应用玻璃纤维强化树脂发泡体的结构体及其制造方法与流程

文档序号:12834351阅读:514来源:国知局
应用玻璃纤维强化树脂发泡体的结构体及其制造方法与流程

本发明涉及一种应用了包含玻璃强化纤维的发泡树脂体的载具结构体及其制造方法,更具体地涉及一种具有优异耐疲劳性的载具结构体及其制造方法:通过在芯部的发泡树脂体中进行物理和化学表面处理,使发泡树脂体内在厚度方向上排列的玻璃纤维在发泡树脂体上固定高度处露出,由此在露出玻璃纤维的发泡树脂体和纤维强化复合材料的一体成型过程中,提高了露出玻璃纤维的发泡树脂体和纤维强化复合材料之间的结合。



背景技术:

一般,聚氨酯泡沫是其上的海绵由多元醇和二异氰酸酯制得的多孔材料,其存在两种类型,柔性和刚性。柔性型聚氨酯泡沫用作缓冲材料,例如床垫,而刚性型聚氨酯泡沫主要用作隔热材料。

通常,在包含连续原丝毡的聚氨酯的制造方法中,进行未稀释溶液的早期生产阶段,使得nco/oh的反应速率(其是异氰酸酯的nco和多元醇的oh之间的比例)为1.0~1.4,其中将下列成分混合在一起以进行反应:多元醇成分,其由10重量%~30重量%的通过将环氧丙烷和环氧乙烷与胺加成生产的多元醇,15重量%~35重量%的通过将环氧丙烷和环氧乙烷与蔗糖加成生产的多元醇,25重量%~40重量%的通过将环氧丙烷和环氧乙烷与季戊四醇加成生产的多元醇,以及10重量%~30重量%的通过将环氧丙烷和环氧乙烷与甘油加成生产的多元醇组成;以及使用官能团数量为2.6~3.0的聚合物mdi的异氰酸酯成分,其平均nco重量%为29重量%~32重量%。

其后,用材料浸渍作为玻璃纤维的连续原丝毡,所述材料包括:氟化碳类发泡剂,例如水和羧酸等,或二氧化碳;使用惰性气体(例如空气)的发泡剂;胺类氨基甲酸酯催化剂,例如三乙胺或三丙胺、三异丙醇胺、三丁胺等;以及作为有机硅酮类化合物的聚亚烷基二醇硅酮共聚物。

在此,所述连续原丝毡通过以下方式包含在未稀释溶液内:将超过2组的层压体连续供应到具有开放式上部的传送器中,并将所述未稀释溶液均匀注入到层压体上。

另外,将喷洒在连续原丝毡上的原料保持30秒~80秒以便进行泡沫反应。

在此,通过用聚酯或丙烯酸系粘合剂将小于25微米的纤丝粘合至固体粉末而形成所述连续原丝毡。对于所述聚酯或丙烯酸系粘合剂的消耗,一般使用0.5重量%~3重量%的原丝毡,由此最小化至可保持毡状形状的程度。

另一方面,kr10-0416834公开了包含连续原丝毡的玻璃纤维强化聚氨酯泡沫的制造方法,其中,聚氨酯泡沫的制造方法包括:未稀释溶液的生产阶段,其中包含发泡剂、反应催化剂和其它添加剂,并且在多元醇成分和异氰酸酯成分之间进行反应;聚氨酯泡沫的制造阶段,其中,将由多条交叉纤毛状玻璃纤维形成的连续原丝毡添加到所述未稀释溶液中。其中通过体积增加阶段(其中各纤毛状玻璃纤维之间的结合弱化)将所述连续原丝毡转移至所述聚氨酯泡沫的制造阶段。

另一方面,由当前申请人“hankukcarbonco.”研发的kr10-2013-0004795公开了通过二苯基甲烷异氰酸酯(mdi)或聚合物异氰酸酯(pmdi)与合成多元醇之间的反应发泡的聚氨酯泡沫,所述合成多元醇是通过从包括以下的多元醇中选择至少5种多元醇而生产的:通过环氧丙烷和环氧乙烷与胺加成获得的多元醇;通过环氧丙烷和环氧乙烷与甲苯二胺加成获得的多元醇;通过二乙二醇和二丙二醇与对苯二甲酸和邻苯二甲酸的缩合反应获得的多元醇;通过邻苯二甲酸酐和己二酸与二乙二醇和二丙二醇的缩合反应获得的多元醇;通过环氧丙烷和环氧乙烷与山梨醇加成获得的多元醇;通过环氧丙烷和环氧乙烷与乙二胺加成获得的多元醇;通过环氧丙烷和环氧乙烷与甘油加成获得的多元醇。

然而,上面提及的公开专利聚焦于使聚氨酯泡沫即便在较小厚度时也能够具有优异的隔热性的技术,因此并没有公开解决表面和芯材之间的层离和韧性降低的问题的具体技术。

此外,传统上没有关于载具结构体的耐弯曲疲劳性的公开技术。



技术实现要素:

技术问题

本发明被设计用于解决上述问题,并且旨在通过提高芯部的发泡树脂体和作为表面材料的纤维强化复合材料之间的界面结合而提供一种具有优异的耐疲劳性和隔热性能的载具结构体。

技术方案

为了达到以上目标,本发明的载具夹层结构体的特征如下:其由形成芯材的片状发泡树脂体和形成位于发泡树脂体厚度方向的一侧或两侧上的表面材料的纤维强化复合材料层组成;在发泡树脂体和纤维强化复合材料层之间形成芯材和表面材料的粘合层;大量玻璃纤维插入所述发泡树脂体内;全部玻璃纤维的超过70%是在各玻璃纤维纵向和所述发泡树脂体之间形成角度的玻璃纤维,其角度满足45°~90°;露出的玻璃纤维浸渍并结合至粘合层和纤维强化复合材料层,其中,玻璃纤维的一端或两端露出在整个发泡树脂体上;所述玻璃纤维的露出部分的高度为0.5mm~10mm;并且耐弯曲疲劳性超过100,000。此外,其特征在于:用于所述纤维强化复合材料层的强化纤维是选自由玻璃纤维、碳纤维和芳纶纤维组成的组中的一种或多种纤维;并且所述强化纤维为选自由编织物、单向织物、连续原丝毡、短切原丝毡和膨松毡组成的组中的超过一种或两种的形式。

另外,本发明提供了一种载具夹层结构体的制造方法,包括以下步骤:在模具上提供大量玻璃纤维;将发泡树脂喷洒到大量所述玻璃纤维上;产生发泡树脂体,其中,通过使所述发泡树脂发泡而插入玻璃纤维;将所述发泡树脂体纵向切割以产生固定的厚度;通过在上述切割的发泡树脂体的一端或两端进行物理或化学处理而除去发泡树脂体端部的发泡树脂;进行露出玻璃纤维的所述发泡树脂体(芯材)和纤维强化复合材料层(表面材料)的一体成型过程,使得所述纤维强化复合材料层由露出在所述发泡树脂体上的玻璃纤维浸渍。

根据本发明的适宜实例,用于制造所述发泡树脂体的玻璃强化纤维的形式的特征为选自由连续原丝毡、短切原丝毡、膨松毡、编织物和单向织物组成的组中的一种或多种;并且用于制造所述发泡树脂体的发泡树脂的特征为选自由聚氨酯树脂、聚异氰脲酸酯树脂、聚苯乙烯树脂、聚乙烯树脂和酚醛树脂组成的组中的一种或多种。在此,用于除去所述切割的发泡树脂体一端或两端的发泡树脂的物理方法是选自由使用切割装置调节切割程度的方法和利用刷子或凿子的方法组成的组中的一种方法。

另外,用于除去所述切割的发泡树脂体一端或两端的发泡树脂的化学方法的特征在于,使用选自由烃类化合物、卤代烃类化合物、醇类化合物、醛类化合物、醚类化合物、酯类化合物、酮类化合物和二醇醚类化合物组成的组中的一种或多种有机化学溶剂对所述切割的发泡树脂体的一端或两端进行处理。

此外,为了进行露出玻璃纤维的发泡树脂体(芯材)和纤维强化复合材料层(表面材料)的一体成型过程,一种方法选自由以下方法组成的组:使用粘合剂将露出玻璃纤维的发泡树脂体(芯材)和纤维强化复合材料层粘合在一起的方法;以及通过将纤维强化复合材料层层压至露出玻璃纤维的发泡树脂体而注入合成树脂的方法。在此,通过将纤维强化复合材料层(表面材料)层压至露出玻璃纤维的发泡树脂体(芯材)而注入合成树脂的方法是选自由手工铺叠、树脂传递成型、注射成型、高压釜成型、真空袋成型和压力压缩成型组成的组中的超过一种或两种方法。并且用于一体成型的所述合成树脂是选自由不饱和聚酯树脂、乙烯基酯树脂、环氧树脂、聚氨酯树脂、酚醛树脂、聚乙烯树脂、尼龙树脂、聚缩醛树脂、聚氯乙烯树脂、聚苯乙烯树脂和abs树脂组成的组中的超过一种或两种树脂。

此外,本发明利用切槽精细地切割所述载具夹层结构体或用于芯材的发泡树脂体,并且提供通过将许多切割片粘合或一体成型为选自由环型(o形)和弓型组成的组中的一种形状而制造为曲面形状的载具夹层结构体。

有利效果

上述构造的本发明的载具夹层结构体具有以下效果:芯材部的发泡树脂体和表面部的纤维强化复合材料之间的结合增强,并且耐弯曲疲劳性提高。

另外,在使用本发明的载具夹层结构体时,插入发泡树脂体的玻璃纤维在厚度方向上排列,使得弯曲最大载荷较大,并且具有在负载时偏转量小的效果。

此外,本发明的载具夹层结构体具有能够通过不同于传统方法的将产生的发泡树脂体纵向切割的简单制造方法生产具有优异物理性质的发泡树脂载具结构体的效果。

附图说明

图1是示出本发明的载具夹层结构体的实例的截面图。

图2是示出本发明的载具夹层结构体的制造方法的实例的制造方法的图示。

图3a~图3d是示出本发明的载具夹层结构体的制造方法的阶段s1~s3的制造方法的截面图。

图4是示出本发明的载具夹层结构体的制造方法的阶段s4的制造方法的截面图。

图5是示出本发明的载具夹层结构体的制造方法的阶段s5的物理处理的制造方法的截面图。

图6是示出了根据各用途以环型、弓型或圆型的曲面形状制造本发明的载具夹层结构体或用于芯材的发泡树脂体的过程的制造方法的图示。

图7是本发明的玻璃纤维在垂直方向上露出的树脂泡沫的照片。

图8a~8e是比较根据实施例和比较例制造的各面板的截面图的照片。

图9a~9e是比较各面板与界面结合的形状的照片,所述面板根据实施例和比较例制造。

图10a~10e是用于比较在进行各面板的耐弯曲疲劳性评价之后的芯材和表面材料之间的界面层离程度的照片,所述面板根据实施例和比较例制造。

图11a~11c是用于比较在各面板的耐弯曲疲劳性评价之后的面板的断裂形状的照片,所述面板根据实施例和比较例制造。

具体实施方式

将参照本发明优选实例的附图进行更详细地描述。

图1是示出本发明的载具夹层结构体的实例的截面透视图,图7是本发明的玻璃纤维在垂直方向上露出的树脂泡沫的照片。

参照图1和图7,本发明的载具夹层结构体可包括:片状的发泡树脂体(芯材);在所述发泡树脂体中形成的大量玻璃纤维;在发泡树脂体的外表面上形成的芯材;以及在表面材料的粘合层的外表面和所述粘合层的外表面上形成的纤维强化复合材料(表面材料)。另外,当插入发泡树脂体的玻璃纤维露出在整个发泡树脂体之上并且露出的玻璃纤维由所述粘合层和纤维强化复合材料层浸渍时,发泡树脂体(芯材)和纤维强化复合材料层(表面材料)之间的结合增强,并且隔热和耐弯曲疲劳性提高,使得其可用作载具(例如公共汽车和轿车等)的内部和外部材料。

本发明的发泡树脂体是通过将发泡剂与例如聚苯乙烯、聚乙烯、聚氨酯和苯酚等发泡树脂混合形成的泡沫。

所述发泡树脂体中的聚氨酯泡沫与作为主要原料的多元醇、多异氰酸酯和发泡剂等进行泡沫成型过程,因此,其由于优异的隔热、成型特性和加工性而适合用作隔热材料。

大量的本发明的玻璃纤维通过插入所述发泡树脂体而形成,并且发挥改善发泡树脂体的物理性质的作用。

例如,在弯曲最大载荷的偏转量和载荷方面,相比于在水平方向上排列的聚氨酯泡沫和不含玻璃纤维的聚氨酯泡沫,玻璃纤维在厚度方向上插入的本发明的发泡树脂载具夹层结构体更优。

同时,本发明的玻璃纤维的特征在于具有厚度方向的平均取向方向。

当根据坐标进行说明时,大量所述玻璃纤维(对于位于xy平面上且在z轴方向上具有厚度的片状的发泡树脂体)具有沿z轴方向排列的平均取向方向。在此,取向方向是其对于所述发泡树脂体的长度方向(xy轴)而在厚度方向(z轴)上放置的程度。

具体而言,为了计算玻璃纤维的平均取向度,当选择任意10片玻璃纤维并且测量选择的玻璃纤维与所述发泡树脂体长度方向(xy轴)之间的角度大小时,计算各自测得的角度高于45°且低于90°的玻璃纤维的数量,并且由此推导出玻璃纤维的平均取向度。例如,如果选择的10条玻璃纤维中的8条玻璃纤维满足以上条件,则将平均取向度定义为80%。

在本发明的载具夹层结构体中,如果以上述方式推导,玻璃纤维的取向度定义为高于70%。然而,应注意,各条玻璃纤维不是以可精确测量角度的棒状形成,而是在一定程度上无规弯曲。

如果通过以上方法得到的玻璃纤维的取向度小于70%,则存在弯曲最大载荷的物理性质不够好的问题。

由于玻璃纤维在厚度方向而非长度方向上排列,因此例如弯曲最大载荷和该载荷的偏转量等物理性质显著提高。

另一方面,本发明的载具夹层结构体的特征在于,通过经树脂体泡沫表面上的物理和化学处理消除填充玻璃纤维之间间隙的发泡树脂体表面附近放置的发泡树脂,从而在树脂体泡沫的表面上露出大量玻璃纤维。

如图1所示,在表面材料和芯材通过在树脂体泡沫表面上固定高度处露出的玻璃纤维进行一体成型期间,存在以下优点:由于露出的纤维穿入作为表面材料的纤维强化复合材料,提高了夹层结构体的表面材料和芯材之间的结合。

理想的是,所述玻璃纤维的露出部分的高度为0.5mm~10mm。当所述露出部分的高度小于0.5mm时,芯材和表面材料之间的界面结合弱化,而当超过10mm时,加工性降低。

本发明的载具夹层结构体的特征在于具有超过100,000次循环(3hz,423kgf)的耐弯曲疲劳性(astmc393),超过3mpa(astmc297)的层间结合力,超过500kgf(astmc393)的弯曲最大载荷。相比于常规夹层结构体,耐弯曲疲劳性提高超过该量的两倍,层间结合力也提高超过两倍,从而对表面材料和芯材之间的层离以及韧性降低具有优异效果。

然而,本发明的纤维强化复合材料层是选自由玻璃纤维、碳纤维和芳纶纤维组成的组中的超过一种或两种纤维;并且所述强化纤维的形式是选自由编织物、单向织物、连续原丝毡、短切原丝毡和膨松毡组成的组中的超过一种或两种。

而且,本发明的载具夹层结构体形成在其中注入了合成树脂的所述发泡树脂体的外表面上,同时所述合成树脂是选自由不饱和聚酯树脂、乙烯基酯树脂、环氧树脂、聚氨酯树脂、酚醛树脂、聚乙烯树脂、尼龙树脂、聚缩醛树脂、聚氯乙烯树脂、聚苯乙烯树脂和abs树脂组成的组中的超过一种或两种。

下文中,将参照附图详细说明本发明的载具夹层结构体的制造方法。

图2是示出本发明的载具夹层结构体的制造方法的实例的制造方法的图示;图3是示出本发明的载具夹层结构体的制造方法的阶段s1~s3的制造方法的截面图;图4是示出本发明的载具夹层结构体的制造方法的阶段s4的制造方法的截面图;图5是示出本发明的载具夹层结构体的制造方法的阶段s5的物理处理的制造方法的截面图。

参照图2~图5,本发明的载具夹层结构体的制造方法可包括以下步骤:在模具上提供大量玻璃纤维(s1);将发泡树脂喷洒到大量所述玻璃纤维上(s2);产生发泡树脂体,其中,通过使所述发泡树脂发泡而插入玻璃纤维(s3),并将所述发泡树脂体纵向切割以产生固定的厚度(s4);通过在所述切割的发泡树脂体的一端或两端进行物理或化学处理而除去发泡树脂体端部的发泡树脂,从而使玻璃纤维露出在发泡树脂体上(s5);进行露出玻璃纤维的所述发泡树脂体(芯材)和纤维强化复合材料层(表面材料)的一体成型过程,使得所述纤维强化复合材料层由露出在所述发泡树脂体上的玻璃纤维浸渍(s6)。

所述阶段s1的玻璃纤维是玻璃强化纤维,其形式是选自由连续原丝毡、短切原丝毡、膨松毡、编织物和单向织物组成的组中的超过一种或两种,并且理想的是提供由玻璃连续纤维组成的玻璃连续原丝毡(10)(参见图3a、3b)。

所述玻璃连续纤维的实例是通过将各自具有3μm~30μm的直径的100~30,000条单丝合一形成的原丝,并且其处于未加捻或小幅加捻的状态。而且,在玻璃连续原丝毡的实例中,1原丝的绞线支数为50特克斯~2,000特克斯。

作为另一个实例,也可使用从9μm~13μm的玻璃纱或10μm~24μm的粗纱以5cm~10cm的固定长度切下的玻璃短切纤维。

但是在玻璃短切纤维的情况中,存在难以控制其取向或方向性的问题。这是由于玻璃短切纤维因其与连续纤维相比更自由的移动而在发泡树脂进行发泡期间无法在希望的方向上排列。

与此相反,玻璃连续纤维的优点在于,其在置于模具的底部的发泡状态期间可以维持其在长度(水平)方向上的取向,因为其是连续延伸的。

另一方面,在所述阶段s3中发泡树脂(20)进行发泡的同时,所述玻璃纤维(11)在厚度方向上铺展。换言之,插入发泡树脂体(21)的玻璃纤维(11)在发泡完成时变为从顶部均匀分布至底部,原因在于,随着其进行发泡过程,挤在模具(m1)下部的玻璃纤维由于来自发泡树脂的应力而漂浮至上部。

用于制造发泡树脂体的发泡树脂为选自由聚氨酯树脂、聚异氰脲酸酯树脂、聚苯乙烯树脂、聚乙烯树脂和酚醛树脂组成的组中的超过一种或两种树脂。

在所述阶段s4中,将发泡树脂体纵向切割,使得玻璃纤维在切割的发泡树脂体的厚度方向上排列(参照图4)。

在所述阶段s5中,通过在发泡树脂体表面上进行物理或化学处理而使发泡树脂体中的玻璃纤维露出在发泡树脂体表面之上。

在本文的物理处理中,可通过利用用于切割发泡树脂体的切割装置(锯、刀、轮)调节切割程度来切割发泡树脂体的表面,或者,如图5所示,可利用在发泡树脂体表面上的刷子或凿子除去置于发泡树脂体表面上的发泡树脂(参照图5)。

另外,在化学处理中,在所述发泡树脂体的一侧或两侧上,通过使用选自由烃类化合物、卤代烃类化合物、醇类化合物、醛类化合物、醚类化合物、酯类化合物、酮类化合物和二醇醚类化合物组成的组中的一种或多种有机化学溶剂来除去所述发泡树脂体表面上的发泡树脂。

并且,在所述阶段s6中,利用露出玻璃纤维的发泡树脂体(芯材)的一侧或两侧层压纤维强化复合材料,并且所述发泡树脂体和纤维强化复合材料通过使用粘合剂或插入合成树脂而进行一体成型过程,所述合成树脂的实例是不饱和聚酯树脂、乙烯基酯树脂、环氧树脂、聚氨酯树脂、酚醛树脂、聚乙烯树脂、尼龙树脂、聚缩醛树脂、聚氯乙烯树脂、聚苯乙烯树脂和abs树脂。

并且,对于注入合成树脂以便将露出玻璃纤维的所述发泡树脂(芯材)与纤维强化复合材料(表面材料)粘合在一起的方法,理想的是使用选自由手工铺叠、树脂传递成型、注射成型、高压釜成型、真空袋成型和压力压缩成型组成的组中的超过一种或两种方法。

根据上述方法制造的载具夹层结构体或用于芯材的发泡树脂体可以制造为环型(o形)、弓型和圆型的曲面形状。图6是示出了曲面形状的载具夹层结构体的制造过程的制造方法的图示。参照图6,其示出了可通过切槽将载具夹层结构体精细地切割成许多片,各片可通过以环型(o形)、弓型或圆形粘合在一起或排列而制造为曲面形状。另外,示出了可将用于芯材的发泡树脂体精细地切割成许多片,各片可通过以下方式制造为曲面形状:将其以环型(o形)、弓型或圆形粘合在一起,然后与作为表面材料的纤维强化复合材料一起进行一体成型,从而可根据各用途而以环型(o形)、弓型或圆形的曲面形状制造为载具夹层结构体。

存在以下优点:通过制造载具夹层结构体或用于芯材的发泡树脂体,可生产根据各种用途采取不同形式的载具夹层结构体。

在下文中,通过优选的实施例,将更详细地描述本发明的载具夹层结构体及其制造方法。

实施例

1.阶段s1和s2

图3a、3b是示出本发明的载具夹层结构体的制造方法的阶段s1~s2的制造方法的截面图。参照图3a、3b,将由玻璃连续纤维组成的gcsm(玻璃连续原丝毡)置于模具上,并且将聚氨酯喷洒到所述gcsm上。

2.阶段s3

图3c是示出本发明的载具夹层结构体的制造方法的阶段s3的制造方法的截面图。参照图3c,通过在所述gcsm上发泡的聚氨酯和提供的发泡剂之间的反应使聚氨酯发泡,从而产生发泡树脂体。

3.阶段s4

图4是示出本发明的载具夹层结构体的制造方法的阶段s4的制造方法的截面图。参照图4,将制造的发泡树脂体以30mm的宽度纵向切割。

4.阶段s5

图5是示出本发明的载具夹层结构体的制造方法的阶段s5的物理处理的制造方法的截面图。参照图5,通过使用切割装置或旋转刷消除树脂泡沫的发泡树脂,使玻璃纤维以2mm的平均值露出在树脂泡沫的表面上,从而使玻璃纤维露出在产生的树脂泡沫的表面上。

5.阶段s6

通过以下方式完成厚度36mm的载具夹层结构体的制造过程:将玻璃网(其末端露出在发泡树脂体上)与纤维强化复合材料用玻璃布层压在露出玻璃纤维的发泡树脂体(芯材)的两侧上,并且与乙烯基酯树脂一起进行一体成型。其物理性质在下表1中列出。

比较例1

代替在芯材中应用树脂体泡沫,通过应用用作常规载具夹层结构体的芯材(芯体)的al蜂窝芯材(3/8英寸的芯材大小,70μm的al厚度)以与所述实施例1的s6阶段相同的方法制造载具夹层结构体,其物理性质在下表1中列出。

比较例2

除了通过略过阶段s5在树脂体泡沫表面上进行物理和化学处理的制造过程以外,以与所述实施例1相同的方法制造载具夹层结构体,其物理性质在下表1中列出。

比较例3

通过将制造的发泡树脂体横向切割而使玻璃纤维沿长度(水平)方向排列。其后,通过将纤维强化复合材料用玻璃纤维层压在所述切割的发泡树脂体两侧上,并且与乙烯基酯树脂一起进行一体成型,完成厚度36mm的载具夹层结构体的制造过程,其物理性质在下表1中列出。

比较例4

在略过阶段s1和s2之后,在无gcsm(玻璃纤维)的情况下仅使聚氨酯发泡,将所述发泡树脂切割。将纤维强化复合材料用玻璃纤维层压在所述切割的发泡树脂的两侧上,并使其与乙烯基酯树脂一起进行一体成型,由此完成厚度36mm的载具夹层结构体的制造过程,其物理性质在下表1中列出。

根据实施例和比较例制造的夹层结构体的截面图在图8a~8e中示出。

评价物理性质的方法

(a)压缩最大强度

压缩最大强度是通过在相对于发泡方向的垂直或水平方向上压缩发泡样品高度的10%时的强度的测量值。压缩最大强度=压缩强度(载荷)/截面积,并且其通过astmd1621测量。

(b)层间结合力

层间粘合力是在相对于发泡方向的垂直或水平方向上与加载块结合之后在拉伸方向上进行切开而由此进行的实验。层间结合力=结合力(载荷)/截面积,并且其通过astmc297测量。

(c)弯曲最大载荷

弯曲最大载荷是通过在夹层结构体的层压方向上进行弯曲实验直到破裂发生时的最大载荷的测量值,并且其通过astmc393测量。

(d)弯曲最大位移

弯曲最大位移是通过在夹层结构体的层压方向上进行弯曲实验直到破裂发生时的最大拉伸的测量值,并且其通过astmc393测量。

(e)耐弯曲疲劳性

耐弯曲疲劳性实验基于astmc393实验,并且显示通过以标准样品的最大载荷的90%的载荷重复加力直到破裂发生时进行的实验的重复次数。

(f)隔热性

隔热性是对物体热导率的测量值,并且使用热流计方法测量材料的热导率。使用热流传感器通过依照astmc518标准将材料放入高温和低温板之间,测量热导率。

表1

根据物理性质的评价结果,可证实,虽然实施例和比较例1~4具有相同厚度,但就压缩强度和弯曲最大载荷值而言,根据本发明制造的实施例与比较例1、3和4相比更优。然而,参照图10a~图10e,即使在514.8kgf的弯曲载荷下也未在实施例中观察到芯材形状的变化(图10a),在469.8kgf的载荷下在比较例1中可见到芯材的破裂形状(图10b),并且在503.8kgf的弯曲载荷下在比较例2中还可见到表面材料与芯材之间的界面层离(图10c)。

特别是,就耐弯曲疲劳性而言,相比于作为常规载具夹层结构体(应用al蜂窝芯材作为芯材)的比较例1,根据本发明实施例制造的载具夹层结构体具有53倍以上的优异性能,并且在将发泡树脂体纵向切割之后,确认了相比于玻璃纤维未露出的比较例2,耐弯曲疲劳性显著提高了超过2倍。

参照图11a~图11c,在3hz、423kgf的应力下,虽然实施例接受107,587次循环的载荷并在芯材部分破裂时停止(图11a),但比较例1接受1,999次循环的载荷并且芯材破裂(图11b),而比较例2接受46,926次循环的载荷,不仅经历了表面材料和芯材之间的界面层离,而且可观察到芯材破裂(图11c)。没有评价比较例3和比较例4的耐弯曲疲劳性,这是因为在达到载荷之前发生了破裂。

在隔热性的情况中,根据本发明实施例制造的载具夹层结构体比作为常规载具夹层结构体(应用al蜂窝芯材作为芯材)的比较例1优异约20倍,并且与其它比较例相比具有相似的隔热性。

上述的本发明仅仅是示例性的,本发明所属的本领域普通技术人员可充分理解由其可派生出各种变型和其它等同的实例。因此,应充分理解本发明并非仅局限于所述优选实施方式的详述中描述的形式。因此,本发明的实际技术保护内容由所附权利要求范围的技术构思所限定。另外,本发明应被理解为包含由所附权利要求范围限定的本发明的主旨,并且包含在此范围内的所有变型和等同物以及替代方案。

(符号说明)

1:载具结构体

10:玻璃连续原丝毡

11:玻璃纤维

20:发泡树脂

21:发泡树脂体

30:芯材和表面材料之间的粘合层

40:表面材料

b:旋转刷

m1:成型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1