播信号120及121的信号水平125低。
其理由如下
在以往的模拟广播120及121中,以在相邻的频带宽度中没有广播信号的方式利用频率。即,在NTSC制式电视广播的情况下,通常以相隔12MHz的频率间隔设定各频道的频带。因此,相邻频道的抗干扰能力只要达到能够与上述条件对应的程度。
但是,由于数字广播同时进行,所以在相邻的频道中(NTSC制式的情况下,通常为相隔6MHz的频道)也存在广播信号。因此,若该数字广播信号123的信号水平124大,则既有的模拟广播的接收机就会受到由信号123引起的干扰。因此,信号水平124以比模拟广播信号120及121的信号水平125还低约20dB左右的低的水平进行广播。
因此,数字广播信号的接收机最好具有可以高精度地接收该低的水平的信号的能力。此外,由于接收希望频道的信号的水平低,所以,在其附近(例如相邻的频带中)存在有水平较大的模拟广播信号时,优选为可以排除由该信号引起的干扰的结构。
本实施例2的高频接收装置可以减小模拟广播信号成为干扰而发生的误码率。
图3是本实施例2的高频接收装置的框图。在图3中,对于和图1相同的部分标以相同的标号,并省略其说明。
天线20接收混合存在模拟广播和数字广播的广播信号。所接收的信号输入RF滤波器130。RF滤波器130滤除接收频带频率以外的不需要的频率。
RF滤波器130的输出信号输入不平衡·平衡变换电路21。不平衡·平衡变换电路21的平衡输出信号输入高频放大器131。高频放大器131根据向其控制端子131a输入的控制电压而改变其增益。
高频放大器131,使用MOS晶体管等以使得虽然其噪音指数(以后,称为NF)不良、但增益的控制范围大并且可以进行在宽频带宽度中的放大,为了提高抗干扰能力,使用平衡型的放大电路构成。
在混合器26中,高频放大器131的平衡输出与其一方的输入连接、而本地振荡器25的平衡输出与另一方的输入连接。混合器26将希望频道的信号向1.2GHz的第1中间频率信号变换。混合器26和本地振荡器25、它们的连接线路也用抗干扰能力强的平衡电路构成。
中频放大器134中输入混合器26的平衡输出,其增益随着供给给其控制端子134a的电压而变化。通过高频放大器131和中频放大器134进行放大,由此可以在宽的可变范围内控制增益。中频放大器134也是平衡型的放大器,抗干扰能力强。因此,可以缩短各电路间的距离,从而可以集成到集成电路(IC)内。
在实施例2中,混合器26、本地振荡器25、与本地振荡器25环路连接的PLL电路31以及中频放大器134都集成在使用了双极型晶体管的IC中。
平衡·不平衡变换电路135将中频放大器134的平衡输出信号向不平衡信号变换。
SAW滤波器136与平衡·不平衡变换电路135连接。另外,SAW滤波器136也可以是SAW滤波器以外的窄频带滤波器。SAW滤波器136的通过频带的中心的频率是作为中间频率的约1.2GHz。该通过频带的宽度是作为1频道的频带宽度的约6MHz。
SAW滤波器136滤除接收希望频道的信号以外的不需要的信号。
在第2混合器137中,其一方的输入连接SAW滤波器136、而其另一方的输入连接第2本地振荡器138连接。第2混合器137将第1中间频率向比其更低的第2中间频率信号变换。
与第2混合器137连接的解调部37解调中间频率信号。错误修正部40修正该解调后的信号的错误。经该错误修正后的信号从输出端子41输出。
水平检测器140连接SAW滤波器136的输出,检测接收希望频道信号的功率水平。
存储器141将用于以解调部37进行解调的最佳的SAW滤波器136的输出信号的水平、和高频放大器131饱和的极限水平值、作为基准值进行存储。
在第1运算器142中,水平检测器140的输出与其一方的输入连接、而存储器141与其另一方的输入连接。第1运算器142比较由水平检测器140检测出的接收希望频道信号的水平和最佳的SAW滤波器136的输出信号的水平的基准值,并输出其水平差。
带通滤波器143仅选择性地使在接收希望频道时成为干扰的接近中间频率的频率的信号通过。这里,带通滤波器143具有包含接收频道频带之上下的各2个频道部分的频带的通过频带(30MHz)。
峰值功率检测器144中输入带通滤波器143的输出信号,检测该信号的峰值功率。峰值功率检测器144输入以接收希望频道为中心、上下单侧15MHz的频带的频率的信号,检测这些信号中最高的水平的信号。
在第2运算器145中,峰值功率检测器144的输出信号被供给给其一方的输入、而存储器141与其另一方的输入连接。第2运算器145计算出由峰值功率检测器144检测出的信号的水平和存储器141中存储的高频放大器131饱和的极限水平值的差,并输出该计算水平误差。
在峰值功率检测器144的输出与存储器141的基准值相同时,它们的水平误差为0,该第2运算器145的输出即为0。这表示在接收频道的附近不存在水平高的信号。这样,即可检测得知在希望频道的附近是否存在比希望频道的信号更高水平的信号。
这里,在由峰值功率检测器144检测出的信号的水平比存储器141中存储的值小时也同样,作为水平差输出0。
在水平判断器146中,第1运算器142计算出的误差被供给给其一方的输入、而第2运算器145计算出的水平误差被供给其另一方的输入。
在从第2运算器145输出的水平差为0时,水平判断器146就向增益控制器147输出运算器142的输出。
在从第2运算器145输出的水平差的输出不为0时,水平判断器146就向增益控制器147输出该运算器145的输出。
增益控制器147将来自第3运算器146的输出信号积分,除去噪音成分,生成向高频放大器131和中频放大器134输入的控制信号。控制信号向控制端子131a、134a供给,将高频放大器131和中频放大器134的增益控制为最佳。
PLL电路31、54分别与本地振荡器25和第2本地振荡器138环路连接。
下面,对以下的(1)、(2)的情况说明在上述结构的高频接收装置中控制高频放大器131、中频放大器134的增益的动作。
(1)在希望频道123的附近无构成干扰的模拟信号120或121的情况运算器142向增益控制器147输出表示由水平检测器140检测出的接收希望频道信号的水平和存储器141中存储的基准值的差的信号。增益控制器147根据该差改变控制电压。由此,使希望频道的信号水平与基准值一致。
这里,控制部46也可以向高频放大器131的增益增大的方向控制。即,当误码率在预先决定的值以上时,高频放大器131的增益进一步增大。在弱电场等情况下,在高频放大器131饱和之前有余量时,高频放大器131的增益即使增大信号的畸变也不增大。这时,可以得到NF优异的高频接收装置。
(2)在希望频道123的附近存在构成干扰的模拟信号120或121的情况图2所示的模拟信号120或121的信号水平125与希望频道123的信号水平124的水平差126,被向增益控制器147供给。增益控制器147根据该水平差126改变控制电压。
下面,说明高频放大器131和中频放大器134的动作。
图4A、B表示该高频放大器的特性、即向高频放大器131的输入信号水平与其输出信号水平的关系。
图5表示向高频放大器131的输入信号水平与中频放大器134的增益的关系。横轴表示向高频放大器131的输入信号水平,纵轴表示中频放大器134的增益。
在图4A、B中,横轴是向高频放大器131的输入信号的水平。纵轴是高频放大器131的输出信号的水平。
在图4A中,线152表示相对于高频放大器131的输入信号的水平的输出信号。这里,高频放大器131被控制为不论对模拟广播信号的水平125还是对水平125’都输出该输出水平153。
在图4B中,线154表示相对于高频放大器131的输入信号的水平的输出信号。这里,对于数字广播因为进行错误修正处理,所以与模拟广播接收相比,高频放大器131的NF低也可以。另外,因为数字广播信号在其信号内具有很多信号成分,所以,其能量大。因此,数字广播接收时的来自高频放大器131的输出信号水平155设定得比图4A所示的模拟广播时的输出水平153小。
高频放大器131即使输入饱和水平156以上的水平的信号,也不放大到增益极限157以上。因此,当饱和水平156以上的水平的信号向该高频放大器131输入时,高频放大器131将使信号发生畸变,从而将产生干扰信号等。即,当在数字广播接收时,仅在希望信号的水平进行增益控制时,有时高频放大器131会由于水平大的模拟广播信号而发生畸变。
另外,当仅根据高频放大器131的输出信号的峰值电压的水平控制增益时,有时被控制为对水平大的模拟广播信号的水平125输出上述输出水平155。这时,本来应接收的数字信号,其输出水平减小,因此有时不能接收。
因此,在本发明的接收装置中,按以下方式控制增益。
在判定接收数字广播时在接收频道的附近不存在比饱和水平153大的干扰信号时,就根据接收频道的信号水平124控制高频放大器131的增益。
在判定存在有比饱和水平153大的干扰信号(模拟广播信号)时,就根据其水平差126的大小使高频放大器131的增益曲线154向增益曲线157变化。这样,向高频放大器131的输入信号水平的饱和就成为饱和点158。相对于模拟信号121的信号水平125的输出就成为水平159,从而高频放大器131不饱和。因此,高频放大器131的输出信号的畸变就小。
这里,在混合器26中向第1中间频率进行频率变换后的数字广播的接收频道123的信号水平仅减小了减小量160。因此,如图5所示,中频放大器134使其增益161向增益162变化,以弥补该减小量160。这样,来自中频放大器134的输出信号水平就基本上为一定值。
这里,本实施例2的错误修正部40使用与实施例1相同的结构。
包含在错误修正部40中的维托毕修正器42的输出被连接至判断部45。
在判断部45中,在维托毕修正后的信号的误码率在0.0002以上时,就向控制部46发出表示该主旨的信号。接收到该信号的控制部46就对增益控制器147发出指示,以进行高频放大器131和中频放大器134的增益的控制。
利用上述结构,在由于位于接收希望频道的数字广播信号的附近的水平高的广播信号而使维托毕修正器42的误码率恶化至0.0002以上时,增益控制器147就控制高频放大器131和中频放大器134的增益。因此,在输出端子41中的误码率不为0时,就进行高频放大器131和中频放大器134的增益的控制。这样,便可得到误码率稳定的高频接收装置。
运算器145,与存储器141中存储的高频放大器发生畸变的极限值比较,控制高频放大器131的增益。因此,即使在作为接收希望频道的数字广播信号的附近存在有水平高的广播信号,高频放大器131也不会饱和。因此,可以将接收希望频道的水平控制为最佳状态,从而可以减小高频放大器131的信号的畸变。
这样,便可提供误码率小的高频接收装置。
另外,现今在便携式电话或在汽车的车内等的移动状态下视听数字广播的需求越来越高。
因此,在本实施例2的数字广播接收装置中,第1中间频率采用1.2GHz。因此,该数字广播接收装置与使用900MHz频段、1.5GHz频段的频率的便携式电话或使用1.9GHz频段的频率的个人手持电话系统(PHS)等便携式设备相互不会发生影响。
因此,该高频接收装置即使搭载到便携式设备内,发生干扰的可能性也很少。
特别是在移动中接收数字信号时,与电视台的距离和方向等电波状况是时时刻刻在变化的。
本实施例的高频接收装置在接收希望频道的接收状态下,始终在判断误码率,并同时检测出以接收希望频道为大致中心预先决定的频带宽度内的模拟广播信号的峰值功率。因此,在该高频接收装置中,在误码率恶化时,根据检测出的峰值功率值,控制高频放大器或中频放大器的增益。这样,该高频接收装置相对于因移动而时时刻刻变化的信号水平的变化可以即时应对、迅速地改善误码率。
此外,在该高频接收装置中,由水平判断器146,根据由峰值功率检测器144的输出产生的误差和与水平检测器140的输出的误差进行计算,但是,水平判断器146也可以是单纯的比较器。这时,比较器将峰值功率检测器144的输出与水平检测器140的输出进行比较,在峰值功率检测器144的输出一方大的情况下,就向增益控制器147输出信号。
即,增益控制器147根据该信号使控制电压向使高频放大器131的增益减小的方向变化微小量。这时,通过减小高频放大器131的增益,减小混合器133的输出信号水平。为了将其弥补,增益控制器147使中频放大器134的控制电压向使中频放大器134的增益增大的方向变化微小量。
作为水平判断判断器146,使用比较器时,就不进行运算。因此,这时第3运算器就变得没有必要,从而可以提高用于控制增益的响应速度。因此,可以迅速地改善由于相邻频道信号的水平变化而引起的误码率的恶化等。
这对便携式电话或车载用高频信号接收装置等信号水平时刻变化的设备来说是重要的优点。
在本实施例的高频信号接收装置中,水平检测器140检测希望频道的信号水平,但是,也可以是峰值功率检测器144检测该信号水平。这时,峰值功率检测器144将该信号的水平向运算器142输出。
在本实施例2中,为了检测接收频道的信号水平,水平检测器140根据SAW滤波器136的输出检测希望频道的信号水平。但是,如果峰值功率检测器144预先采用同时读取希望频道频率的信号水平和峰值功率的结构,则也可以仅将峰值功率检测器144的输出中希望频道频率的信号水平向水平检测器140分割输入。这时,信号水平不会减小由于SAW滤波器136引起的损失。因此,可以进行高精度的信号水平的检测。
在上述说明中,水平检测器140、运算器142、峰值功率检测器144、第2运算器145、水平判断器146利用电路构成。
这些电路各自的动作,也可以作为程序的步骤由CPU执行。这时,水平检测器140、运算器142、峰值功率检测器144、第2运算器145、水平判断器146等电路被简化。因此,高频接收装置可以小型化且廉价地构成。
在上述结构中,由于在高频放大器与混合器之间不存在滤波器,所以,它们之间的损失不存在,从而可以减小NF的恶化。因此,对中频放大器可以不使用NF优异的高价的砷化镓晶体管等而使用NF较差但价格低廉的晶体管等形成,从而可以得到廉价的高频接收装置。此外,混合器和本地振荡器等可以形成在同一IC内。因此,可以得到小型的高频接收装置。
另外,在上述结构中,在即使由增益控制器控制高频放大器、中频放大器的增益,而误码率仍不在预先决定的值以下时,也可以恢复为进行控制以前的增益。这是因为,误码率并非是因高频放大器或中频放大器而引起恶化的。
如上所述,按照本实施例,即使在接收希望频道的数字广播信号的附近存在有水平高的广播信号,也可以控制得使高频放大器不成为饱和状态、而使接收希望频道的水平成为最佳状态。此外,根据接收信号的水平控制高频放大器和中频放大器的增益,以使接收希望频道的水平成为最佳状态。因此,可以得到误码率小的高频接收装置。
实施例3.
下面,参照

实施例3的高频接收装置。
图6是本实施例3的高频接收装置的框图。
在图6中,对于与图1、图3相同的部分标以相同的标号,并省略其说明。
在图6中,调谐天线20根据施加给其控制端子20c的信号改变调谐频率。
其增益被可变地控制的高频放大器172与调谐天线20的输出连接。
在混合器173中,高频放大器172的输出与其一方的输入连接、而本地振荡器174的输出与其另一方的输入连接。混合器173将输入信号向第1中间频率进行频率变换。
SAW滤波器136从中频放大器175的输出信号中滤除不需要的信号,得到包含第1中间频率的指定的频带的信号。
中频放大器175与SAW滤波器136的输出连接,可变地改变其增益,以放大SAW滤波器136的输出信号。
中频放大器175的输出信号由第2混合器137向第2中间频率变换。
解调部37解调第2中间频率信号。错误修正部40与解调部37的输出连接,其输出与输出端子41连接。这里,错误修正部40由与解调部37的输出连接的维托毕修正器42和与维托毕修正器42的输出连接的里德-所罗门修正器43构成。
维托毕修正器42进一步与判断部45连接,控制部46与判断部45的输出连接。
判断部45、控制部46集中在CPU44内。
这里,在第2运算器174中,峰值功率检测器144的输出被供给给其一方的输入、而水平检测器140的输出与其另一方的输入连接。这里,第1中间频率信号通过滤波器143向峰值功率检测器144供给。
另一方面,第1运算器141与水平检测器140的输出和存储器142的输出连接。
第1运算器141和第2运算器174的输出与水平判断器146连接。水平判断器146的输出、峰值功率检测器144的输出、控制部46的输出与增益控制器179的输入连接。增益控制器179的输出也与天线20的控制端子20c连接,控制其调谐频率。
在上述结构中,第2运算器174计算从SAW滤波器136的上游取出的包含较大的干扰信号的信号与从SAW滤波器136的下游取出的抑制了干扰信号后的信号的水平差,并输出该水平差。
第1运算器141比较水平检测器140的输出信号水平和存储器142的规定值,并输出其水平差。
水平判断器146比较运算器141和第2运算器174各自输出的误差信号,并将它们的差向增益控制器179输出。增益控制器179比较峰值功率检测器144的输出信号水平和高频放大器172饱和的信号水平的值。这里,增益控制器179在前者一方比后者大时就判定为在高频放大器中信号发生了畸变,并根据水平判断器146的信号的水平控制高频放大器172和中频放大器175的增益。另外,水平检测器140的输出与第2运算器174连接。
在峰值功率检测器144的输出与水平检测器140的输出相同时,第2运算器174的输出就为0。这表示在接收频道的附近不存在水平高的信号。因此,可以通过该结构检测在希望频道的附近是否存在比希望频道的信号水平更高的信号。
另外,本实施例3中的错误修正部40、判断部45使用与实施例2相同的结构。
判断部45在由维托毕修正产生的信号的误码率在0.0002以上时就向控制部46发送表示误码率超过0.0002主旨的信号。接收到该信号的控制部46向增益控制器179发送指示进行高频放大器172、中频放大器175的控制的信号。
即,判断部45仅在误码率恶化到0.0002以上时才指示增益控制器179控制高频放大器172和中频放大器175的增益。因此,在输出端子41的误码率不为0时,进行高频放大器172和中频放大器175的增益的控制。这样,便可得到误码率稳定的高频接收装置。
另外,和实施例2一样,在接收希望频道的接收状态下,始终在判断误码率,同时,以接收希望频道为大致中心检测预先决定的频带宽度内的模拟广播信号的峰值功率。因此,在移动体中,可以即时地应对时时刻刻变化的信号水平的变化。这样,可以得到在移动体中使误码率迅速地改善的接收装置。
此外,在本实施例3中,增益控制器179也进行调谐天线20的调谐频率的控制。这里,当增益控制器179从水平判断器接收到误差信号时,就加以控制以使调谐天线20的调谐频率比希望频道的频率变化微小量,使邻接频道的信号衰减。这样,就可以增大位于希望频道附近的干扰模拟信号的衰减量。
但是,当使调谐天线20的调谐频率从希望频道的频率变化时,对于希望频道信号也将增大损失。
因此,在本实施例3中,在第2运算器174的输出不为0时,即在希望频道123的附近存在有模拟广播信号120或模拟广播信号121时,控制部46进行以下的控制。
控制部46使调谐天线20的调谐频率比希望频道的频率变化微小量。控制部46为了弥补由此产生的希望频道的信号的衰减,向高频放大器172或中频放大器175的增益增大的方向进行控制。这样,相邻频道的干扰信号将难以向高频放大器172供给,高频放大器172的畸变减小。此外,由解调部37处理的信号的水平成为指定的值。因此,可以减小误码率。
此外,高频放大器172、混合器173、本地振荡器174由不平衡电路构成,但是,与实施例2一样,它们也可以用平衡电路构成。
另外,关于调谐频率的控制,也可以采用以下的结构。滤波器143包括具有接收频道频带和包含其上侧的频带的滤波器;和具有接收频道频带和包含其下侧的频带的滤波器。峰值功率检测器144从上述2个滤波器中的哪一个输入了具有比接收希望频道的水平大的水平的干扰信号。
峰值功率检测器144与控制部46连接,向控制部46输出从哪个滤波器检测到了干扰信号、即检测到的信号的频率在接收希望频道的频率上侧的还是下侧的信息。控制部46根据该信息通过增益控制器179进行控制以使调谐部20的调谐频率向与存在干扰信号的方向相反的方向变化。这样,便可进行向较适宜的方向变化的控制。
此外,在进入选台部之前,已经由控制部控制的调谐天线除去希望频道以外的不需要的信号。因此,可以防止由希望信号以外的信号产生的寄生信号或2次畸变、3次畸变等。这样,就不需要以往为了防止寄生信号或2次畸变、3次畸变所需要的牢固的屏蔽框体或隔板,所以,可以简化屏蔽结构。
实施例4.
下面,参照

实施例4的高频接收装置。
图7是本实施例4的高频接收装置的框图。
在图7中,对于与图1或图3相同的部分标以相同的标号,并省略其说明。
在图7中,天线20是调谐天线,根据其控制电压改变调谐频率。高频放大器172与调谐天线20的输出连接。在混合器173中,高频放大器172的输出与其一方的输入连接、而本地振荡器174的输出与其另一方的输入连接。中频放大器175与混合器173的输出连接。
这里,中频放大器175和高频放大器172根据向各自的控制端子供给的电压控制增益。中频放大器175的输出与SAW滤波器136连接。
在混合器182中,SAW滤波器136的输出与其一方的输入连接、同时本地振荡器181的输出与其另一方的输入连接。
在混合器180中,SAW滤波器136的输出与其一方的输入连接、同时本地振荡器181的输出通过90度相位器183而与其另一方的输入连接。
本地振荡器181产生与第1中间频率大致相同的频率的振荡信号。PLL56与本地振荡器181环路连接。混合器180、182将本地振荡器181的振荡信号与第1中间频率信号混合,直接输出彼此相位相差90度的I、Q信号。因此,不必设置其他的I、Q检波器。
这样,便可提供廉价且小型的高频接收装置。
I、Q信号向解调器187输入,并被解调。
解调器187与水平检测器184、运算器185、水平判断器189和增益控制器190集中在同一个CPU内。因此,可以得到小型的高频接收装置。
水平检测器184计算解调器187的信号的水平与存储器186中存储的规定值的误差。该规定值被设定为解调器187解调的信号成为预先决定的信号水平时的信号的水平。
在峰值水平检测器191中,滤波器148的输出与其一方的输入连接、同时存储器192与其另一方的输入连接。峰值水平检测器191的输出与判断器189连接。
存储器192存储作为模拟广播所判断的水平的功率值。在本实施例4中,存储器192将数字广播信号的强电场中的数字广播信号的最大的信号水平作为基准值进行存储。
峰值水平检测器191检测除了接收频道的相邻的多个频道的频带中的峰值功率。在其检测的水平与存储器192中存储的基准值的差在预先决定的值以上时,峰值水平检测器191就判定存在使接收信号产生畸变的高信号水平的频道。这时,峰值水平检测器191将表示存在干扰频道的信号向水平判断器189发送。
水平判断器189在没有从峰值水平检测器191接收到表示存在干扰频道的信号时,就将表示运算器185的差输出的有无的信息向增益控制器190发送。
增益控制器190在接收到表示有差输出的信号时就以预先决定的电压量控制高频放大器172和中频放大器175的增益。
水平判断器189在从峰值水平检测器191接收到表示有干扰频道的信号时,将表示干扰频道的有无的信息向增益控制器190发送。
控制部46根据在判断部45中的误码率超过0.0002的判断结果向增益控制器190传输表示该判断结果的信号。这时,增益控制器190,根据来自控制部46的信号使高频放大器172和中频放大器175的增益控制电压变化预先决定的电压的程度。这样,增益控制器190在减小高频放大器172的增益的同时,为了弥补该增益减小的量,增大中频放大器175的增益。
另外,增益控制器190,在由于位于接收希望频道的数字广播信号的附近的水平高的广播信号而使维托毕修正器42的误码率恶化到0.0002以上时,控制高频放大器172和中频放大器175的增益。因此,在输出端子41的误码率不为0时,进行高频放大器172和中频放大器175的增益的控制。
这样,便可得到误码率稳定的高频接收装置。
此外,峰值水平检测器191根据所检测的峰值水平与存储器192中存储的极限值差控制高频放大器172的增益。因此,即时在接收希望频道的数字广播信号的附近存在有水平高的广播信号,高频放大器172也不会成为饱和状态。因此,可以将接收希望频道的水平控制为最佳状态,从而可以减小在高频放大器172中的信号的畸变。这样,便可提供误码率小的高频接收装置。
实施例5.
下面,参照

实施例5的高频接收装置。
实施例5是将本发明应用于单变换调谐器的例子。
图8是本实施例5的高频接收装置的框图。
在图8中,对于与图1或图3相同的部分标以相同的标号,并省略其说明。
在图8中,与天线20连接的天线滤波器200是希望频道的频率成为其调谐频率的单调谐型滤波器。天线滤波器200的输出与高频放大器172连接。
级间滤波器201与高频放大器172的输出连接,被供给有放大后的信号。级间滤波器201是具有2个调谐电路的多调谐型滤波器。
这里,多调谐型滤波器201有2个调谐点,所以,调整各个调谐点,使得希望频道的频率成为其通过频带的大致中心。
在混合器202中,级间滤波器201的输出与其一方的输入连接、而频率可变本地振荡器203的输出与其另一方的输入连接。混合器202将所输入的高频信号中的希望频道信号向约57MHz的中间频率变换。
SAW滤波器204与混合器202的输出连接。SAW滤波器204的通过频带约为6MHz,其中心频率是与中间频率大致相等的57MHz,所以,可以使自其中心频率偏离6MHz以上的相邻信号等可靠地衰减。
中频放大器205与SAW滤波器204的输出连接,同时,用于放大的增益可以根据供给给其控制端子205a的电压而改变。中频放大器205因为仅输入中间频率信号,所以,不会由于干扰的模拟广播信号而饱和。因此,中频放大器205的信号的畸变很小。
这里,信号会因为天线滤波器200、级间滤波器201、SAW滤波器204等受到损失,所以,在中频放大器205中,最好使用NF良好的晶体管。
模拟数字变换器206与中频放大器205的输出连接。这里,变换为数字信号的信号被向解调器207供给。由解调器207解调后的信号向错误修正部40输出。
错误修正部40的一方的输出与输出端子41连接,其另一方的输出与判断部45连接。判断部45的输出与控制部46连接。
水平检测器210与解调器207的输出连接,以检测解调器207的输出信号的水平。
在运算器211中,水平检测器210的输出与其一方的输入连接,同时存储器212与其另一方的输入连接。
运算器211计算所检测出的解调器207的输出信号的水平与存储器212中存储的值的差。这里,存储器212存储解调器的最佳的信号水平的值。即,该运算器211判断由水平检测器210检测出的信号水平是否构成最佳值。
在增益控制器213中,运算器211的输出与其一方的输入连接、而控制部的输出与其另一方的输入连接。
增益控制器213的输出与中频放大器205的控制端子205a连接。因此,增益控制器213在存在有来自运算器211的误差信号时,根据该误差信号改变控制电压,从而改变中频放大器205的增益。
峰值功率检测器215与混合器202的输出连接。
在水平判断器216中,峰值功率检测器215的输出与其一方的输入连接、同时存储器217与其另一方的输入连接。存储器217将高频放大器172中发生畸变的极限值的水平的功率值作为基准值进行存储。
水平判断器216计算峰值功率检测器215与存储器217中存储的基准值的水平差。
增益控制器218插入在水平判断器216的输出与高频放大器172的控制端子172a之间。增益控制器213的输出也向增益控制器218供给。
这里,用虚线220包围的部分可以用IC等1个框形成。
下面,说明本实施例5的动作。
天线滤波器200的调谐频率是希望频道的频率。因此,天线滤波器200使希望频道的信号以外的信号衰减。这里,天线滤波器200为了既使信号的损失小、又使NF提高,用单调谐电路构成。因此,由希望频道频率仅偏离6MHz的相邻频道的信号只衰减约10dB。
在模拟广播和数字广播中,由于存在有约40dB以上的水平差,所以,在模拟广播位于相邻频道时,即使其信号通过了天线滤波器200,相邻频道的信号的水平仍然较大。
因此,在本实施例5中,峰值功率检测器215检测除了接收频道的相邻数个频道的频带的峰值功率。由峰值功率检测器检测出的信号水平在存储器217中存储的基准值以上时,就判定高频放大器172发生了畸变,并将其水平差向增益控制器218输出。增益控制器218根据接收到的水平差改变高频放大器172的控制端子的控制电压。
运算器211将由水平检测器210检测出的信号水平与最佳值的差信号向增益控制器213输出。增益控制器213根据该差信号控制中频放大器205的增益。
增益控制器218根据来自水平判断器216的信号控制高频放大器172的增益。这时,在干扰信号的水平过大时,就通过由增益控制器218进行的控制减小高频放大器172的增益。因此,会导致即使下游的中频放大器205的最大增益,解调部的电压也不会达到指定的值。这时,信号的NF恶化,误码率恶化。
因此,在本实施例5中,在中频放大器205的增益为最大增益(控制电压为最大电压)时,增益控制器213就指示增益控制器218增加电压,增大高频放大器172的增益。
根据上述结构,在维托毕修正器42的误码率因为位于接收希望频道的数字广播信号的附近的水平高的广播信号而恶化到0.0002以上时,增益控制器218就控制高频放大器172和中频放大器205的增益。
因此,在输出端子41的误码率不为0时,就进行高频放大器172和中频放大器205的增益的控制。这样,便可得到误码率稳定的高频接收装置。
另外,峰值功率检测器215以接收希望频道信号为大致中心,检测在某一规定的频带宽度内存在的频道信号的水平。该水平大于接收希望频道的信号时,增益控制器218向减小其增益的方向控制,使得即使水平的信号被输入到高频放大器也不会饱和。因此,即使在接收希望频道的数字广播信号的附近存在有模拟广播信号,高频放大器172也不会成为饱和状态,从而可以控制使接收希望频道的水平成为最佳状态。
因此,可以提供误码率小的高频接收装置。
另外,该高频接收装置在高频放大器172的上游具有单调谐滤波器200,所以,可以预先使相邻频道等的干扰信号衰减。因此,在高频放大器172中的畸变更难以发生。
实施例6.
图9是实施例6的高频信号接收装置的框图。
在图9中,对于与图1、图3相同的部分标以相同的标号,并省略其说明。
选台部22按以下方式构成。
输入端子301输入高频信号。高频放大器302中被供给了输入到上述输入端子301中的信号。这里,高频放大器302可以作为AGC电路的一例进行使用。
在混合器307中,高频放大器302的输出与其一方的输入连接、同时本地振荡电路308的输出信号被供给给其另一方的输入。滤波器309中被供给了混合器307的输出。AGC控制电路306中被供给了混合器307的输出。中频放大器311被供给了滤波器309的输出。这里,中频放大器311被作为第2AGC电路的一例进行使用。
在混合器314中,中频放大器311的输出被供给给其一方的输入,同时本地振荡电路313的输出信号被供给给其另一方的输入。滤波器315中给供给了混合器314的输出。
连接选台部22的输出的解调部37按以下方式构成。
滤波器315的输出信号被供给给解调部增益控制器316。解调部增益控制器316的输出信号被供给给AD变换器317。AD变换器317的输出被供给给数字滤波器318。数字滤波器318的输出被供给给解调电路319。供给数字滤波器318的输出信号的AGC控制电路321控制解调部增益控制器316的增益。
加权电路305中被输入了AGC控制电路321的输出电压和AGC控制电路306的输出电压,并将该输出电压供给给高频放大器302的增益控制端子322。
另一方面,加权电路310被输入了AGC控制电路321的输出电压和AGC控制电路312的输出电压,并将该输出电压供给给中频放大器311的增益控制用端子323。
解调部37的输出端子320与实施例1一样,与错误修正器40连接。错误修正器40与输出端子41、判断器45连接。
与判断器45连接的控制部46的输出信号被向与第1加权电路305和第2加权电路310的输入连接的加权控制电路304的输入端子303供给。
从混合器307输出的第1中间频率采用比输入信号高的频率,从混合器314输出的第2中间频率采用比输入信号低的频率。
对如上述构成的高频信号接收装置说明其动作。
输入到输入端子301中的高频信号水平,在例如当在-70dBm以上时对高频放大器302的增益控制起作用;当在-70dBm以下时对高频放大器311的增益控制起作用;此外,高频信号水平比高频放大器311可以进行增益控制的范围低时,高频放大器316的增益控制分别起作用。
例如从90MHz到770MHz的高频信号被输入输入端子301。该高频信号在由高频放大器302放大后,在混合器307中与本地振荡电路308的输出混合,变换为例如1200MHz的第1中间频率。此外,该第1中间频率被输入到AGC控制电路306中。另外,混合器307的输出在滤波器309中抑制希望信号以外的信号。
滤波器309的输出信号在由中频放大器311放大后,在混合器314中与本地振荡电路313的输出混合,变换为例如4MHz的第2中间频率。然后,第2中间频率进一步在滤波器315中抑制希望信号以外的信号。另外,AGC控制电路312控制中频放大器311的增益。
此外,从滤波器315输出的4MHz的第2中间频率由解调部增益控制器316放大。解调部增益控制器316的输出信号,在由AD变换器317变换为数字信号之后,由数字滤波器318进一步抑制希望信号以外的信号,输入到解调电路319中。由解调电路319解调后的输出信号从输出端子320输出。
另外,数字滤波器318的输出信号被输入到AGC控制电路321中。AGC控制电路321的输出电压被附加给解调部增益控制器316。这样,被增益控制而使得向解调电路319的输入信号水平成为一定。
此外,由控制部46施加给数据用输入端子303的控制用数据通过加权控制电路304而被供给给加权电路305的加权系数和加权电路310。这里,加权电路305、310的加权系数分别独立地设定。这样,便可适当地改变对相邻频道的干扰信号水平(AGC控制电路306的输出)和希望信号水平(AGC控制电路321的输出)的加权。因此,可以任意设定来自混合器307和混合器314的信号水平。
这样,以下的2个电压便可分别独立地进行加权。
(1)输入了希望信号水平和相邻频道的信号水平的AGC控制电路306的输出电压(以后,称为VAGC1)、(2)来自由滤波器309、滤波器315和数字滤波器318充分地抑制相邻频道的信号水平而仅输入了希望信号水平的AGC控制电路321的输出电压(以后,称为VAGC3)。
这样,就决定了相对于混合器307的输出信号水平的希望信号水平与相邻频道的信号水平的影响率。
另外,以下2个电压分别独立地进行加权。
(1)来自输入了希望信号水平和经滤波器309抑制过的相邻频道的信号水平的AGC控制电路312的输出电压(以后,称为VAGC2)、(2)VAGC3。
这样,就决定了相对于混合器314的输出信号水平的希望信号水平与相邻频道的信号水平的影响率。
这时,VAGC1、VAGC2、VAGC3和加权电路305的输出电压(以后,称为VAGC0)以及加权电路310的输出电压(以后,称为VAGC0’)都被设定为在3V时增益最大、在0V时增益最小。
另外,各加权电路305、310的加权系数可以用0~1的值分别独立地进行设定。
下面,对例如设加权电路305的加权系数分别为1、加权电路310的加权系数为任意的值的情况进行说明。
这里,输入到输入端子301的高频信号水平若例如分别为以下所述,下述各个部分的增益控制起作用。
在-70dBm以上的水平时,高频放大器302的增益控制;在-70dBm以下的水平时,中频放大器311的增益控制;此外,在比例如-90dBm以下更小的水平时,解调部增益控制器316的增益控制。
相对于希望信号水平,例如相邻频道那样的干扰信号的水平小到可以忽略不计,并且可以利用希望信号水平在-90dBm以下情况下的作为-90dBm以下的希望信号水平进行增益控制。因此,VAGC1成为3V而达到最大增益。VAGC3介于0V~3V之间。VAGC0不会在3V以上,所以,成为3V。此外,VAGC2成为3V。VAGC3介于0V~3V之间。VAGC0’因为不会在3V以上,所以,成为3V。
下面,说明相对于希望信号水平例如相邻频道的干扰信号的水平小、并且希望信号水平为从-70dBm~-90dBm的情况。
这时,利用作为-70dBm~-90dBm的希望信号水平进行增益控制,VAGC1被控制为3V而达到最大增益。VAGC3介于0V~3V之间。VAGC0因为不会在3V以上,所以,成为3V。此外,VAGC2在0V~3V之间进行增益控制。VAGC3因为成为0V,所以,可以忽略不计。VAGC0’由VAGC2决定。
图10表示相对于输入信号水平的高频信号接收装置的NF。
在图10中,横轴是信号水平(dBm),纵轴是高频信号接收装置的NF(dB)。
点412表示信号水平为-70dBm的点。在希望信号水平在-70dBm以下的输入信号水平的区域401中,高频放大器302的增益为最大,因为高频放大器302的NF具有支配性,所以,在一定值成为较低的NF405。
图11是表示相对于希望信号水平的高频信号接收装置的载波·噪音比(C/N)的图。
在图11中,横轴是希望信号水平(dBm),纵轴是高频信号接收装置的C/N。点512是希望信号水平-70dBm的点。
在希望信号水平在-70dBm以下的小的水平的区域501中,相对于如图10所示的在一定值较低的NF405,希望信号水平增大。因此,C/N随希望信号水平而改善。线505表示该情况。
下面,说明相对于希望信号水平,例如,相邻频道那样的干扰信号的水平小、并且希望信号水平在-70dBm以上时的高频信号接收装置的C/N。
这时,通过在-70dBm以上的希望信号水平进行增益控制。因此,VAGC1从增益最大到增益最小那样地介于例如0V~3V之间。VAGC2因为成为增益最小的0V,所以,可以忽略不计。因此,VAGC0仅由VAGC1决定,控制高频放大器302的增益。
另一方面,对于中频放大器311,VAGC2被增益控制为0V而成为增益最小,VAGC2被增益控制为作为最小增益的0V。因此,VAGC0’仅由VAGC1进行增益控制。
即,在图10中,在输入信号在-70dBm以上的大的水平的区域402中,进行增益控制使得高频放大器302的增益减小。因此,混合器307的NF、包含滤波器309的以后的电路的NF不能忽略不计,高频信号接收装置的NF如线403所示的那样逐渐地增大。
因此,在图11中,在希望信号水平在-70dBm以上的区域502中,希望信号水平增大。另一方面,高频信号接收装置的NF,如图11的区域502所示的那样,几乎恶化了相同的量。结果,就显示恒定的C/N值503。
下面,说明希望信号水平恒定为例如-70dBm、而相邻频道的信号水平在-70dBm以下时的高频信号接收装置的C/N。
这时,利用-70dBm这样的希望信号水平进行增益控制。因此,希望信号水平为-70dBm时,以3V进行增益控制使得VAGC1成为增益最大。VAGC3被控制为作为增益最小的0V,所以,可以忽略不计,高频放大器302的控制电压成为VAGC1,控制增益。另外,对于中频放大器311,以0V进行增益控制使得VAGC2成为增益最小。另一方面,VAGC3被控制为增益最小的0V,所以,VAGC0’成为0V。
即,高频信号接收装置的NF,如在图10的点404所示的那样表示较低的NF,高频信号接收装置的C/N如图11的线504所示的那样表示良好的值。
图12表示对希望信号水平为-70dBm时的相邻频道的信号的水平的高频信号接收装置的C/N。
在图12中,横轴是相邻频道的信号水平(dBm),纵轴是C/N。点612是相邻频道的信号水平为-70dBm的点。在相邻频道的信号水平小于-70dBm的区域601中,由-70dBm的希望信号水平进行的增益控制占支配地位。因此,高频信号接收装置的C/N如线604所示的那样,表示良好的值。即,由于相邻频道的信号水平比希望信号水平低,所以,不会给接收状态带来不良影响。
下面,说明希望信号水平恒定为例如-70dBm、而相邻频道的信号水平在-70dBm以上时的高频信号接收装置的C/N。
这时,VAGC1根据比希望信号水平大的相邻频道的信号水平、从增益最大到增益最小那样地、例如在3V到0V之间控制高频放大器302的增益。因此,高频放大器302输出经过增益控制的相邻频道的信号水平和较小的希望信号水平。该高频放大器302的输出信号中,相邻频道的信号几乎由滤波器309、滤波器315和抑制不需要的信号的效果优异的数字滤波器318滤除。因此,仅有小的希望信号水平由AGC控制电路321检测。因此,VAGC3相对于小的希望信号水平输出增益最大的3V侧的电压。
如上所述,VAGC1成为接近最小增益侧的0V的电压,但是,VAGC3输出接近增益最大的3V的电压。因此,VAGC0可以通过适当地设定各个加权系数向增益最大侧修正。
通过这些动作,由向增益最大侧修正后的VAGC0进行增益控制的高频放大器302输出相邻频道的信号和小的希望信号。这些信号通过混合器307和滤波器309而被输入到中频放大器311中,仅相邻频道的信号由滤波器309稍加抑制。
另外,VAGC2根据比希望信号水平大的相邻频道的信号水平、从增益最大到增益最小那样地、例如在3V到0V之间进行增益控制。因此,中频放大器311输出经过增益控制后的相邻频道的信号水平和小的希望信号水平。
此外,来自中频放大器311的输出信号中,相邻频道的信号几乎由滤波器315和不需要信号的抑制效果优异的数字滤波器318滤除。因此,仅有与相邻频道的信号水平的大小相应的小的希望信号水平由AGC控制电路321检测。因此,AGC控制电路321的输出电压VAGC3相对于小的希望信号水平而成为增益最大的3V侧的电压。
因此,VAGC2成为与相邻频道的信号水平的大小相应的从0V到3V之间的电压,VAGC3输出接近增益最大的3V的电压。因此,VAGC0’可以通过适当地设定对VAGC2的加权电路310和对VAGC3的加权电路310的加权系数,进行向增益最大侧的修正。
这里,若相对于对VAGC1的加权电路305的加权系数,对VAGC3的加权电路310的加权系数过大,则VAGC0就过大而使高频放大器302的增益上升过度。因此,各个加权系数的值最好采用不致发生由在混合器307中的3次的互调畸变(IM3)等引起的干扰影响的值。
另外,关于加权电路310,若相对于对VAGC2的加权电路的加权系数,对VAGC3的加权系数过大,则来自加权电路310的输出电压VAGC0’就增大,中频放大器311的增益就过大。因此,各个加权系数的值最好采用不致发生由在混合器314中的IM3等引起的干扰影响的值。
通过上述动作,即使在相对于希望信号水平相邻频道的信号水平大的情况下,高频放大器302的增益也会向增益最大的方向修正,从而高频放大器302的NF减小。因此,高频信号接收装置的NF被改善。
在图10中,在输入信号水平在-70dBm以上的区域402中,NF如线406所示的那样,与以往例的曲线403相比已被改善。另外,高频信号接收装置的C/N也与该NF被改善的程度相应地得到了改善。
这样,C/N就得到改善,如图12所示,从作为以往的C/N的线603相线605改善。
此外,中频放大器311的增益向增益最大的方向修正,所以,高频信号接收装置的NF就得到了改善。
在图10中,在输入信号水平在-70dBm以上的区域402中,NF由线407表示,与以往的NF406相比,可以进一步改善。即,高频信号接收装置的C/N也与该NF被进一步改善的程度相应地得到改善。以图12的曲线606表示该C/N被改善的情况,与仅是加权电路305时的C/N的曲线605相比,可以进一步改善。
另外,控制部46的输出与数据端子303连接。由来自控制部46的控制用数据控制加权控制电路304。这样,加权电路305的加权系数就独立地由控制部46设定。
因此,例如可以控制为在每一频道得到最佳的增益。
如上所述,即使相对于希望信号存在有大的相邻频道的干扰信号,也可以根据来自控制部46的数据由VAGC0控制高频放大器302的增益。这样,便可提供高频信号接收装置的C/N得到改善达到稳定的接收状态的高频信号接收装置。这里,VAGC0是来自将加权系数与希望信号水平和相邻频道的信号水平相乘时的加权电路305的输出电压V。
另外,在本实施例中,除了上述增益控制外,检测误码率的信号,利用CPU等改变高频放大器302的增益控制用的电压,进行对相邻频道的干扰信号的改善。这样,便可进一步对高频放大器302进行最佳的增益控制,可以做到对相邻频道的干扰信号的改善。因此,即使在接收条件时时刻刻变化的移动体的移动过程中,也可以提供稳定的接收状态。
在以上的说明中,是检测误码率的信号,但是,也可以检测来自解调电路319的C/N。
另外,在本实施例6中,说明了从混合器307输出的频率比输入信号的频率高频率的情况,但是,对于比输入信号的频率低频率的情况,同样的说明也适用。
此外,使用直接变换方式取代混合器314,也可以获得同样的改善效果。
按照本实施例,第1加权电路将第1AGC控制电路的输出电压和第2AGC控制电路的输出电压加权合成以趋向使接收错误减少。因此,向AGC电路的增益控制相对于C/N和IM3被设定为最佳。这样,对于相邻频道的干扰,可以得到将误码率保持为良好的状态的高频接收装置。
此外,可以使用与相邻频道的干扰信号水平相对应的第2AGC电路的增益控制用的电压,适宜地进行第1AGC电路的增益控制。这样,相对于来自相邻频道的干扰信号,误码率被改善。因此,例如即使在移动过程中,也可以保持稳定的接收状态。
此外,第2加权电路对来自第2AGC控制电路和第3AGC控制电路的输出电压加权,以进行向第2AGC电路的增益控制。因此,通过适当地设定该第2加权电路的加权系数,可以使C/N和IM3等变得优良。这样,对于相邻频道的干扰,可以进一步得到保持良好的误码率的高频接收装置。
另外,通过从外部的数据用输入端子输入数据,可以任意改变加权系数。因此,例如对每一频道加以控制以得到最佳的增益。
实施例7.
下面,参照

实施例7的高频接收装置。
图13是本实施例7的天线部的框图。
在图13中,天线部700由长度40mm的棒状的天线701和与天线701的输出连接的匹配器702构成。
匹配器702的输入端子703与开关704的共同端子704a连接。UHF用匹配器706被插入在开关704的一方的端子704b与输出端子705之间。
开关707的共同端子707a与开关704的另一方的端子704c连接。VHF高频带用的匹配器707被插入在开关707的一方的端子707b与输出端子705之间。VHF用低频带用的匹配器709被插入在开关707的另一方的端子707c与输出端子705之间。
控制部46的输出被供给给它们的开关704、707。
即,接收各个频带的频道时,控制部46仅使与各个频率对应的匹配器的开关接通。这样,便可对各频带获得阻抗匹配。但是,因为对所有的接收频道完全获得匹配是困难的,所以,对未获得匹配的频道,信号将受到损失,NF恶化。
对未获得匹配的频道,控制部46可以根据由匹配器产生的损失而增大实施例5或实施例6的高频放大器、中频放大器的增益。这样,便可得到NF良好的高频接收装置。
实施例8.
下面,使用

本实施例8。
图14是本实施例8的高频接收装置的框图。
在本实施例8中,处理存在SAW滤波器136的通过频带的偏差的情况。
包含1频道的频率被分割为7各个频段的信号的地面波数字广播信号被输入天线20。这里,约90MHz~约770MHz的频率被输入天线20。在该频带内,分布模拟TV信号和在该模拟TV信号间插入数字TV广播信号。
高频放大器172与天线20连接,是放大天线20接收的信号的宽频带高频放大器。
高频放大器172的输出与混频器173的一方的输入连接、而本地振荡器174的输出与其另一方的输入连接,输出第1中间频率。第1中间频率被设定为输入信号的最大频率的约1.5倍的高的频率即约1205MHz。这是因为,难于发生高频谐波畸变等引起的和便携电话引起的对广播信号的干扰。
混频器173的输出与SAW滤波器136连接。这里,SAW滤波器136作为窄频带滤波器的一例使用。
SAW滤波器136的中心频率是约1205MHz,其通过频带为约1.6MHz。由于SAW滤波器136的中心频率非常高,所以,其通过频带的偏差很大。
在混频器180和182中,SAW滤波器136的输出与其一方的输入连接、而本地振荡器181的输出与其另一方的输入连接。混频器180、182输出相位相互差90°的2个约为500kHz的第2中间频率。因此,混频器180、182直接输出I、Q信号。
低通滤波器(LPF)821a、821b与混频器180、182的输出连接。PLF821a、821b具有约429kHz的通过频带,使得可以只通过1频段的信号。LPF821a、821b由片式电容和片式电感构成。
解调器37与LPF821a、821b的输出连接。在解调器37中,将来自LPF821a、821b的I信号、Q信号进行OFDM解调,得到数字信号。
在错误修正器40中,连接有解调器37的输出,其输出与端子41连接。错误修正器40由与解调器37的输出连接的维托毕修正器42和与维托毕修正器42的输出连接的里德-所罗门修正器43构成。
这里,如果在接收频带内存在干扰波,则错误修正器40不能将信号修正使得输出信号的误码率成为0。因此,不能完全再生原来的信息。
因此,最好使干扰信号衰减到误码率不大的状态。
PLL数据传送器823向与本地振荡器174环耦合的PLL电路811、与本地振荡器181环耦合的PLL电路812传输PLL数据。
控制部824与PLL数据传送器823连接,同时与存储部825的输出连接。控制部824根据存储部825存储的数据使第1中间频率从预先决定的约1205MHz的频率开始变化,并向PLL数据传送器823传输数据。
在本实施例8中,PLL数据传送器823和控制部824集中在1个CPU828内。因此,高频接收装置被小型化。
存储部825具有开关826a、826b。根据开关826a、826b的通或断(ON或OFF)的状态,存储4个状态。这里,开关826a、826b用印刷电路板的导体图案形成。通过切断该导体图案,存储状态。因此,即使长期停电或打雷等,存储也不会消失。
判断部45被插入在控制部824与错误修正器40之间。在判断部45判定为误码率超过0.0002时,就指示控制部824变更PLL数据传送器823的数据。
下面,说明在本实施例8中SAW滤波器136存在通过频带的频率的偏差时的动作。
如果第1中间频率被固定,由于SAW滤波器136的偏差,相邻频道的模拟广播波存在不能由SAW滤波器衰减的情况。即,如图15所示,有时地面波数字广播信号862的最边上的频段863a和模拟TV广播信号860同时被输入天线20。这时,PLL数据传送器823就使本地振荡器811的振荡频率移动微小量,从而使第1中间频率移动微小量。
例如,在SAW滤波器136的输出中,可以观察到频段863a和模拟广播信号860的声音信号860b的信号水平。将声音信号860b的信号水平衰减到预先决定的水平时的本地振荡频率的移动量与预先设定的控制部824的设定分类对照,切断开关826a、826b中的某一个,并存储该状态。这里,也有在不切断时进行存储的情况。
图16A、B、C表示第1中间频率的移动状况的一例。
在图16A、B、C中,横轴表示频率,纵轴表示信号水平。
图16A表示选择频段832,将第1中间频率设为频率839a时的情况(例如1205MHz)。这里,相邻模拟广播的载波833在SAW滤波器136的通过频带837内,所以,不能使相邻模拟广播的载波833衰减。
图16B表示选择频段832、将第1中间频率移动为频率839b=频率839a+Δf1的情况。这时,相邻模拟广播的载波833接近SAW滤波器136的衰减频带837b,但是,仍然不能被充分衰减。
图16C表示进一步将第1中间频率移动为频率839c=频率839a+Δf2的情况。这时,相邻模拟广播的载波833在SAW滤波器136的衰减频带837b中,所以,可以使相邻模拟广播的载波833衰减。
如上所述,Δf2的移动量随SAW滤波器136的通过频带频率的偏差而变化。
图18是本发明的实施例8的控制部的逻辑表,表示根据Δf2和开关826a、826b的切断而预先决定的状态设定表的一例。Δf2是上述观测的频率的移动量。由于观测的SAW滤波器的通过频带频率的偏差的影响,Δf2为各种各样的值。
开关826a、826b预先设定Δf2的范围,对Δf2的预先决定的各范围确定逻辑。Δf3是对开关826a、开关826b的各逻辑状态预先决定的频率移动量。
控制部824指示PLL数据传送器进行Δf3的频率移动。作为指示的方法,例如CPU等根据来自控制部824的数字数据变更PLL数据传送器823的PLL数据。例如,如果设Δf2=170kHz,则开关826a被设为逻辑“0”,开关826b设为逻辑“1”,所以,切断开关826b的图案。这样,存储部825被设定。
使用该高频接收装置接收地面波数字广播时,控制部824指示Δf3=150kHz的移动量。PLL数据传送器823控制本地振荡器3的振荡频率,使得上述第1中间频率成为1205MHz+150kHz。这时,PLL数据传送器823根据来自控制部824的150kHz的移动量指示使本地振荡器174的振荡频率移动150kHz。这样,以上的动作就使得作为混频器180、182的输出的第2中间频率成为一定。
其次,图17A、B、C表示将图16C所示的状态作为下述3种SAW滤波器通过频带和第1中间频率的频率设定例。在图17A、B、C中,横轴表示频率,纵轴表示信号水平。
在图17A中,第1中间频率839d表示控制部824的输入为例如数字信号(0,1)时的频率设定。
在图17B中,第1中间频率839e表示控制部824的输入为例如数字信号(1,0)时的频率设定。
在图17C中,第1中间频率839f表示控制部824的输入为例如数字信号(0,0)时的频率设定。
在本实施例中,存储部825通过切断图案而存储状态。另外,也可以使用存储器等电的或电磁的存储媒体存储状态。这时,用户在购买后也可以改写存储部的内容。因此,例如在进行频道搜索等的同时,根据SAW滤波器136或检测器判断器45的输出观测频段863a和模拟广播波信号860的声音信号860b的信号水平,可以根据其结果向存储部825中存储信息。
根据上述结构,不论SAW滤波器136的通过频带的频率偏差如何,都可以控制为干扰波的频率使得总是进入SAW滤波器136的衰减区域。因此,可以增大干扰波的衰减量,所以,在第2混频器之后,不是SAW滤波器而是衰减量小的低通滤波器就足够用了。
因此,可以实现高频接收装置的小型化和低廉化。
另外,按照本实施例,可以存储与发生干扰的频段对应的频率的变化量。这里,对每个频段存储适当的变化量。因此,可以对每个频段最佳地设定第1中间频率,并将上述模拟TV广播信号设置在窄频带SAW滤波器的衰减区域。
进而,在本实施例中,根据误码率进行判断,所以,控制部824可以根据判断器的判断结果向PLL数据传送器823传输移动频率的数据。因此,不必另外设置用于检测干扰信号的水平等的电路,所以,可以得到廉价的高频接收装置。
另外,窄频带滤波器具有温度特性,其通过频带随温度而变化时,不论窄频带滤波器随温度的变化如何,都可以控制使得干扰波的频率进入SAW滤波器的衰减区域。因此,干扰波的衰减量增大,在第2混频器之后就不需要使用SAW滤波器,使用衰减量小的低通滤波器就足够了。
因此,可以实现高频接收装置的小型化和低廉化。
在本实施例中,存储部825的输出与CPU828连接。CPU828的输出与PLL电路811、812的数据端子连接。
另外,解调器37的数据端子和CPU的数据端子通过共同数据总线而连接,可以利用该共同数据总线收发数据。这里,可以通过解调器37的数据输出端子(图中未示出)向PLL电路811、812传输数据。
这时,使用共用数据总线,所以,可以使得数据收发的布线等变得容易。这里,解调器37与PLL电路811、812之间也通过共同数据总线而连接,可以进行数据的发送。
实施例9.
下面,根据

本发明的实施例9。
图19是本发明的实施例9的高频接收装置的框图。
该高频接收装置被收纳在便携式电视机和便携电话1042为一体的机箱内,接收地面波数字广播信号。这里,便携电话1042作为通信装置的一例被示出。
便携电话1042采用以下的结构。
天线开关1045与天线1044连接。
SAW滤波器1046与天线开关1045的一方的端子连接。低噪音放大器1047与SAW滤波器1046的输出连接。在混频器1049中,低噪音放大器1047的输出与其一方的输入连接、而本地振荡器1048的输出与其另一方的输入连接。解调器1050与混频器1049的输出连接。解调器1050的输出与声音输出器1051连接。这里,声音输出器是例如扬声器或受话器。声音输入器1052将声音变换为电信号。这里,声音输入器是例如麦克风。调制器1053与声音输入器1052的输出连接。在混频器1054中,调制器1053的输出与其一方的输入连接、而本地振荡器1048的输出与其另一方的输入连接。功率放大器1055与混频器1054的输出连接。低通滤波器1056被连接在功率放大器1055的输出与天线开关1045的另一方的端子之间。PLL电路1057与本地振荡器1048环路连接。
便携式电视机1043采用以下的结构。
天线20接收地面波数字信号。高频放大器172与天线20连接。在混频器173中,高频放大器172的输出与其一方的输入连接、而本地振荡器174的输出与其另一方的输入连接。带通滤波器136与混频器173的输出连接。在混频器137中,带通滤波器136的输出与其一方的输入连接、而本地振荡器138的输出与其另一方的输入连接。带通滤波器167与混频器137的输出连接。解调器37与带通滤波器167的输出连接。错误修正器40与解调器37的输出连接。错误修正器40的输出信号被输入液晶显示器或显象管等图像显示器1069。声音输出器1070被供给错误修正器40的输出信号。PLL电路1071与本地振荡器174环路连接。PLL电路1072与本地振荡器138环路连接。
这里,带通滤波器167仅使1频段的信号通过。
数据生成器1073与PLL电路1057连接,改变便携电话1042的接收、发送频率。
数据生成器1074与PLL电路1071和PLL电路1072连接,改变便携式电视机1043的接收频率(接收频道)。
数据生成器1073和1074与数据比较器1075连接,比较它们的数据内容。数据比较器1075的输出信号被输入控制部1076。
控制部1076根据数据比较器1075的输出信号向数据生成器1073和数据生成器1074输出数据,使便携电话1042和便携式电视机1043不会相互成为干扰发生源。即,使本地振荡器1048或本地振荡器174、138的振荡频率中的至少1个发生微小量的变化。
这里,如果本地振荡器174的振荡频率改变,为了修正该振荡频率,可以改变本地振荡器138的振荡频率,使第2中间频率保持为一定的值(4MHz)。
错误修正器40的输出与判断器45连接。判断器45的输出信号被供给控制部1076。这样,判断器45在误码率大于等于0.0002时就指示控制部1076进行各PLL电路1057、1071、1072的控制。
下面,使用图20、图21说明控制部1076的动作。
在图20、图21中,横轴是频率,纵轴是信号水平(dB)。
便携电话1042、便携式电视机1043的振荡频率接近时,它们将相互干扰。这时,可以改变本地振荡器1048的振荡频率,也可以改变本地振荡器174的振荡频率。
在图20中,主要说明本地振荡器174的振荡频率。
假设在本地振荡器174的输出信号1080的附近存在干扰波1081。干扰波1081的原因是本地振荡器1048的振荡频率。因此,使本地振荡器1048的振荡频率发生微小量变化,使得输出信号1080与干扰波1081的频率差大于等于10KHz。这样,就提高了便携式电视机1043的本地振荡器174的振荡频率的纯度,从而提高了C/N。同时,降低了接收错误。这里,干扰波1081在以下的情况下发生。
(1)本地振荡器174的振荡频率与本地振荡器1048的振荡频率接近(小于等于10Khz)时;(2)本地振荡器174的振荡频率与功率放大器1055的输出频率接近(小于等于10Khz)时。
其中,本地振荡器174的振荡频率与功率放大器1055的输出频率接近(小于等于10KHz)时,本地振荡器1048的振荡频率保持原样,可以使本地振荡器174本身的振荡频率发生微小量变化。
(3)本地振荡器1048的振荡频率与便携式电视机1043的接收希望频道的频率接近(小于等于10KHz)时,为了降低对便携式电视机1043的寄生干扰,所以,使本地振荡器1048的振荡频率发生微小量变化。
下面,在图21中,主要说明本地振荡器1048的振荡频率。
假设在本地振荡器1048的输出信号1085的附近发生干扰波1086。这时,干扰波1086的原因是本地振荡器174的振荡频率。因此,使本地振荡器174的振荡频率发生微小量变化,使得输出1085与干扰波1086的频率差大于等于10KHz。这样,就提高了便携电话1042的本地振荡器1048的振荡频率的纯度,从而可以防止噪音进入便携电话1042而造成最坏时不能通话的情况。
这里,在本地振荡器1048的振荡频率与本地振荡器174的振荡频率接近(小于等于10KHz)时,就发生干扰波1086。图中,横轴1087是频率(MHz),纵轴1088是水平(dB)。
另外,本地振荡器174的振荡频率与便携电话1042的接收频率接近(小于等于10KHz)时,为了降低对便携电话1042的寄生干扰,使本地振荡器174的振荡频率发生微小量变化。
如上所述,如果在振荡频率1080的附近有干扰波1081或在振荡频率1085的附近有干扰波1086时,如图22的虚线1089所示的那样,波形1090的纯度降低。因此,这时就使本地振荡器1048和本地振荡器1074中的至少1个的振荡频率发生微小量变化,提高频率纯度。
在本实施例9中,使用的电波的频率如下。
输入便携式电视机1043的天线20的数字地面波信号是VHF频带(90MHz~220MHz)和UHF频带(470MHz~770MHz)。
便携电话1042的使用频率是例如个人数字蜂窝(Personal DigitalCellular,PDC)的1.5GHz频带(1270MHz~1500MHz)和例如宽带码分多址(Wideband Code Division Multiple Access,WCDMA)频带(1920MHz~2170MHz)。
下面,使用图23A、B、C说明高频接收机的动作。在图23A、B、C中,横轴表示频率,纵轴表示信号水平。
另外,如图23A所示,数字地面波信号1100,例如,1频道1101(1频道宽度为6MHz)中被分割为13个频段1103(1个频段宽度为428KHz)。
在VHF频带,基本在各个频段1103上发送独立的广播。在UHF频带,基本上中央频段发送与其他频段独立的广播。
另外,数字地面波信号1100在混频器173中变换为约1205MHz的第1中间频率。
其次,如图23B所示,带宽1104(1.5MHz)的带通滤波器136以希望波1103b为中心使大致3个频段1103a、1103b、1103c通过。这里,如果本地振荡器174的振荡频率偏离10KHz时,如频谱1105所示,频段1103a、1103b和1103c的频率也偏离10KHz。
其次,如图23C所示,混频器137将信号变换为约4MHz的第2中间频率。这时,由于第1中间频率偏离了10KHz,所以,第2中间频率如频谱1107所示的那样向反方向恢复10KHz,从而成为4MHz。频带宽1106(428KHz)的带通滤波器167使希望波1103b通过。
另外,如图24所示,在频段1103中有本地振荡器1048的输出信号1080时,如果使本地振荡器1048的频率提高或降低1/2频段,则本地振荡器1048的输出1080就不会对频段产生干扰。
通过由控制部1076进行上述控制,从本地振荡器174输出的振荡频率被设为与输入天线开关1045的一方的端子的频率(便携电话的接收频率)或从功率放大器1055输出的频率(便携电话的发送频率)以及从本地振荡器1048输出的频率不同的频率。
此外,这些控制仅在判断器45判定为其误码率大于等于0.0002时进行。这样,仅在误码率超过0.0002时消耗控制电流,从而可以减少功耗。
这在高频接收装置被用于由电池驱动的便携设备时有用。在本实施例中,为了适合于电池的长时间驱动,仅在误码率恶化时才消耗控制电流。
这里,通过控制本地振荡器174的振荡频率,本地振荡器174的振荡频率就不会对便携电话1042造成干扰。因此,就不需要用于强化便携电话与便携式电视机间的电磁屏蔽的屏蔽板。这样,就可以实现该接收装置的小型化。
另外,本地振荡器1048的输出或功率放大器1055的输出也不会对本地振荡器1062造成干扰。因此,不会由于便携式电视机1043的C/N恶化引起错误的增加。
在本实施例中,可以将通信装置或高频接收装置的本地振荡频率改变为偏离对对方侧的信号有干扰的频率。另外,在高频接收装置中,通信装置的本地振荡器的输出或高频接收装置的混频器的输出也不会对其本地振荡器造成干扰。因此,也不会由于C/N恶化而造成误码率增加。
另外,在通信装置与高频接收装置之间,与各自的屏蔽,可以不另外设置屏蔽板,所以,可以实现小型化。
另外,高频接收装置的2个本地振荡器的振荡频率不会干扰通信装置的输入信号、功率放大器和本地振荡器。
如上所述,本发明的高频信号接收装置包括判断在预先决定的误码率以上还是以下的判断部;和与该判断部的输出连接并且根据判断部的判断结果控制各部分的控制部。
控制部有选择地控制多个部分的任意一个,使判断部检测的误码率下降。这样,就可以得到误码率小的高频信号接收装置。
另外,在接收的高频信号为数字电视广播时,就难于发生由于接收信号数据的误码率的降低引起的图像的黑噪音。因此,接收广播后,可以得到优异的画质。
通常,台式电视接收机其天线和电视接收机都不移动。因此,在天线中可以设置接收灵敏度高的天线。由于其电波状态比较稳定,所以,天线和选台部基本上以单体设置为最佳状态,所以,通过仅控制解调部就可以得到误码率小的高频信号接收装置。
另一方面,在移动体或便携设备中,在它们处于建筑物背后或伴有移动或者根据它们到电视中继台的距离不同,其电波状态时时刻刻都在变化。
本发明的高频接收装置通过选择控制多个构成部分的任一个就可以对上述情况灵活而迅速地进行处置而改善误码率。
此外,本发明的高频接收装置的控制部根据判断部判定误码率在预先决定的值以上的判断控制多个构成部分的各部分。
因此,本发明的高频接收装置根据错码率的判断结果对从天线到解调部的高频接收装置全体都改善误码率。因此,对于各种各样的误码率恶化的原因都可以改善误码率。
权利要求
1.一种高频信号接收装置,其特征在于,具有(a)被输入高频信号的选台部;(b)被输入上述选台部的输出信号的解调部;(c)被输入上述解调部的输出信号的错误修正部;(d)判断从上述错误修正部输入的误码率是否大于等于预先决定的值的判断部;(e)根据上述判断部的判断结果控制构成上述高频信号接收装置的多个部分的控制部;其中,上述控制部有选择地控制上述多个部分中的任一个,使上述误码率降低。
2.根据权利要求1所述的高频信号接收装置,其特征在于从上述错误修正部向信号流的上游顺序控制上述多个部分。
3.根据权利要求1所述的高频信号接收装置,其特征在于按其误码率成为稳定状态的速度的快的顺序控制上述多个部分。
4.根据权利要求1所述的高频信号接收装置,其特征在于上述控制部根据得到稳定状态的上述判断部的判断控制上述多个部分。
5.根据权利要求4所述的高频信号接收装置,其特征在于上述选台部包含PLL电路,上述控制部根据上述PLL电路的锁定信号识别稳定状态。
6.根据权利要求4所述的高频信号接收装置,其特征在于上述判断部将按预先决定的间隔抽出的误码率中前次抽出的误码率与新抽出的误码率进行比较,判断上述稳定状态。
7.根据权利要求4所述的高频信号接收装置,其特征在于将上述多个部分的每个达到稳定状态的时间预先存储到存储器中,在经过了上述存储器中存储的时间时,判定为上述稳定状态。
8.根据权利要求4所述的高频信号接收装置,其特征在于在经过了上述多个部分达到上述稳定状态的时间中最长的时间时,就判定为达到了上述稳定状态。
9.根据权利要求1所述的高频信号接收装置,其特征在于如果与预先决定的量的控制相对应上述误码率减少了,则进一步向同方向进行上述预先决定的量的控制,如果上述误码率增大了,则向反方向进行上述预先决定的量的控制。
10.根据权利要求1所述的高频信号接收装置,其特征在于,进一步具有(f)天线;(g)与上述天线耦合的输入调谐部;其中,上述输入调谐部和上述天线相互接近地设置,使上述天线应接收的高频信号不会作为噪音而输入上述输入调谐部与上述天线之间。
11.根据权利要求1所述的高频信号接收装置,其特征在于,进一步具有(f)由上述控制部控制的调谐天线。
12.根据权利要求11所述的高频信号接收装置,其特征在于,进一步具有(g)在上述调谐天线与上述选台部之间,不会与上述调谐天线相互输入噪音那样接近设置的平衡·不平衡变换电路。
13.根据权利要求1所述的高频信号接收装置,其特征在于,进一步具有(f)峰值功率检测器;(g)增益控制器;其中,上述选台部,包括a-1)被供给包含数字广播信号的广播信号并且其增益被可变控制的高频放大器;a-2)本地振荡器;a-3)被供给上述高频放大器的输出信号和上述本地振荡器的输出信号并变换为指定的中间频率的混频器;其中,上述峰值功率检测器被供给上述混频器的输出信号,同时,在接收希望频道时,以上述希望频道为大致中心检测预先决定的频带内的信号水平;上述增益控制器设置在上述峰值功率放大器与上述高频放大器之间,同时被供给上述控制部的输出信号;上述峰值功率检测器检测上述频带内比上述希望频道信号的水平大的水平的信号,在根据上述检测水平判定为上述高频放大器中信号发生了畸变时,上述增益控制器就使上述高频放大器的上述增益减小。
14.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)设置在上述混频器与上述解调部之间的中频放大器;其中,上述峰值功率检测器在上述预先决定的频带内检测到比希望频道信号的功率大的水平的信号时,上述增益控制器就使上述中频放大器的增益增大,以弥补上述高频放大器的上述增益的减少。
15.根据权利要求14所述的高频信号接收装置,其特征在于,进一步具有(i)设置在上述混频器或上述中频放大器与上述解调部之间、使约1频道的频率通过的窄带滤波器;其中,比输入上述窄带滤波器的信号的更上游的信号被供给上述峰值功率放大器的输入。
16.根据权利要求13所述的高频信号接收装置,其特征在于上述被供给的广播信号是在模拟广播信号的频带内分散分布了数字广播信号的广播信号。
17.根据权利要求13所述的高频信号接收装置,其特征在于上述峰值功率检测器进行检测的频道是上述希望频道以外的信号由于在上述高频放大器中的信号的畸变而对上述希望频道发生干扰的频道。
18.根据权利要求13所述的高频信号接收装置,其特征在于上述峰值功率检测器在预先决定的频带内未检测到上述希望频道的信号以上的功率时,上述控制部就使上述高频放大器的增益增大。
19.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)在上述峰值功率检测器的输出与上述增益控制器的输入之间,计算上述峰值功率检测器在预先决定的频率范围内检测的峰值功率水平与接收频道信号的功率水平之差的运算器;其中,上述增益控制器根据上述差值控制增益。
20.根据权利要求13所述的高频信号接收装置,其特征在于上述控制部使上述增益控制器控制上述增益,在不能达到小于等于预先决定的值的误码率时,就使上述增益控制器将上述增益恢复到进行上述控制以前的值。
21.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)设置在上述混频器与上述解调部之间的中频放大器;(i)设置在上述选台部的上游的包含变容二极管和电感的输入调谐部;其中,为了改变上述输入调谐部的调谐频率,上述控制部的输出被供给上述变容二极管的阴极;在上述判断部判定为上述误码率大于等于预先决定的值时,上述控制部就控制使得上述调谐频率发生微小量变化,同时增大上述高频放大器和上述中频放大器中的至少1个的增益。
22.根据权利要求13所述的高频信号接收装置,其特征在于上述峰值功率检测器在检测到比希望频道的信号的水平大的水平的干扰信号时,就向上述控制部输出上述检测到的信号的频率比接收希望频道的频率高的或低的信息,上述控制部就使上述调谐部的调谐频率向与上述信息表示的方向相反的方向变化。
23.根据权利要求13所述的高频信号接收装置,其特征在于上述增益控制器的输入与上述解调部的输出耦合,上述解调部检测上述希望频道的信号水平,计算上述信号水平与规定的水平的水平差信号,并将上述水平差信号向上述增益控制器传送。
24.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)被供给上述混频器或上述解调部的输出信号同时检测接收频道的信号水平并计算出与预先决定的值的差的水平检测器;(i)设置在上述水平检测器与高频放大器之间的增益控制器;其中,在上述峰值水平检测器未检测到大于等于希望频道的信号的大的信号时,上述增益控制器就根据上述差控制高频放大器的增益。
25.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)设置在上述高频放大器的上游的滤波器;(i)设置在上述混频器的下游的滤波器;其中,设置在上述混频器的下游的滤波器是窄带滤波器,向上述峰值功率检测器的输入信号被从上述混频器与上述窄带滤波器之间供给。
26.根据权利要求25所述的高频信号接收装置,其特征在于,进一步具有(j)设置在RF滤波器与上述高频放大器之间的不平衡·平衡变换电路;(k)设置在上述混频器与上述窄带滤波器之间的平衡·不平衡变换电路;其中,至少上述高频放大器、上述混频器和上述本地振荡器采用平衡电路,同时,上述不平衡·平衡变换电路与上述平衡·不平衡变换电路之间的各电路间的连接也被设为平衡,上述峰值功率检测器的输入被耦合到上述平衡·不平衡变换电路的更下游。
27.根据权利要求13所述的高频信号接收装置,其特征在于,进一步具有(h)供给包含数字广播的广播信号,同时包含变容二极管和电感的调谐部;(i)上述调谐部的输出与上述高频放大器耦合;(j)设置在上述混频器与上述解调部之间的中频放大器;其中,上述调谐部的输出与上述高频放大器耦合,上述增益控制器的一方的输出被供给上述高频放大器用于增益控制,同时另一方的输出被供给上述变容二极管用于改变上述调谐部的调谐频率,在预先决定的频带内检测到比上述希望频道信号的水平大的水平的信号时,就使上述调谐频率发生微小量变化,同时控制使上述高频放大器或上述中频放大器的增益增大。
28.根据权利要求1所述的高频信号接收装置,其特征在于,上述选台部具有(a-1)供给上述高频信号,同时由供给的电压控制增益的第1AGC电路;(a-2)本地振荡电路;(a-3)上述第1AGC电路的输出被供给一方的输入,同时上述本地振荡电路的输出信号被供给另一方的输入的混频器;(a-4)被供给上述第1混频器的输出信号的第1AGC控制电路;(a-5)被供给上述第1混频器的输出信号的滤波器;其中,上述高频信号接收装置,进一步具有(g)被供给上述解调部的输出信号的第2AGC控制电路;(h)与上述第2AGC控制电路和上述第1AGC电路耦合的第1加权电路;其中,上述解调部与上述滤波器的输出耦合;上述AGC控制电路的输出电压被供给上述第1加权电路的另一方的输入,由上述第1加权电路对上述AGC控制电路的输出电压和上述第2AGC控制电路的输出电压进行加权而合成的输出电压,对上述第1AGC电路进行增益控制。
29.根据权利要求28所述的高频信号接收装置,其特征在于,进一步具有(i)设置在上述第2AGC电路与上述解调部之间的第2混频器;(j)与上述第2混频器的输出耦合的第3AGC控制电路和,设置在上述第3AGC控制电路与上述第2AGC电路之间的第2加权电路;其中,上述滤波器的输出与上述第2AGC电路耦合;上述第2AGC控制电路的输出与上述第2加权电路的输入耦合,利用由上述第2加权电路将上述第2AGC控制电路的输出电压和上述第3AGC控制电路的输出电压加权而合成的输出电压进行上述第2AGC电路的增益控制。
30.根据权利要求28所述的高频信号接收装置,其特征在于,进一步具有根据输入的控制用数据设定用于上述加权的系数的加权控制电路。
31.根据权利要求1所述的高频信号接收装置,其特征在于,进一步具有(f)PLL数据传送器;其中,上述选台部,具有插入模拟TV广播的频道间同时在1频道中包含多个频段的地面波数字广播信号被供给其一方的输入而第1本地振荡器的输出与其另一方的输入耦合的第1混频器;与来自上述第1混频器的第1中频输出耦合同时具有超过1频段的带宽的通过频带的窄带滤波器;上述窄带滤波器的输出与一方的输入耦合同时第2本地振荡器的输出与另一方的输入耦合的第2混频器;与上述第1本地振荡器环路耦合同时控制上述第1本地振荡器的振荡频率的第1PLL电路;与上述第2本地振荡器环路耦合同时控制上述第2本地振荡器的振荡频率的第2PLL电路;其中,上述PLL数据传送器向上述第2PLL电路传输选台数据;在上述窄带滤波器的通过频带中接收到插入上述模拟TV广播信号的特定频段时,根据来自上述第1PLL电路和上述PLL数据传送器的输出信号改变上述第1本地振荡器的振荡频率,同时,控制上述第2本地振荡器的振荡频率,将从上述第2混频器输出的第2中间频率变换为大致固定的频率;其中,上述控制部与上述PLL数据传送器的输入耦合,同时,根据上述窄带滤波器的通过频带频率的偏差;使第1中间频率的频率变化偏离预先决定的频率,在接收到特定频段时,就控制使上述第1中间频率变化,从而使上述模拟TV广播信号位于上述窄带SAW滤波器的衰减区域。
32.根据权利要求31所述的高频信号接收装置,其特征在于,进一步具有(g)与上述控制部耦合的存储部;其中,上述存储部存储与上述窄带滤波器的通过频带的偏差对应的频率的变化量。
33.根据权利要求31所述的高频信号接收装置,其特征在于,进一步具有(g)与上述控制部耦合的存储部;其中,上述控制部根据上述存储部的数据控制上述PLL数据传送器。
34.根据权利要求33所述的高频信号接收装置,其特征在于上述存储部存储发生干扰的频段。
35.根据权利要求33所述的高频信号接收装置,其特征在于上述存储部存储与发生干扰的频段相对的频率的变化量。
36.权利要求32所述的高频信号接收装置的制造方法,其特征在于a)将上述模拟TV广播波和插入该模拟TV广播波的频道间的多个频段信号供给上述混频器;b)在步骤b)之后,检测从上述窄带滤波器的下游取出的信号;c)在步骤b)检测到由上述模拟TV广播信号引起的干扰时,使上述存储部存储上述中间频率的变化量。
37.根据权利要求1所述的高频信号接收装置,其特征在于,进一步具有(f)数据比较器;(g)通信装置;其中,上述通信装置,具有(g-1)与天线连接的天线开关;(g-2)第1本地振荡器;(g-3)输入上述天线开关的一方的端子的信号被供给其一方的输入,同时第1本地振荡器的输出与其另一方的输入耦合的第1混频器;(g-4)其他高频信号与其一方的输入耦合同时上述第1本地振荡器的输出与其另一方的输入耦合,其输出与上述天线开关的另一方的端子耦合的第2混频器;(g-5)控制上述第1本地振荡器的振荡频率的第1PLL电路;(g-6)与上述第1PLL电路连接同时确定收发频率的第1数据生成器;其中,上述选台部,具有(a-1)输入其他天线的信号被供给一方的输入同时第2本地振荡器的输出与另一方的输入连接的第3混频器;(a-2)与上述第3混频器的输出耦合的带通滤波器;(a-3)上述带通滤波器的输出与其一方的输入耦合同时第3本地振荡器的输出与其另一方的输入耦合的第4混频器;(a-4)控制上述第2本地振荡器的振荡频率的第2PLL电路;(a-5)控制上述第3本地振荡器的振荡频率的第3PLL电路;(a-6)与上述第2PLL电路及上述第3PLL电路二者连接的第2数据生成器;其中,根据上述数据比较器将上述第1数据生成器和上述第2数据生成器分别输出的数据进行比较的结果,上述控制部判定为上述通信装置和上述高频接收装置中的至少一方对另一方有干扰时,I)改变上述第1数据生成器的数据,使上述第1本地振荡器的振荡频率发生微小量变化,或者ii)改变上述第2数据生成器的数据,使上述第2本地振荡器和上述第3本地振荡器的振荡频率发生微小量变化。
38.根据权利要求37所述的高频信号接收装置,其特征在于上述控制部在判定上述第2混频器的输出频率与第2本地振荡器的振荡频率之差小于等于预先决定的值时,就使上述第2本地振荡器和上述第3本地振荡器的振荡频率发生微小量变化。
39.根据权利要求37所述的高频信号接收装置,其特征在于上述控制部在判定为上述第1本地振荡器与上述第2本地振荡器的振荡频率之差小于等于预先决定的值时,上述控制部使上述第2本地振荡器和上述第3本地振荡器的振荡频率发生微小量变化。
40.根据权利要求37所述的高频信号接收装置,其特征在于上述控制部将上述通信装置的输入信号的频率与上述第2本地振荡器的频率比较,在其频率之差小于等于预先决定的值时,就使上述第2本地振荡器和上述第3本地振荡器的振荡频率发生微小量变化。
41.根据权利要求1所述的高频信号接收装置,其特征在于在控制上述多个部分中的某些部分时,从上述误码率达到稳定状态的速度慢的部分开始顺序进行控制,同时,在所有的控制信号发送之后,上述判断部进行判断。
全文摘要
本发明涉及误码率小的高频信号接收装置及其制造方法。高频信号被输入选台部。选台部的输出信号被输入解调部。解调部的输出信号被输入错误修正部。判断部判断从错误修正部输入的误码率在预先决定的值以上还是以下。控制部连接判断部的输出,根据上述判断部的判断结果控制构成高频信号接收装置的多个部分。控制部有选择地控制多个部分中的某一个,以降低误码率。制造方法将与窄带滤波器的通过频带中的干扰信号对应的频率变化存储到与控制部耦合的存储部中。
文档编号H04N5/44GK1515104SQ03800379
公开日2004年7月21日 申请日期2003年1月21日 优先权日2002年1月22日
发明者福谷淳一, 古泽利浩, 北川元祥, 安田雅克, 克, 浩, 祥 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1