电光学装置、电光学装置的驱动方法及电子设备的制作方法

文档序号:8017943阅读:292来源:国知局
专利名称:电光学装置、电光学装置的驱动方法及电子设备的制作方法
技术领域
本发明涉及一种对有机发光二极管(以下称作“OLED(Organic LightEmitting Diode)元件”)等电光学元件的灰度进行控制的技术。
背景技术
以往提出了一种排列有多个电光学元件的电光学装置。各电光学元件被控制在与从驱动电路输出的数据信号的电平(电压值或电流值)对应的灰度。驱动电路生成与由图像数据指定的灰度值D对应的电平的数据信号。图19的特性FC1是数据信号的电压值和电光学元件的灰度(例如OLED元件的亮度)的关系。
另外,专利文献1中公开了一种显示装置,通过伽马修正来调整灰度值D和电光学元件的实际灰度的关系。图20是表示将伽玛值设为“2.0”时的灰度值D和电光学元件的灰度之间的关系的曲线图。
专利文献1特开2003-255900号公报电光学装置要求多灰度化。但是,为了使电光学元件的灰度细微地变化,需要使数据信号的电平的等级宽度(step width变化量的最小值)细微化,所以需要高性能且大规模的驱动电路,从而存在着电光学装置成本增大的问题。
电光学元件的发光效率越提高,上述问题越显著。即,如图19的特性FC2所例示那样,电光学元件的发光效率越提高,灰度相对数据信号电平(电压值)的变化量越增大。因此,为了使电光学元件的灰度仅变化图19的ΔG,要求驱动电路高性能化,使得数据信号的电平的等级宽度ΔV2比特性FC1情况下的等级宽度ΔV1更细微化。
另外,在将超过“1”的伽玛值应用于伽玛修正的情况下,如图20所例示那样,尤其需要在低灰度的范围内缩小电光学元件的灰度的等级宽度ΔG。此时,由于也需要使数据信号的电压细微地变化,所以,电光学装置成本增加的问题更显著。

发明内容
鉴于上述状况,本发明的目的在于解决维持数据信号的电平的等级宽度并细微地控制电光学元件的灰度的课题。
为了解决该课题,本发明所涉及的电光学装置,包括单位电路,其具有将第一电光学元件控制为与数据信号的电平对应的灰度的第一元件部(例如图2的元件部U1)、和将第二电光学元件控制为与数据信号的电平对应的灰度的第二元件部(例如图2的元件部U2),当向第一元件部和第二元件部赋予相同电平的数据信号时,第一电光学元件的灰度比第二电光学元件低;和信号生成电路,其是根据在单位电路中指定的灰度值生成不同电平的数据信号的电路,在灰度值处于第一范围(例如图5的范围RL)内时,对第一元件部赋予按照第一电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号,当灰度值处于比第一范围高灰度侧的第二范围内(例如图5的范围RM)时,对第二元件部赋予按照第二电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号。
本发明中,基于在向第一元件部和第二元件部赋予相同电平的数据信号时第一电光学元件的灰度比第二电光学元件低的结构(即在第一元件部和第二元件部中灰度变化率不同的结构),在指定了第一范围内的灰度值的情况下,通过与该灰度值对应的数据信号控制第一电光学元件。因此,与不管在单位电路中指定的灰度值而控制与第二电光学元件同等特性的一个电光学元件的结构相比,可充分确保指定了第一范围内的灰度值时的数据信号的电平等级宽度。另外,由于在指定了第二范围内的灰度值的情况下第二电光学元件被控制,所以与不管在单位电路中指定的灰度值而控制与第一电光学元件同等特性的一个电光学元件的结构相比,可以抑制数据信号的电平(消耗功率的降低),同时能表现宽范围的多灰度。
本发明所涉及的电光学元件,是通过赋予电能(电流的供给或电压的施加)而使亮度或透过率等光学特性变化的要素。关于本发明中适用的电光学元件,不在乎自身发光的自发光型元件和使外光透过率变化的非发光型元件(例如液晶元件)之间的区别、以及通过供给电流而驱动的电流驱动型元件和通过施加电压而驱动的电压驱动型元件之间的区别。例如,在本发明中可利用OLED元件或无机EL元件、场致放射(FE)元件、表面导电型放射(SESurface-conduction Electron-emitter)元件、弹道电子放出(BSBallistic electron Surface emitting)元件、LED(Light EmittingDiode)元件、液晶元件、电泳元件、电致发光元件等各种电光学元件。
本发明中的数据信号可以是电流信号以及电压信号中的任意一种。所谓数据信号的电平,在数据信号是电流信号时是指电流值,在数据信号是电压信号时是指电压值。另外,作为构成单位电路的要素示出了第一元件部以及第二元件部,但单位电路具备包括第一元件部和第二元件部的三个以上元件部的结构当然也包含于本发明的范围。
在本发明优选的实施方式中,第一电光学元件和第二电光学元件射出光的区域的面积不同。根据该方式,可使第一电光学元件和第二电光学元件的制造工序公共化,同时可使灰度变化率在第一元件部和第二元件部中不同。其中,按各元件部使灰度变化率不同的结构也可以通过以下的方式实现。
在第一方式(例如图6)中,第一电光学元件以及第二电光学元件是发光层介于第一电极(例如图6的第一电极33)和第二电极(例如图6的第二电极36)之间的发光元件,第一电光学元件和第二电光学元件其第一电极与第二电极的间隔不同。换言之,介于第一电极和第二电极之间包括发光层的部分(例如图6的发光功能层35)的膜厚在第一电光学元件和第二电光学元件中不同。
在第二方式(例如图7)中,第一电光学元件以及第二电光学元件是发光层介于相互对置的具有透光性的第一电极和具有光反射性的第二电极之间的发光元件,第一电光学元件和第二电光学元件其第一电极的膜厚不同。
第三方式(例如图9)所涉及的电光学装置,具备在基板的面上形成的具有透光性的绝缘层(例如图9的绝缘层32),第一电光学元件以及第二电光学元件是发光层介于在绝缘层的面上形成的具有透光性的第一电极和与该第一电极对置的具有光反射性的第二电极之间的发光元件,绝缘层中来自第一电光学元件的出射光透过的区域、和来自第二电光学元件的出射光透过的区域的膜厚不同。
第四方式(例如图10)所涉及的电光学装置,具备来自第一电光学元件的出射光透过的第一透光体(例如图10中的减光滤波器37的部分371)、和来自第二电光学元件的出射光透过的第二透光体(例如图10中的减光滤波器37的部分372),第一透光体和第二透光体的透过率不同。
根据以上例示的第一~第四方式,可以使第一电光学元件和第二电光学元件为相同的面积。即,不需要使第二电光学元件比第一电光学元件面积大。因此,具有容易实现各电光学元件的高精细化的优点。
用于使灰度变化率在第一元件部和第二元件部中不同的结构不限定于以上的例示。例如也可采用下述结构在第一元件部和第二元件部分别包括生成与栅极的电压对应的驱动电流并提供给电光学元件的驱动晶体管时,在第一元件部的驱动晶体管和第二元件部的驱动晶体管中,对栅极施加相同电压时的驱动电流的电流值不同。根据该方式,具有不需要按各元件部使各电光学元件的形态(面积或各层的膜厚)不同的优点。
而且,不需要使各元件部所包含的要素(电光学元件与驱动晶体管)的特性不同。例如,也可以采用第一元件部在第一期间(例如图12的发光期间PEL1)以与数据信号的电平对应的亮度使第一电光学元件发光,第二元件部在比第一期间长的第二期间(例如图12的发光期间PEL2)以与数据信号的电平对应的亮度使所述第二电光学元件发光的结构。根据该结构,可以根据第一期间和第二期间的时间长度使灰度变化率在第一元件部和第二元件部中不同。另外,该方式的具体例子作为第三实施方式将在后面描述。
在本发明的优选实施方式中,第一元件部将第一电光学元件控制为与数据信号的电压值对应的灰度,第二元件部将第二电光学元件控制为与数据信号的电流值对应的灰度,信号生成电路包括电压生成电路(例如图13的电压生成电路251),其在单位电路中指定的灰度值处于第一范围内时,向第一元件部输出与该灰度值对应的电压值的数据信号;和电流生成电路(例如图13的电流生成电路252),其在灰度值处于第二范围时,向第二元件部供给与该灰度值对应的电流值的数据信号。该方式中,在灰度值处于高灰度侧的第二范围内时根据数据信号的电压值驱动第一电光学元件,另一方面,在灰度值处于低灰度侧的第一范围内时根据数据信号的电流值驱动第二电光学元件。因此,即使在数据信号的传送路径(例如图13的数据线LDk[j])的时间常数高的情况下,也能可靠地将第一电光学元件设定为预期的灰度值。另外,该方式的具体例子作为第四实施方式将在后面描述。
本发明所涉及的电光学装置被应用于各种电子设备。该电子设备的典型例子是利用电光学装置作为显示装置的设备。作为这种电子设备,有个人计算机与移动电话机等。当然,本发明所涉及的电光学装置的用途不限定于图像的显示。例如在通过光线的照射在感光体滚筒等图像承载体上形成潜影用的曝光装置(曝光头)、配置于液晶装置的背面侧来对其进行照明的装置(背光灯)、或搭载于扫描仪等图像读取装置来照明稿件的装置等各种照明装置等,可以在各种用途中应用本发明的电光学装置。
本发明也对驱动电光学装置的方法进行了特定。本发明所涉及的驱动方法,包括判别过程(例如图1的数据判别部241执行的步骤),判别在单位电路中指定的灰度值属于包括第一范围和灰度比该第一范围高一侧的第二范围的多个范围中的哪一个;和信号生成过程(例如图1的信号生成电路25执行的步骤),根据灰度值生成不同电平的数据信号,在信号生成过程中,当通过判别过程判别灰度值处于第一范围内时,对第一元件部赋予按照第一电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号,当通过判别过程判别灰度值处于第二范围内时,对第二元件部赋予按照第二电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号。通过以上方法,也起到与本发明所涉及的电光学装置同样的效果。


图1是表示本发明所涉及的电光学装置的结构的框图。
图2是表示各单位电路的结构的电路图。
图3是用于说明电光学装置的动作的时间图。
图4是对电光学元件与布线的形态进行例示的俯视图。
图5是表示数据信号的电压值和各电光学元件的灰度(发光量)的关系的曲线图。
图6是表示第一方式所涉及的元件阵列部的结构的剖面图。
图7是表示第二方式所涉及的元件阵列部的结构的剖面图。
图8是表示来自各电光学元件的出射光的分光特性的曲线图。
图9是表示第三方式所涉及的元件阵列部的结构的剖面图。
图10是表示第四方式所涉及的元件阵列部的结构的剖面图。
图11是表示第三实施方式中的单位电路的结构的电路图。
图12是用于说明电光学装置的动作的时间图。
图13是表示第四实施方式中的单位电路的结构的电路图。
图14是用于说明电光学装置的动作的时间图。
图15是表示变形例所涉及的单位电路的结构的电路图。
图16是表示本发明的电子设备的形态(个人计算机)的立体图。
图17是表示本发明所涉及的电子设备的形态(移动电话)的立体图。
图18是表示本发明所涉及的电子设备的形态(便携信息终端)的立体图。
图19是表示数据信号的电压值和电光学元件的灰度的关系的曲线图。
图20是表示灰度值和电光学元件的实际灰度的关系的曲线图。
图中100-电光学装置;A-元件阵列部;P-单位电路;Uk(U1~U3)-元件部;Ek(E1~E3)-电光学元件;Qdr、Qdr_p、Qdr_n-驱动晶体管;Qsl-选择晶体管;C、C1-电容元件;Qsw1、Qsw2-晶体管;Qel-发光控制晶体管;120-扫描线;121~123-控制线;14-布线组;LDk[j](LD1[j]~LD3[j])-数据线;17-电源线;20-控制电路;22-扫描线驱动电路;24-数据线驱动电路;241-数据判别部;25-信号生成电路;30-基板;31-布线;32-绝缘层;33-第一电极;34-隔壁层;341-开口部;35-发光层;36-第二电极;37-减光滤波器;G[i]-扫描信号;G1[i]~G3[i]-控制信号;Sk[j](S1[j]~S3[j])-数据信号。
具体实施例方式
(A第一实施方式)图1是表示本发明的第一实施方式所涉及的电光学装置的结构的框图。如该图所示,电光学装置100包括多个单位电路P排列而成的元件阵列部A;驱动各单位电路P的扫描线驱动电路22以及数据线驱动电路24;和控制扫描线驱动电路22以及数据线驱动电路24的控制电路20。多个单位电路P遍布相互交叉的X方向以及Y方向排列成纵m行×横n列的矩阵状(m以及n分别是2以上的自然数)。
图2是表示各单位电路P的结构的电路图。在该图中,虽仅图示了属于第i行(i是满足1≤i≤m的整数)第j列(j是满足1≤j≤n的整数)的一个单位电路P,但全部的单位电路P是同样的结构。如图1以及图2所示,在元件阵列部A中形成有沿X方向延伸的m根扫描线120、沿Y方向延伸的n组布线组14。各单位电路P配置在与扫描线120和布线组14的各交叉对应的位置。如图2所示,第j列的布线组14包括分别在Y方向延伸的三根数据线LD1[j]~LD3[j]。经由电源线17向各单位电路P供给电源电位VEL。
图1的扫描线驱动电路22是生成用于顺次选择元件阵列部A的m行的每一个(各扫描线120)的扫描信号G[1]~G[m],并将其输出到各扫描线120的机构(例如m位的移位寄存器)。如图3所示,被输出到第i行的扫描线120的控制信号G[i],在一帧期间中的第i个水平扫描期间H成为高电平(选择),在此之外的期间维持低电平(非选择)。
控制电路20除了根据时钟信号等各种信号的输出来控制扫描线驱动电路22以及数据线驱动电路24的动作的定时之外,还顺次对数据线驱动电路24输出用于指定各单位电路P的灰度值D的图像数据。如图1所示,数据线驱动电路24包括判别各单位电路P的灰度值D所属范围R的数据判别部241;和与布线组14的总数(单位电路P的列数)相当的n个信号生成电路25。数据判别部241判断从控制电路20供给的灰度值D属于按照不相互重叠的方式而将从灰度值D的最小值到最大值的范围进行区分的3个范围R(RL、RM、RH)中的哪一个。范围RL包括灰度值D的最小值,范围RH包括灰度值D的最大值。范围RM是与范围RL相比高灰度侧的范围,范围RH是与范围RM相比高灰度侧的范围。
第j列的信号生成电路25生成数据信号S1[j]~S3[j],并将其输出到第j列的布线组14。数据信号S1[j]~S3[j]是根据第j列的灰度值D和通过数据判别部241判别的结果而设定电压值Vd的电压信号。数据信号Sk[j](k是满足1≤k≤3的整数)被输出到数据线LDk[j]。另外,关于信号生成电路25的具体动作将在后面描述。
接着,说明单位电路P的具体结构。如图2所示,一个单位电路P包括与范围R的划分数相当的3个元件部U1~U3。元件部Uk包括配置在从电源线17到接地线(接地电位Gnd)的路径上的电光学元件Ek。本实施方式的电光学元件Ek是有机EL(Electroluminescent)材料的发光层介于相互对置的各电极之间的OLED元件。发光层通过电流(以下称作“驱动电流”)IEL的供给而发光。
在元件部Uk中的驱动电流IEL的路径上(在电源线17和电光学元件Ek之间)配置有p沟道型的驱动晶体管Qdr。驱动晶体管Qdr是生成与栅极的电压对应的电流量的驱动电流IEL、并将其供给到电光学元件Ek的薄膜晶体管。在元件部Uk的驱动晶体管Qdr的栅极和数据线LDk[j]之间,插入有控制两者电连接(导通/非导通)的选择晶体管Qsl。第i行的各单位电路P的元件部U1~U3中包含的选择晶体管Qsl的栅极,公共连接于第i行的扫描线120。电容元件C介于驱动晶体管Qdr的栅极和源极(电源线17)之间。
若在水平扫描期间H中扫描信号G[i]迁移成高电平,则属于第i行的各单位电路P的元件部U1~U3中包含的选择晶体管Qsl同时变化为导通状态。因此,元件部Uk的驱动晶体管Qdr的栅极被设定为在该水平扫描期间H中供给到数据线LDk[j]的数据信号Sk[j]的电压值Vd。此时,由于在电容元件C中存储有与电压值Vd对应的电荷,所以,即使扫描信号G[i]迁移成低电平使得选择晶体管Qsl变化为截止状态,驱动晶体管Qdr的栅极也被维持在电压值Vd。因此,直到下一次扫描信号G[i]迁移成高电平为止,持续向电光学元件Ek供给与电压值Vd对应的驱动电流IEL。通过以上的动作,电光学元件Ek变为与数据信号Sk[j]的电压值Vd对应的灰度(发光量)。
接着,图4是例示一个单位电路P的各电光学元件E1~E3和各布线的配置的俯视图。如该图所示,电光学元件E1~E3的各自面积不同。即,电光学元件E2的面积比电光学元件E1大,电光学元件E3的面积比电光学元件E2大。电光学元件E1、E2隔着扫描线120在Y方向的负侧区域排列于X方向。电光学元件E3隔着扫描线120配置于Y方向的正侧区域。从电光学元件E1~E3观察,数据线LD1[j]、LD3[j]在X方向负侧的区域沿Y方向延伸。从电光学元件E1~E3观察,数据线LD2[j]以及电源线17在X方向正侧的区域沿Y方向延伸。
图5是表示数据信号Sk[j]的电压值Vd和电光学元件Ek的灰度之间的关系的曲线图。该图的特性FAk表示数据信号Sk[j]的电压值Vd的绝对值和电光学元件Ek的实际灰度(发光量)之间的关系。如图4所示,在本实施方式中,由于电光学元件E1~E3的面积不同,所以即使假设对元件部U1~U3的每一个供给相同的电压值Vd的数据信号S1[j]~S3[j],也会如图5所示,电光学元件E1~E3的灰度(发光量)不同。即,若被供给相同电压值Vd的数据信号S1[j]~S3[j],则电光学元件E1的灰度比电光元件E2的灰度低,电光学元件E3的灰度比电光元件E2的灰度高。换言之,对于各电光学元件E1~E3的灰度的变化量相对于数据信号S1[j]~S3[j]的电压值Vd的变化量的相对比(以下称作“灰度变化率”)而言,电光学元件E3最大,电光学元件E1最小。灰度变化率被定义为“(灰度的变化量)/(电压值Vd的变化量)”,其成为电光学元件Ek的灰度根据电压值Vd而变化的灵敏度指标(灰度变化率越高,电光学元件Ek的灰度相对于电压值Vd的变化越以高灵敏度变化)的数值。
第j列的信号生成电路25按照下述方式设定各数据信号S1[j]~S3[j]的电压值Vd,即以灰度值D对应的灰度选择性地驱动第j列单位电路P的电光学元件E1~E3中灰度值D所属的范围R所对应的一个电光学元件Ek。
例如,当数据判别部241判定灰度值D是范围RL内的数值时,信号生成电路25生成在图5的范围B1内根据灰度值D而不同的电压值Vd的数据信号S1[j],对于数据信号S2[j]、S3[j]而言,设定为使分别与其对应的电光学元件E2、E3熄灭的电压值Vd(电源电位VEL)。同样,当灰度值D是范围RM内的数值时,信号生成电路25生成图5的范围B2中与灰度值D对应的电压值Vd的数据信号S2[j]、和使电光学元件E1、E3熄灭的电压值Vd的数据信号S1[j]、S3[j]。另外,当灰度值D是范围RH内的数值时,信号生成电路25生成图5的范围B3中与灰度值D对应的电压值Vd的数据信号S3[j]、和使电光学元件E1、E2熄灭的电压值Vd的数据信号S1[j]、S2[j]。
例如,现在假定对第j列中第i行的单位电路P指定范围RH内的灰度值D,对第(i+1)行的单位电路P指定范围RL内的灰度值D,对第(i+2)行的单位电路P指定范围RM内的灰度值D的情况。如图3所示,在扫描信号G[i]成为高电平的水平扫描期间H中,数据信号S3[j]被设定为以与灰度值D对应的灰度使电光学元件E3点亮的电压值Vd(比电源电位VEL低的电位),数据信号S1[j]、S2[j]被设定为使电光学元件E熄灭的电压值Vd(电源电位VEL)。另外,在扫描信号G[i+1]成为高电平的水平扫描期间H中,数据信号S1[j]被设定为与灰度值D对应的电压值Vd,数据信号S2[j]、S3[j]被设定为电源电位VEL。同样,在扫描信号G[i+2]成为高电平的水平扫描期间H中,数据信号S2[j]被设定为与灰度值D对应的电压值Vd,数据信号S1[j]、S3[j]被设定为电源电位VEL。
如上所述,根据灰度值D来决定数据信号S1[j]~S3[j]中根据灰度值D的范围R而选择的一个数据信号Sk[j]的电压值Vd。因此,在图5中使用了表示电光学元件Ek的特性FAk的曲线中用实线图示的部分fk。即,范围RL内的灰度根据电光学元件E1的发光(部分f1)而被输出(显示),范围RM内的灰度根据电光学元件E2的发光(部分f2)而被输出,范围RH内的灰度根据电光学元件E3的发光(部分f3)而被输出。
如上所述,在本实施方式中,由于当指定了低灰度侧的范围RL内的灰度值D时,灰度变化率最小的电光学元件E1被驱动,当指定高灰度侧的范围RH内的灰度值D时,灰度变化率最大的电光学元件E3被驱动,所以具有下述优点可充分确保数据信号S1[j]~S3[j]的电压值Vd的等级宽度,并且可降低各自的电压值Vd。若对该效果进行详细描述,则如下所示。
现在,将1个单位电路P仅包括元件部U3的结构(仅通过灰度变化率高的电光学元件E3来表现所有灰度值D的结构)作为第一对比例进行研究。基于第一对比例的结构,为了使电光学元件E3的灰度在范围RL内仅变化ΔG,如图5所示,需要使数据信号S3[j]的电压值Vd仅变化微小的变化量ΔV1,所以,不可缺少能够进行电压值Vd的微小调整的高价数据线驱动电路24。对此,由于在本实施方式中范围RL内的灰度值D通过灰度变化率低的电光学元件E1来表现,所以,为了使灰度值D仅变化ΔG所需的电压值Vd的变化量/V2比第一对比例的变化量ΔV1大。这样,由于在本实施方式中降低了细微调整数据信号Sk[j]的电压值Vd的变化量的必要性,所以与第一对比例比较可采用低廉的数据线驱动电路24。
接着,将1个单位电路P仅包括元件部U1的结构(仅通过灰度变化率低的电光学元件E1来表现所有灰度值D的结构)作为第二对比例进行研究。基于第二对比例,为了将电光学元件E1控制在范围RH内的灰度GH,如图5所示,需要使数据信号S1[j]上升至电压值Vd1,所以,存在着数据线驱动电路24中的消耗功率过大的问题。对此,在本实施方式中,通过比电光学元件E1灰度变化率高的电光学元件E2与E3来表现范围RM以及范围RH的灰度值D。因此,例如为了以灰度GH控制电光学元件E3所需的数据信号S3[j]的电压值Vd,成为比第二对比例中的电压值Vd1大幅降低的电压值Vd2。这样,根据本实施方式,由于降低了高灰度的输出所需的电压值Vd,所以,与第二对比例比较存在着降低了数据线驱动电路24中的消耗功率的优点。
(B第二实施方式)在第一实施方式中举例说明了根据电光学元件E1~E3的面积而使各自的灰度变化率不同的结构,但用于按各电光学元件Ek选定灰度变化率的具体方法如以下各方式所述,可以进行适当变更。另外,下面着眼于电光学元件E1、E2进行说明,但对于电光学元件E3而言,也可通过同样的结构将灰度变化率调整为预期值。而且,当不需要特别区别各电光学元件E1~E3时,仅表示为“电光学元件E”。在下面的各方式所参照的附图中,对作用或功能相同的要素标记相同的符号。
(B-1第一方式)图6是本方式所涉及的元件阵列部A的剖面图。如图所示,在具有透光性的基板30的表面,形成有与驱动晶体管Qdr的漏极电连接的布线31。形成有驱动晶体管Qdr等各元件与部件31的基板30的表面被绝缘层32覆盖。在绝缘层32的面上,按照各电光学元件E相互分离形成有作为电光学元件E的阳极而发挥作用的第一电极33。
第一电极33由ITO(Indium Tin Oxide)等具有透光性的导电材料形成,并且经由绝缘层32的接触孔与布线31(进而与驱动晶体管Qdr)导通。在形成有第一电极33的绝缘层32的表面形成隔壁层34。隔壁层34是在与第一电极33重合的各区域形成有开口部分341的绝缘性膜体。
在被隔壁层34的开口部分341的内周面包围并且以第一电极33的表面为底面的凹部形成发光功能层35。发光功能层35包括由有机EL材料形成的发光层。另外,也可以将用于促进发光层的发光或用于使发光层的发光效率提高的各种功能层(空穴注入层、空穴输送层、电子注入层、电子输送层、空穴阻挡层(hole block layer)、电子阻挡层)和发光层的叠层作为发光功能层35。在隔壁层34以及发光功能层35的面上,形成有作为电光学元件E的阴极而发挥作用的第二电极36。第二电极36是遍及多个电光学元件E而连续形成的导电膜。第二电极具有光反射性。因此,如图6的箭头所示,从发光功能层35向基板30一侧射出的光和在第二电极36的表面反射的光透过绝缘层32与基板30被射出到电光学装置100的外部。
在第一实施方式中,例示了根据发光功能层35的面积(即第一电极33和第二电极36之间流过电流的区域的面积)使电光学元件E1~E3每一个的灰度变化率不同的结构。对此,在本方式中,各电光学元件E的发光功能层35的面积大致相同,另一方面,通过按各电光学元件E来调整发光功能层35的膜厚(换言之是第一电极33和第二电极36的间隔),使各自的灰度变化率不同。如图6所示,电光学元件E1的发光功能层35的膜厚Ta1比电光学元件E2的发光功能层35的膜厚Ta2大。由于发光功能层35越薄,向第一电极33和第二电极36之间施加规定电压时的发光量越增大,所以,即使在图6的结构中也与第一实施方式同样,电光学元件E1的灰度变化率比电光学元件E2的灰度变化率低。
(B-2第二方式)图7是第二方式所涉及的元件阵列部A的剖面图。如该图所示,构成电光学元件E的要素和其层叠顺序与图6的方式相同。但在本方式中,第一电极33的膜厚在各电光学元件E中不同。例如,如图7所示,电光学元件E1的第一电极33的膜厚Tb1比电光学元件E2的第一电极33的膜厚Tb2大。
图7的结构中的绝缘层32由折射率与基板30不同的材料形成。因此,绝缘层32和基板30的界面作为半透过反射面而发挥作用,其使相对该界面入射的光的一部分向基板30一侧透过,并且使另一部分向基板30的相反侧反射。以上的结构中,在半透过反射面和第二电极36的表面之间形成了来自发光功能层35的出射光发生谐振的谐振器结构。即,来自发光功能层35的出射光在半透过反射面和第二电极36的表面之间往复,属于与两界面间的距离对应的频带(谐振波长)的成分选择性地透过基板30而射出。
在本实施方式中,由于构成谐振器结构的第一电极33的膜厚(来自发光功能层35的出射光透过半透过反射面为止的光路长)在各电光学元件E中不同,所以,在向第一电极33和第二电极36之间施加规定的电压时,从发光功能层35射出并透过基板30的光的分光特性在电光学元件E1和E2中不同。例如,如图8所示,来自电光学元件E1的出射光显示跨过很广的范围强度平坦分布的特性FB1,而来自电光学元件E2的出射光显示在包括谐振波长的窄范围成为高强度的特性FB2。通过该结构也与第一实施方式一样,可以将电光学元件E1的灰度变化率设定得比电光学元件E2低。
(B-3第三方式)图9是第三方式所涉及的元件阵列部A的剖面图。如该图所示,在本实施方式中,绝缘层32的膜厚按各电光学元件E而不同。例如,如图9所示,与电光学元件E1对应的绝缘层32的膜厚Tc1比与电光学元件E2对应的绝缘层32的膜厚Tc2大。即使在图9的结构中,由于来自发光功能层35的出射光透过半透过反射面为止的光路长按各电光学元件E而不同,所以,如图8所示,基板30的透过光的分光特性按电光学元件E1和E2而不同。因此,可以将电光学元件E1的灰度变化率设定得比电光学元件E2低。
(B-4第四方式)图10是第四方式所涉及的元件阵列部A的剖面图。如该图所示,本方式的电光学装置100除了图6的要素外,还包括粘贴于基板30表面的减光滤波器37(ND(Neutral Density)滤波器)。绝缘层32通过具有透光性的粘接剂38粘接于减光滤波器37的表面。来自各电光学元件E的出射光透过减光滤波器37和基板30而射出到外部。
减光滤波器37中与各电光学元件E1~E3重合的部分的透过率不同。例如,如图10所示,减光滤波器37中与电光学元件E1重合的部分371的透过率比与电光学元件E2重合的部分372的透过率低。因此,与第一实施方式相同,电光学元件E1的灰度变化率比电光学元件E2低。
如上所述,根据本实施方式,由于可使各电光学元件E的面积相同并可分别设定各自的灰度变化率,所以,与需要使电光学元件E3相对大面积的第一实施方式的结构比较,可以降低配置单位电路P所需的空间,由此,具有容易实现图像的高精细化的优点。
另外,如第一~第三方式那样,基板30上的要素的膜厚按各电光学元件E而不同的结构,例如可通过下述方式制造按各电光学元件E使构成所述要素的膜体的层叠数不同的方法;按各电光学元件E通过独立的工序以预期的膜厚形成所述要素的方法。例如,图7中的电光学元件E1的第一电极33通过层叠比电光学元件E2的第一电极33数量多的导电膜而形成。如上所述,在第一~第三方式所涉及的元件阵列部A的制造中,需要按各电光学元件E改变形成要素的工序,该要素决定了灰度变化率。对此,由于通过像第一实施方式那样根据各电光学元件E的面积决定各自的灰度变化率的结构,制造各电光学元件E的要素的方法是通用的,所以具有简化元件阵列部A的制造工艺的优点。
(C第三实施方式)接着,对本发明的第三实施方式进行说明。在第一实施方式中,例示了根据各自的特性使电光学元件E1~E3的灰度变化率不同的结构。对此,在本实施方式中,采用了根据使各电光学元件E实际发光的时间长度而使各自的灰度变化率不同的结构。另外,本实施方式中对作用或功能与第一实施方式相同的要素标记与以上相同的符号,并适当省略其详细的说明。
图11是表示属于第i行的第j列单位电路P的结构的电路图。如该图所示,在本实施方式的元件阵列部A中,形成有与扫描线120平行延伸的三根控制线(121~123)。扫描线驱动电路22除了向扫描线120输出扫描信号G[i]之外,还向控制线121输出控制信号G1[i],向控制线122输出控制信号G2[i],向控制线123输出控制信号G3[i]。另外,对各信号的具体波形将在后面描述。
如图11所示,一个单位电路P具备2个元件部U1、U2。元件部Uk(本实施方式的k是1或2)包括电光学元件Ek。电光学元件E1以及电光学元件E2各自的面积与各层的膜厚相等。在本实施方式中,从灰度值D的最小值到最大值的范围被划分为低灰度侧的范围RL和高灰度侧的范围RH。而且,若灰度值D是范围RL内的数值,则电光学元件E1被驱动,若灰度值D是范围RH内的数值,则电光学元件E2被驱动。
在元件部Uk的驱动晶体管Qdr的漏极和电光学元件Ek的阴极之间,插入有控制两者电连接的n沟道型晶体管(以下称作“发光控制晶体管”)Qel。从控制线122向元件部U1的发光控制晶体管Qel的栅极供给控制信号G2[i]。从控制线123向元件部U2的发光控制晶体管Qel的栅极供给控制信号G3[i]。
在元件部Uk的驱动晶体管Qdr的栅极和漏极之间,插入有控制两者电连接的n沟道型晶体管Qsw1。从控制线121向元件部U1以及U2每一个中的晶体管Qsw1的栅极供给控制信号G1[i]。
元件部Uk包括夹着电介质使电极E1和E2对置的电容元件C1(电容值c1)。电极E1与驱动晶体管Qdr的栅极连接。元件部Uk的选择晶体管Qsl介于电极E2和数据线LDk[j]之间,控制两者的电连接。与第一实施方式相同,电容元件C(电容值c)介于驱动晶体管Qdr的栅极和源极(电源线17)之间。
图12是例示各信号的具体波形的时间图。如该图所示,在各水平扫描期间H开始之前设定有初始化期间P0和补偿期间PCP。控制信号G1[i]在扫描信号G[i]成为高电平的水平扫描期间H之前的初始化期间P0和补偿期间PCP成为高电平,在此之外的期间维持低电平。控制信号G2[i]在水平扫描期间H之前的初始化期间P0和经过该水平扫描期间H后的发光期间PEL1成为高电平,在此之外的期间维持低电平。控制信号G3[i]在水平扫描期间H之前的初始化期间P0和经过该水平扫描期间H后的发光期间PEL2成为高电平,在此之外的期间维持低电平。如图12所示,发光期间PEL2比发光期间PEL1时间长。
接着,对一个单位电路P的动作进行说明。首先,在初始化期间P0中,控制信号G2[i]、G3[i]迁移成高电平,从而元件部U1、U2的各发光控制晶体管Qel变化为导通状态。另外,控制信号G1[i]迁移成高电平,从而元件部U1、U2的各晶体管Qsw1成为导通状态。由此,元件部U1、U2的各驱动晶体管Qdr被二极管连接,所以,各自的栅极被初始化为与电光学元件E1、E2的特性对应的电压。
若补偿期间PCP开始,则通过控制信号G2[i]、G3[i]迁移成低电平,使得元件部U1、U2的各发光控制晶体管Qel变化为截止状态。因此,在补偿期间PCP的终点到来之前,元件部U1、U2的各驱动晶体管Qdr的栅极,收敛于电源线17的电源电位VEL与该驱动晶体管Qdr的阈值电压Vth的差分值(VEL-Vth)。
由于经过补偿期间PCP扫描信号G[i]迁移成高电平时,选择晶体管Qsl变化为导通状态,所以,电极E2的电压从之前的电压值V0变化为数据信号S[j]的电压值Vd。电压值Vd被设定为比电压值V0低的电位且与灰度值D对应的电压值。另一方面,通过控制信号G1[i]迁移成低电平,使得驱动晶体管Qdr的二极管连接被解除。由于驱动晶体管Qdr的栅极的阻抗足够高,所以,若电极E2从电压值V0到电压值Vd仅减少变化量ΔV(=V0-Vd),则电极E1的电压从在补偿期间PCP被设定的电压值“VEL-Vth”仅变动(减少)“ΔV·c1/(c1+c)”。即,驱动晶体管Qdr的栅极被设定为以下式子(1)的电压Vg。
Vg=VEL-Vth-k·ΔV……(1)(k=c1/(c1+c))在控制信号G2[i]维持高电平的发光期间PEL1中,元件部U1的发光控制晶体管Qel成为导通状态。同样,在发光期间PEL2中,元件部U2的发光控制晶体管Qel成为导通状态。因此,在发光期间PELk中,与元件部Uk的驱动晶体管Qdr的栅极的电压对应的驱动电流IEL被供给到电光学元件Ek。
第j列的信号生成电路25在扫描信号G[i]成为高电平的水平扫描期间H中,将数据信号S1[j]以及S2[j]的一方设定为与灰度值D对应的电压值Vd,并且将另一方设定为电压值V0。例如,在数据判别部241判定灰度值D是范围RL内的数值的情况下,如图12所示,信号生成电路25将数据信号S1[j]设定为与灰度值D对应的电压值Vd(比电压值V0低的电位),并将数据信号S2[j]设定为使电光学元件E2熄灭的电压值Vd(电压值V0)。另外,在灰度值D是范围RH内的数值的情况下,信号生成电路25生成与灰度值D对应的电压值Vd的数据信号S2[j]和使电光学元件E1熄灭的电压值Vd(电压值V0)的数据信号S1[j]。
因此,在灰度值D是范围RL内的数值的情况下,电光学元件E1从发光期间PEL1的始点到终点以与该灰度值D对应的亮度发光,并且电光学元件E2熄灭。另外,在灰度值D是范围RH内的数值的情况下,电光学元件E2从发光期间PEL2的始点到终点以与该灰度值D对应的亮度发光,并且电光学元件E1熄灭。
电光学元件Ek的灰度(亮度的时间积分值(发光量))根据发光期间PELk中的亮度和该发光期间PELk的时间长度来决定。由于发光期间PEL1被设定为比发光期间PEL2短的时间,所以,电光学元件E1的灰度变化率成为比电光学元件E2的灰度变化率低的数值。因此,在本实施方式中,也起到与第一实施方式相同的效果。
可是,若假定驱动晶体管Qdr在饱和区域进行动作的情况,则可以用以下的式子(2)表现在发光期间PELk中供给到电光学元件Ek的驱动电流IEL。其中,式子(2)中的“β”是驱动晶体管Qdr的增益系数,“Vgs”是驱动晶体管Qdr的栅极-漏极间的电压。
IEL=(β/2)(Vgs-Vth)2……(2)=(β/2)(VEL-Vg-Vth)2通过代入式子(1),式子(2)变形如下。
IEL=(β/2)(k·ΔV)2即,供给到电光学元件Ek的驱动电流IEL不依赖于驱动晶体管Qdr的阈值电压Vth。因此,根据本实施方式,可以抑制因各驱动晶体管Qdr的阈值电压Vth的离散偏差(与设计值的差别和与其他驱动晶体管Qdr的差别)而引起的电光学元件Ek的灰度不匀。
(D第四实施方式)接着,对本发明的第四实施方式进行说明。
在第一实施方式中,例示了根据数据信号SK[j]的电压值Vd来设定电光学元件Ek的灰度的电压编程方式。与此相对,在本实施方式中,并用了根据数据信号SK[j]的电流值Id来设定电光学元件Ek的灰度的电流编程方式和电压编程方式。另外,在本实施方式中对作用或功能与第一实施方式相同的要素标记相同的符号,并适当省略其详细说明。
图13是表示属于第i行的第j列单位电路P的结构的电路图。如该图所示,单位电路P具备2个元件U1、U2。元件部Uk(本实施方式的k是1或2)包括电光学元件Ek。与第一实施方式相同,电光学元件E1的灰度变化率比电光学元件E2低(例如电光学元件E2比电光学元件E1面积大)。在本实施方式中,与第三实施方式相同,若灰度值D是低灰度侧的范围RL内的数值,则电光学元件E1被驱动,若灰度值D是高灰度侧的范围RH内的数值,则电光学元件E2被驱动。
如图13所示,在本实施方式的元件阵列部A中形成有与扫描线120平行延伸的控制线121。扫描线驱动电路22向控制线121输出控制信号G1[i]。发光控制晶体管Qel介于元件部Uk的驱动晶体管Qdr的漏极和电光学元件Ek的阳极之间。从控制线121向元件部U1、U2每一个中的发光控制晶体管Qel的栅极供给控制信号G1[i]。
元件部U1的选择晶体管Qsl与第一实施方式相同,介于驱动晶体管Qdr的栅极和数据线LD1[j]之间。另一方面,元件部U2的选择晶体管Qsl介于驱动晶体管Qdr的漏极和数据线LD2[j]之间。而且,元件部U2包括介于驱动晶体管Qdr的栅极和漏极之间并控制两者电连接的晶体管Qsw2。晶体管Qsw2的栅极与扫描线120连接。
如图13所示,各信号生成电路25包括电压生成电路251、电流生成电路252以及开关SW1、SW2。第j列的信号生成电路25的开关SW1介于数据线LD2[j]和电压生成电路251之间,开关SW2介于数据线LD2[j]和电流生成电路252之间。电压生成电路251也与数据线LD1[j]连接。
图14是用于说明本实施方式的动作的时间图。在图14的部分(a)中例示了对属于第i行的第j列单位电路P指定了低灰度的范围RL内的灰度值D的情况,在该图的部分(b)中例示了对相同单位电路P指定了高灰度的范围RH内的灰度值D的情况。如图14的部分(a)和(b)所示,控制信号G1[i]在经过扫描信号G[i]成为高电平的水平扫描期间H后成为高电平。
若数据判别部241判定灰度值D是范围RL内的数值,则信号生成电路25如图14的部分(a)所示,在扫描信号G[i]成为高电平的水平扫描期间H中,将开关SW1设定为接通状态,并将开关SW2设定为断开状态。与此相对,在灰度值D属于范围RH的情况下,信号生成电路25如图14的部分(b)所示,在水平扫描期间H将开关SW1设定为断开状态,并将开关SW2设定为接通状态。
电压生成电路251在灰度值D属于范围RL的情况下,输出与该灰度值D对应的电压值Vd的数据信号S1[j],并且向开关SW1输出电源电压VEL。另外,电压生成电路251在灰度值D属于范围RH的情况下,向数据线LD1[j]输出电源电压VEL。另一方面,在灰度值D属于范围RH的情况下,电流生成电路252向开关SW2输出与该灰度值D对应的电流值Id的电流,在灰度值D属于范围RL的情况下,停止电流的输出。
因此,在灰度值D属于范围RL的情况下,如图14的部分(a)所示,向数据线LD1[j]输出电压值Vd的数据信号S1[j],并且经开关SW1向数据线LD2[j]输出电压值VEL的数据信号S2[j]。另一方面,在灰度值D属于范围RH的情况下,如图14的部分(b)所示,向数据线LD1[j]输出电压值VEL的数据信号S1[j],并且经开关SW2向数据线LD2[j]输出电流值Id的数据信号S2[j]。
与第一实施方式相同,向元件部U1的驱动晶体管Qdr的栅极供给选择晶体管Qsl为导通状态时的数据信号S1[j]。因此,如图14的部分(a)所示,若数据信号S1[j]为电压值Vd,则在控制信号G1[i]为高电平的期间,电光学元件E1被控制在与电压值Vd(灰度值D)对应的灰度,如图14的部分(b)所示,当数据信号S1[j]为电压值VEL时,电光学元件E1熄灭。
另外,在扫描信号G[i]迁移成导通状态的水平扫描期间H中,元件部U2的选择晶体管Qsl和晶体管Qsw2成为导通状态。在图14的部分(a)的情况下,由于在该水平扫描期间H中驱动晶体管Qdr的栅极被设定为数据信号S2[j]的电压值VEL,所以,在控制信号G1[j]成为高电平的期间电光学元件E2熄灭。另一方面,在图14的部分(b)的情况下,如图13的虚线箭头所示,由于在水平扫描期间H中电流值Id的数据信号S2[j]从电源线17经由驱动晶体管Qdr以及选择晶体管Qsl而流动,所以,在电容元件C中保持与电流值Id对应的电压。因此,在控制信号G1[j]成为高电平的期间,电光学元件E2被控制为与电流值Id对应的灰度。
如上所述,在本实施方式中,由于根据灰度值D的范围R选择性地驱动灰度变化率不同的各电光学元件Ek,所以,也起到与第一实施方式同样的效果。另外,在本实施方式中,当灰度值D高时根据数据信号S2[j]的电流值Id来设定电光学元件E2的灰度(电流编程方式),另一方面,当灰度值D低时根据数据信号S1[j]的电压值Vd来设定(电压编程方式)电光学元件E1的灰度。因此,如下详细描述那样,即使在灰度值D低的情况下也能以与灰度值D对应的灰度可靠地控制电光学元件E1。
数据线LDk[j]附带电阻与电容。因此,尤其在电流编程方式中指定了低灰度的情况下(电流值Id低的情况),存在着为了将数据信号Sk[j]设定为与灰度值D对应的电流值Id而需要相当长的时间的问题。换言之,若供给数据信号Sk[j]的时间不充分,则无法正确地将驱动晶体管Qdr的栅极设定为与灰度值D对应的电压。对此,在本实施方式中,当灰度值D处于低灰度的范围RL时,通过电压编程方式设定驱动晶体管Qdr的栅极的电压。根据该结构,由于消除了驱动晶体管Qdr的栅极中的电压的写入不足,所以,即使在数据线LDk[j]的时间常数高的情况下,也能高精度地以预期的灰度控制电光学元件E1。
(E变形例)以上的各方式可以加入各种变形。若例示具体的变形方式,则如下所述。另外,也可以适当组合下述的各方式。
(1)变形例1在第一实施方式与第二实施方式中,例示了根据各电光学元件Ek的形态(面积、各层的膜厚)使各自的灰度变化率不同的构成,但可适当变更用于按各元件部U设定灰度变化率的构成。更具体而言,使一个单位电路P中包含的电光学元件E1~E3的每一个为相同的形态,另一方面,按各元件部U选定驱动晶体管Qdr的特性(栅极的电压和驱动电流IEL的关系),由此可按各元件部U使灰度变化率不同。
例如,在假定基于第一实施方式的结构(图2)向元件部U1~U3的各驱动晶体管Qdr的栅极施加相同电压时,按照电光学元件E1的驱动电流IEL比电光学元件E2的驱动电流IEL小,电光学元件E2的驱动电流IEL比电光学元件E3的驱动电流IEL小的方式,决定各元件部U1~U3中的驱动晶体管Qdr的特性(例如沟道宽或沟道长)。通过该结构也能起到与第一实施方式和第二实施方式相同的效果。
如上所述,在本发明的方式中,只要是对各元件部Uk供给了相同电平(电压值Vd或电流值Id)的数据信号Sk[j]时的电光学元件Ek的灰度(灰度变化率)在一个元件部U和其他元件部U中不同的结构即可,不管实现该不同的具体结构如何。
(2)变形例2在以上各方式中例示了对各元件部Uk供给单独的数据信号Sk[j]的结构,但也可如图15所示,采用下述结构对于属于一个单位电路P的多个元件部Uk而言,共用一根数据线LD[j](单系统的数据信号S[j])。该图所示的单位电路P包括元件部U1、U2和选择晶体管Qsl。元件部U1包括p沟道型驱动晶体管Qdr_p,其根据栅极的电压控制供给到电光学元件E1的驱动电流IEL。元件部U2包括n沟道型驱动晶体管Qdr_n,其根据栅极的电压控制供给到电光学元件E2的驱动电流IEL。选择晶体管Qsl介于驱动晶体管Qdr_p、Qdr_n各自的栅极和数据线LD[j]之间。
当灰度值D是范围RL内的数值时,在选择晶体管Qsl成为导通状态的水平扫描期间H中被供给到驱动晶体管Qdr_p、Qdr_n各自的栅极的数据信号S[j],在使驱动晶体管Qdr_p为导通状态的范围内被设定为与灰度值D对应的电压值。因此,从驱动晶体管Qdr_p向电光学元件E1供给与灰度值D对应的驱动电路IEL,另一方面,从驱动晶体管Qdr_n变为截止状态开始,电光学元件E2熄灭。另外,当灰度值D是范围RH内的数值时,被供给在使驱动晶体管Qdr_n为导通状态的范围内设定为与灰度值D对应的电压值Vd的数据信号S[j]。因此,电光学元件E2被控制为与灰度值D对应的灰度,并且电光学元件E1熄灭。在图15的结构中,通过使元件部U1和U2的灰度变化率不同,也可起到与各方式同样的效果。
(F应用例)接着,对利用了本发明所涉及的电光学装置的电子设备进行说明。在图16~图18中,图示了采用以上所说明的任何方式所涉及的电光学装置100作为显示装置的电子设备的形态。
图16是表示采用了电光学装置100的便携型个人计算机的结构的立体图。个人计算机2000具备显示各种图像的电光学装置100;和设有电源开关2001和键盘2002的主体部2010。由于电光学装置100使用了OLED元件作为电光学元件E,所以,可以显示视野角广且容易观看的画面。
图17是表示应用了电光学装置100的移动电话机的结构的立体图。移动电话机3000包括多个操作按钮3001以及滚动按钮3002;和显示各种图像的电光学装置100。通过操作滚动按钮3002来滚动显示于电光学装置100的画面。
图18是表示应用了电光学装置100的便携信息终端(PDAPersonalDigital Assistants)的结构的立体图。信息便携终端4000包括多个操作按钮4001以及电源开关4002;和显示各种图像的电光学装置100。若操作电源开关4002,则在电光学装置100显示地址目录、日程表等各种信息。
另外,作为应用了本发明所涉及的电光学装置的电子设备,除了图16~图18所示的设备以外,还可举出数字静态照相机、电视机、摄像机、汽车导航装置、寻呼机、电子记事本、电子纸、台式计算机、文字处理器、工作站、可视电话、POS终端、打印机、扫描仪、复印机、视频播放器、具有触摸屏的设备等。另外,本发明所涉及的电光学装置的用途并不限定于图像的显示。例如在光写入型的打印机或电子复印机等图像形成装置中,采用了根据用纸等记录材料上应形成的图像来曝光感光体的光头(写入头),也可利用本发明的电光学装置作为这种光头。
权利要求
1.一种电光学装置,包括单位电路,其具备将第一电光学元件控制为与数据信号的电平对应的灰度的第一元件部、和将第二电光学元件控制为与数据信号的电平对应的灰度的第二元件部,当向所述第一元件部和所述第二元件部赋予相同电平的数据信号时,所述第一电光学元件的灰度比所述第二电光学元件低;和信号生成电路,其是根据在所述单位电路中指定的灰度值生成不同电平的数据信号的电路,在所述灰度值处于第一范围内时,对所述第一元件部赋予按照所述第一电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号,当所述灰度值处于比所述第一范围高灰度侧的第二范围内时,对所述第二元件部赋予按照所述第二电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号。
2.根据权利要求1所述的电光学装置,其特征在于,所述第一电光学元件和所述第二电光学元件射出光的区域的面积不同。
3.根据权利要求1或2所述的电光学装置,其特征在于,所述第一电光学元件以及所述第二电光学元件是发光层介于第一电极和第二电极之间的发光元件,所述第一电光学元件和所述第二电光学元件,其第一电极与第二电极之间的间隔不同。
4.根据权利要求1~3中任意一项所述的电光学装置,其特征在于,所述第一电光学元件以及所述第二电光学元件是发光层介于相互对置的具有透光性的第一电极和具有光反射性的第二电极之间的发光元件,所述第一电光学元件和所述第二电光学元件,其所述第一电极的膜厚不同。
5.根据权利要求1~4中任意一项所述的电光学装置,其特征在于,具备在基板的面上形成的具有透光性的绝缘层,所述第一电光学元件以及所述第二电光学元件是发光层介于在所述绝缘层的面上形成的具有透光性的第一电极和与该第一电极对置的具有光反射性的第二电极之间的发光元件,所述绝缘层中来自所述第一电光学元件的出射光所透过的区域、和来自所述第二电光学元件的出射光所透过的区域的膜厚不同。
6.根据权利要求1~5中任意一项所述的电光学装置,其特征在于,具备来自所述第一电光学元件的出射光透过的第一透光体、和来自所述第二电光学元件的出射光透过的第二透光体,所述第一透光体和所述第二透光体的透过率不同。
7.根据权利要求1所述的电光学装置,其特征在于,所述第一元件部以及所述第二元件部分别包括驱动晶体管,其生成与栅极的电压对应的驱动电流并将该驱动电流提供给电光学元件,所述第一元件部的驱动晶体管和所述第二元件部的驱动晶体管,向栅极施加相同电压时的驱动电流的电流值不同。
8.根据权利要求1所述的电光学装置,其特征在于,所述第一元件部在第一期间以与数据信号的电平对应的亮度使所述第一电光学元件发光,所述第二元件部在比第一期间长的第二期间以与数据信号的电平对应的亮度使所述第二电光学元件发光。
9.根据权利要求1~8中任意一项所述的电光学装置,其特征在于,所述第一元件部将所述第一电光学元件控制为与数据信号的电压值对应的灰度,所述第二元件部将所述第二电光学元件控制为与数据信号的电流值对应的灰度,所述信号生成电路包括电压生成电路,其在所述单位电路中指定的灰度值处于所述第一范围内时,向所述第一元件部输出与该灰度值对应的电压值的数据信号;和电流生成电路,其在所述灰度值处于所述第二范围内时,向所述第二元件部输出与该灰度值对应的电流值的数据信号。
10.一种电子设备,具备权利要求1~权利要求9中任意一项所述的电光学装置。
11.一种电光学装置的驱动方法,用于驱动电光学装置,该电光学装置具备单位电路,所述单位电路包括将第一电光学元件控制为与数据信号的电平对应的灰度的第一元件部、和将第二电光学元件控制为与数据信号的电平对应的灰度的第二元件部,当向所述第一元件部和所述第二元件部赋予相同电平的数据信号时,所述第一电光学元件的灰度比所述第二电光学元件低,所述驱动方法包括判别过程,判别在所述单位电路中指定的灰度值属于包括第一范围和灰度比该第一范围高一侧的第二范围的多个范围中的哪一个;和信号生成过程,根据所述灰度值生成不同电平的数据信号,在所述信号生成过程中,当通过所述判别过程判别所述灰度值处于所述第一范围内时,对所述第一元件部赋予按照所述第一电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号,当通过所述判别过程判别所述灰度值处于所述第二范围内时,对所述第二元件部赋予按照所述第二电光学元件被控制为与该灰度值对应的灰度的方式设定了电平的数据信号。
全文摘要
单位电路(P)包括元件部(U1、U2)。元件部(Uk)(k=1、2)根据数据信号Sk[j]的电压值Vd控制电光学元件(Ek)。当向元件部(U1、U2)供给相同电压值的数据信号S1[j]、S2[j]时,电光学元件(E1)比电光学元件(E2)灰度低。信号生成电路(25)根据灰度值D生成不同电压值的数据信号Sk[j]。当灰度值D处于范围RL内时,向元件部(U1)输出使电光学元件(E1)成为与该灰度值D对应灰度的电压值的数据信号S1[j]。当灰度值D处于比范围(RL)高灰度侧的范围(RM)内时,向元件部(U2)输出使电光学元件(E2)成为与该灰度值D对应灰度的电压值的数据信号S2[j]。
文档编号H05B33/08GK101059937SQ20071009712
公开日2007年10月24日 申请日期2007年4月17日 优先权日2006年4月19日
发明者高桥香十里 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1