复合膜和用于制备复合膜的方法与流程

文档序号:13098281阅读:440来源:国知局
复合膜和用于制备复合膜的方法与流程

本发明涉及根据权利要求1的前序部分所述的复合膜。

本发明还涉及根据权利要求9的前序部分制备复合膜的方法。

一般的复合膜及其制备方法可获自us2011/0177741a1。其描述了具有均由纤维组成的载体层和隔绝层的非织造纺织品。

从us2008/0220676a1中可获得具有织物层和经涂覆的纳米纤维层的服装。在此,首先制备纳米纤维层,其随后被提供以液体涂层。之后,使如此涂覆的纤维层与织物层接合。

us2010/0136865a1涉及经涂覆的纳米纤维的非织造网。

可从wo2013/043397a2中获得用于服装的复合纺织品,其具有内织物层、外织物层和由非织造纤维膜组成的隔绝层。该纤维膜在与织物层接合之前被提供以等离子体涂层。

us2013/0197664a1描述了具有施加至支撑结构的电纺膜的过滤介质。该支撑结构可由金属、陶瓷、玻璃纤维、石墨或聚合物材料组成。

具有多微孔膜的用于电子设备的声学部件可从us2014/0060330a1中得到。该声学部件具有多微孔膜层,该多微孔膜层上施加有一层细纤维层。在这里多微孔膜层用作支撑层。

随着声学信号复制领域中向前迈进的技术发展,存在保护部分敏感部件免受外部影响的持续需要。

在这点上,挑战之一在于,虽然阻止有害液体或纳米级粉尘进入声学部件的电子零件,但不会使声音轮廓失真。

本发明基于以下目标:提供一种复合膜和用于制备复合膜的方法,该复合膜允许高度防护以免受液体(例如水分、汗水、油脂和/或油)以及粉尘和污垢的有害影响。

根据本发明,该目标一方面通过具有权利要求1的特征的复合膜和通过具有权利要求9的特征的用于制备复合膜的方法来实现。本发明的优选实施方式在各自的从属权利要求中给出。

根据本发明的复合膜的特征在于,所述复合材料具有至少一个载体层和布置在所述至少一个载体层上的电纺膜,其中所述电纺膜由处于相叠的纤维形成,同时构造了孔结构,其中构造所述孔结构,使得所述复合材料具有至少1m的水柱和5l/m2*s的透气性。所述纤维可被构造成用于形成纳米结构或微结构的纳米纤维或微纤维。所述纤维优选形成三维非织造网络。此类复合材料还特别满足严格的防护等级要求。根据iso标准9237:1995-12测定透气性,并根据iso标准811:1981测定水柱。

另外,根据本发明的用于制备复合膜的方法的特征在于,设置载体层,并根据电纺方法在所述载体层上构造膜,其中所述膜由处于相叠的纤维制备,并且具有限定的孔结构。所述限定的孔结构特别涉及限定的孔尺寸和限定的孔分布。这对于复合材料的高孔隙率是尤其有利的。

本发明的基本理念在于以下事实:提供复合材料,其中形成了具有高孔隙率的复合材料,其使得气体,特别是空气能够渗出,而液体被该复合材料阻挡。

根据本发明的复合材料的膜(其依照电纺方法制备)不同于其它(聚合物)膜,特别在于多层网状、三维交联的巢状或网格状结构,其具有高比表面积,即,高表面积与体积之比。用于防水应用的常规膜,例如聚四氟乙烯(ptfe–gore-tex®)、泡沫聚四氟乙烯(eptfe)以及传统的膜具有层状、致密的膜结构。由结构所致,这些膜几乎不透空气(0l/m2*s)。

已知的薄膜膜(尤其是ptfe膜)的“透气”性质实际上不是由于孔结构,而是由于膜材料与水蒸气的直接相互作用。

另外,尤其是ptfe膜和eptfe膜可能含有有害原材料的残余物和痕量的长链全氟烷基酸,例如全氟辛酸(pfoa)。根据本发明,所述复合材料不含氯和溴。特别地,根据iec61249-2-21(溴<900ppm、氯<900ppm、卤素总份额<1500ppm)、ipc4101b(溴<900ppm、氯<900ppm、卤素总份额<1500ppm)和jpcaes-01-1999(溴<900ppm、氯<900ppm),根据本发明的复合材料不含卤素和环境有害的化合物,例如pfoa/pfos(全氟辛烷磺酸)。

根据本发明,所述复合材料挡水能力通过单位“水柱”来定义。“水柱”是用于测量作用在表面(例如织物结构或复合材料)上的压力的单位。1m水柱的压力定义为对应于1m水深处的静水压力的压力。在本发明的情况下,指示的水柱基于特别根据iso811:1981在20°c水温下的静水压力。

根据本发明,当相应的静水压力作用于本发明复合材料的一侧时,若该复合材料不显示对于水的显著的渗透性,则给出特定的本发明复合材料的水柱(例如5m)。因此,在各情况下指示的水柱是根据本发明的复合材料相对于水的紧密度的量度。

优选,根据本发明的复合材料具有5m的水柱、优选具有10m的水柱、特别优选具有35m的水柱。

根据本发明要求保护的复合材料的透气性基于在20°c下和65%的相对空气湿度下进行的压差测量。在该测量中,施加在该复合材料一侧上的增加的压力为200pa(帕斯卡),且测试面积为20cm2的复合材料,特别根据iso9237:1995-12。

在这些条件下通过该复合材料渗出的空气体积对应于1秒内通过1m2的该复合材料渗出的体积流量(l/m2*s)的1/500。在1秒内通过1m2的该复合材料渗出的空气的体积流量是根据本发明所要求保护的透气性。

优选,该复合材料的透气性为10l/m2*s、优选30l/m2*s、特别优选50l/m2*s。

根据本发明的复合材料的优选实施方式在于以下事实:该复合材料设置有根据pecvd方法的等离子体涂层。优选,构造该等离子体涂层,使得其通过特别提供拒水性(所谓的荷花效应)、抗静电作用和/或防粘涂层来补充该复合材料的性能。然而,交联的等离子体聚合物,即,等离子体涂层,可至少有助于该复合材料的防油、防油脂和/或防水性能。优选地,该复合材料,特别是等离子体涂层,具有低表面能,其中水接触角至少为120°、特别优选水接触角为140°或更大,依照根据din55660-2:2011-12的测量。

根据dineniso14419:2010对根据本发明的复合材料的实施方式变型施以油滴测试。如从图5可以得出的,全部的实施方式都具有良好(6)直至非常良好(8)的得分。在根据dineniso4920:2012的喷雾(喷水)测试和根据iso9865:1991依照邦迪斯门(bundesmann)测试确定拒水性中,根据本发明的复合材料的所有实施方式都能够获得最好得分(5/5)。

等离子体增强化学气相沉积(pecvd)是用于涂覆表面的方法,其中涂覆基底的化学沉积通过等离子体增强。该等离子体可直接与待涂覆的基底一起产生(直接等离子体法)或在分开的腔室中产生(远程等离子体法)。例如由于加速电子,反应气体分子离解生成反应性等离子体颗粒,例如自由基和离子(等离子体),其可使层沉积在基底上。这样,可提供以下表面涂层:其与常规的湿化学聚合方法相比,提供高度交联的聚合物结构,但是不会封闭经涂覆的膜的孔。

根据本发明的载体层是单丝织物,其中其特别具有关于膜的支撑和/或保护功能。优选,形成的该载体层具有小的声阻抗、防水、防油、防油脂和/或防粉尘性能。精确选择该载体层,特别是其纱线细度、几何形状、表面性质和敞开面积比例,可对于最终的复合材料功能具有显著的影响。介质的透气性越高,其声阻抗越小,并且其对于声音的穿透性越高。该织物优选具有10µm至400µm的长丝或纱线直径,和至最多300µm的网眼孔径。根据本发明的复合材料关于其声学性能和其防护性能是特别平衡了的。有可能关于限定的孔隙率和限定的等离子体官能团的密度产生定制的复合材料。

根据本发明,在电纺膜和至少一个载体层两者上构造了等离子体涂层。这确保该复合材料的灵活使用,在这种情况下该复合材料的防油、防油脂和/或防水性能可得到确保,不管载体层经布置是否面向声学部件或背向那里。在这方面,尤其优选等离子体颗粒穿透入该复合材料的孔,并用涂层单独包封或包覆纤维。在等离子体聚合期间,官能团的密度和等离子体聚合物的类型可受到影响。

根据本发明的扩展实施方式,特别优选等离子体涂层由具有疏水性质和/或疏油性质的材料形成。等离子体涂层可有助于增强该复合材料的防油、防油脂和/或防水性能,更特别有助于增强电纺膜的性能。

根据本发明的复合材料的优选的扩展实施方式在于以下事实:所述材料至少包含饱和的、单不饱和的和/或多不饱和的醚、酮、醛、烯烃、炔烃、酰胺、胺、腈、硫醚、羧酸酯、硫酯、砜、硫酮、硫醛、硫酰烯(sulfene)、次磺酰胺、含氟丙烯酸酯、硅氧烷、环氧化物、氨基甲酸酯和/或丙烯酸酯。尤其优选的是以下材料:在应用等离子体涂覆方法时释放有助于复合材料上的非极性类似特氟隆表面的自由基或离子。

根据本发明复合材料的扩展实施方式,优选载体层与膜牢固接合。这可防止分层和/或层的相对位移。载体层可在复合材料的边缘区域中在外周上以连续方式与膜接合,或逐点与膜接合,以及在复合材料的内部区域中以线形或点状方式与膜接合。

为了形成特别坚实的复合材料,根据本发明有利的是,将膜布置在两个载体层之间。因此,可设置至少三个层。在这种情况下,该膜可在两侧被载体层至少部分覆盖。根据需要,所述至少两个载体层可具有相同的性质(夹心布置)或具有可在其作用方式上彼此互补的不同的性质(混杂布置)。例如,第一载体层可构造为例如具有疏水性能,即防油、防油脂和/或防水性能,而第二载体层可特别构造成防粉尘,例如抗静电。取决于应用特定的功能要求,尤其优选若干载体层和若干膜以交替方式布置在复合材料中。单个载体层和膜可被构造为,例如,具有不同的孔隙率、孔分布、疏水性、疏油性和不同的防粉尘性能。

根据本发明复合材料的一个特别适宜的扩展实施方式,有利的是形成的膜具有0.08µm至100µm的平均孔径。该平均孔径可早在根据电纺方法制备膜时设定,并可根据需要适应于复合材料的要求。优选,单个孔的孔径偏离平均孔径不超过500%、优选不超过300%、特别优选不超过100%。优选地,形成的膜的纤维具有40nm至500nm、特别优选80nm至250nm的直径。膜的单根纤维的直径优选具有类似的直径。特别地,单根纤维的直径与平均纤维直径相差小于500%、优选小于300%、特别优选小于100%。

根据本发明的膜还可例如用于医药技术、过滤技术、声孔(akustischenvents)、通风过滤器中、用于燃料过滤、用于水分离、用在服装、包装、建筑和电子密封上、用在鞋子、伤口敷料或面膜上。根据本发明的复合材料的单独可设定的孔隙率可有益地有助于例如分离气流中的固体或提供可用于伤口处理中的透气敷料。

根据本发明的方法的基本理念在于以下事实:在载体层上构造电纺膜。在此,形成的膜可具有限定的孔隙率,即,至少具有限定的孔尺寸和/或孔分布,在这种情况下设定形成膜的纤维的密度。可在相关体积的膜中成比例地设定纤维的空间体积以及纤维的平均数量。在此,载体层可特别用作膜的稳定用和/或防护支撑体(auflage)。

为了单个复合材料层的特别可靠的连接和嵌入,根据本发明可能有利的是膜借助热熔法、特别借助激光、通过超声波焊接、层压、粘合、等离子体处理或其组合与载体层牢固接合。粘合可特别使用环氧-、丙烯酸酯和/或聚氨酯粘合剂来进行。这样,可以可靠地阻止分层。尤其优选载体层和膜之间的接合位置逐点或线形方式设置,并在复合材料上均匀分布,这可有利于在孔隙率和透气性上的仅小的损失。

为了根据本发明的复合材料的尤其有效的制备方法,根据一个扩展实施方式可能有利的是,直接在载体层上制备电纺膜,其中膜与载体层牢固接合。大致说来,有可能根据电纺方法在第一载体层(例如载体无纺布或载体织物)上制备膜,并在第二步骤中通过分层-层压方法将其转移至根据本发明的载体层,例如织物上。在根据本发明的载体层上直接设置膜可防止复杂的膜转移过程。另外,载体层的表面可经化学改性和/或形态上改性,由此膜在构造时可特别以位置固定的方式粘附于载体层上。

可提供具有小于100µm、特别小于50µm的层厚、优选具有1至10µm的层厚的膜。根据本发明,具有这些小的层厚的膜可已有助于根据本发明的水柱和透气性。

根据本发明方法的一个扩展实施方式规定,设置至少一个另外的载体层,其也与膜接合,其中所述膜布置在载体层之间。为了保护膜例如免受侵蚀性环境中的机械影响,可在其两侧各设置一个载体层。在多层结构,即所谓的多层结构中,可将复合材料构造为各自具有至少两个载体层和至少两个膜层,其中膜层处于相叠地布置。优选,至少一个载体层布置在第一膜和至少第二膜之间。

根据本发明方法,尤其优选,复合材料根据等离子体涂覆方法设置有表面涂层,由此使得在复合材料的表面上引入特定官能团或改性复合材料表面是可能的。借助纳米涂层,复合材料的防油、防油脂、防污垢和/或防水性能可以特别有利的方式被影响,在这种情况下经涂覆的膜的孔隙率和/或透气性基本上与未经涂覆的状态一致。借助等离子体涂覆,向复合材料的表面,更特别在膜的单根纤维上和/或载体层的单根纤维或长丝上施加具有特定表面功能(特别是疏水和/或疏油功能)的薄膜。这样做时,可获得若干nm(纳米)、特别地小于80nm、优选5nm至40nm的特别薄的层厚。这些超薄等离子体层与孔径相比是可忽略地小的。因此,本发明膜的孔径基本上不会被根据等离子体增强气相沉积(例如pecvd方法)的涂层改变。

这些等离子体聚合物可具有嵌入的含氟和/或不含氟的官能团,其与经典的氟碳化合物(fluorcarbonen)相比不含作为杂质的长链全氟烷基酸,例如全氟辛酸(pfoa)或全氟辛烷磺酸(pfos),其已在全球被认定为是对环境的威胁。

在下文中,借助以附图示意性说明的优选实施例进一步描述本发明,在所述附图中显示:

图1根据本发明的复合材料以其最简单的实施方式(“单层”)的横截面示意图;

图2根据本发明的复合材料以所谓的“夹心”布置的横截面示意图;

图3具有多层结构(“多层”)的根据本发明的复合材料的横截面示意图;

图4根据本发明的复合材料以具有两个不同的载体层的“混杂”布置的横截面示意图;和

图5在根据本发明的复合材料上进行的若干测试结果的表格表示。

图1显示了具有载体层11的根据本发明的复合材料10的横截面视图。在载体层11上布置了膜12,该膜12根据电纺方法形成并施加在载体层11上。为了膜12在载体层11上的改善的粘附,可将该复合材料构造为具有至少一个接合点13,其使两层彼此牢固接合。在此,这可以尤其是呈点或线形式的熔融或粘合位置。由于载体材料11和膜12的小的层厚,该复合材料可在接合位置处被接合点13完全穿透。

复合材料10,更特别地电纺膜12,可形成为具有多孔性的。复合材料10的表面和孔的纤维可涂覆有涂层,该涂层特别根据等离子体涂覆方法来施加。纤维的表面涂层在图中通过描绘的点和线14来示意性例示。根据本发明,复合材料10表面可完全涂覆有等离子体聚合物。这还可包含膜12的孔中的区域中的纤维,其位于复合材料10的内部或更深处。因此,不仅复合材料的宏观外表面可经涂覆,而且微观内表面,即,例如纤维、凹处和不平的部分,在这种情况下单根纤维被单独包封或包覆。

图2显示以所谓的“夹心”布置的根据本发明的复合材料10。在这之中,膜12布置在两个载体层11之间,由此膜12被保护在层之间以免受特别是机械应力。在夹心布置的实施方式中,可获得例如15.6l/m2*s的透气性。大致说来,用夹心布置、多层布置或混杂布置也可达到至最多50l/m2*s的透气性。

在复合材料10中的每一种可能的层布置中,这些可通过简单的层压相叠布置。然而,各层还可通过接合点13彼此牢固接合,由此可获得特别可靠的复合材料10的机械可负载性。

在图3中,例示了复合材料10(多层)的多层布置。在该布置中,设置载体层11和膜层12,使得它们以交替方式相叠堆置。根据图3,设置了两个载体层11和两个膜层12。然而,多层布置还可具有任意数目的载体层11和/或膜层12。根据需要,还可能的是,在两个或更多个载体层之间直接相叠地设置两个膜层12。即使在多层布置的情况下,也可在所有相叠堆置的膜层12和载体层11的微观表面上设置等离子体涂层。因此,即使在多层结构中,也可在复合材料10的内表面上设置等离子体涂层。

图4显示根据本发明的复合材料10的实施方式变型,其中膜12布置在第一载体层11和第二载体层15之间。大致说来,可将第一载体层11特别构造为织物,而第二载体层15不同于第一载体层11,并可特别被提供为无纺布。经由此类“混杂”布置,不同材料的性能可有利地组合在复合材料中,由此过滤性能、防护性能和声传输性能可以有利的方式在复合材料10中实现。同样在如图4中所示的混杂布置中,可在复合材料10的整个表面上设置等离子体涂层,在这种情况下等离子体聚合也可发生于复合材料10内的更深层中(例如在孔开口内)。

同样可想到的是设置复合材料10的多层结构,其具有不同的载体层11、15和不同构造的膜12。

图5是在根据本发明的复合材料上进行的根据dineniso14419:2010的所谓的“油滴测试”、根据iso9865:1991的邦迪斯门测试和根据dineniso4920:2012的喷雾(喷水)测试的结果的表格表示。

在“油滴测试”中,表面的疏油性基于油滴在待测试的表面上的形状来测定,其中使用标准化油(1至8;图5)。特别地,不仅在油1至5的情况中,而且在油6、7和8的情况中,疏油表面显示尤其排斥的特性,由此在各情况下,油滴在表面上作为珠存在。在该测试中最好的结果表示为得分8,其对应于在所用的所有的8种油中均形成珠。根据图5,依据本发明的所有的实施方式都具有良好(得分6)至非常良好(得分8)的疏油性能。

根据本发明的复合材料在邦迪斯门测试中以及在喷雾测试中获得了最好得分(5/5;图5)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1