提高微藻养殖过程中二氧化碳利用率的方法及专用装置的制作方法

文档序号:398646阅读:312来源:国知局
专利名称:提高微藻养殖过程中二氧化碳利用率的方法及专用装置的制作方法
技术领域
本发明涉及一种提高微藻养殖过程中二氧化碳利用率的方法及专用装置,涉及将一定压力的二氧化碳气体通入内装回流培养液的特定装置中,二氧化碳溶解到回流培养液中,含有一定浓度二氧化碳的回流培养液经管道输送到跑道式养殖池中供大规模培养微藻使用的方法。
背景技术
以CO2为主的温室气体大量排放造成的温室效应是21世纪全人类所面临的最大环境问题,全球气候变暖已成为各国政府、学术界以及企业界关注的焦点之一。如何实现碳减排,成为当前的研究热点。生物CO2固定法是地球上最主要和最有效的固碳方式,在碳循环中起决定作用,利用此法来进行CO2减排,符合自然界循环和节省能源的理想方式。能利用该法进行固碳的主要是植物、光合细菌以及藻类。微藻是低等植物中种类繁多、分布极其广泛的一个类群,具有光合速率高、繁殖快、环境适应性强、处理效率高以及易与其他工程技术集成等优点。利用微藻技术进行碳减排的研究与开发引起人们的广阔关注。微藻吸收固定二氧化碳具有如下优点(1)微藻的光合作用效率高、含油量高、生长周期短、油脂面积产率高,这是其它油料作物无法比拟的,被认为是最有潜力替代石油的生物资源。(2)微藻在光自养培养过程中可固定大量CO2,这不仅对于CO2减排这一全球性问题的解决具有重要的价值,而且可使微藻光自养生长所需碳源的成本下降。(3)不与农作物争地、争水。微藻可利用滩涂、盐碱地、荒漠以及海水、盐碱水和荒漠地区的地下水等进行大规模培养。(4) 微藻个体小、木质素含量很低,易粉碎、干燥,用微藻生产液体燃料所需的后处理条件相对较低。在微藻的大规模培养中,最大限度地利用二氧化碳作为碳源是十分必要的。它可以为藻的生长补充碳源,减少NaHCO3、冰醋酸等的用量,降低原料成本,同时还可以实现对培养液的调控和维持碳平衡。二氧化碳的溶解度主要受溶液的PH、温度、气液两相接触时间和接触面积、藻细胞密度及二氧化碳分压等因素影响。Lee等采用气体渗透膜管置于循环藻液中,由于二氧化碳通过微孔膜分散成细微气泡,加速二氧化碳的溶解,提高二氧化碳的利用率。管道式反应器利用CO2的方式主要有三种(1)反应器和藻液泡沫反应器组成循环系统,CO2在泡沫反应器内被吸收形成饱和溶液;(2)含有CO2的气体直接注入反应器,利用气升原理使藻液携带气泡在反应器内形成循环流动的过程中吸收CO2 ; (3)反应器和液泵组成循环系统,CO2气体伴随藻液输入反应器管道内并形成微小气泡,在藻液流动过程中与藻充分混合实现气体交换。微藻的大规模商业化培养始于20世纪60年代日本培养的小球藻。20世纪70年代早期,在墨西哥城附近的Sosa Texcoco湖建立了螺旋藻回收及培养技术,1977年大日本油墨化学公司(Dai Nippon Ink and Chemicals Inc.)在泰国建立了商品化的螺旋藻工厂,到1980年在亚洲就有46家大规模的微藻(主要是小球藻和螺旋藻)生产企业。微藻大规模培养方式有开放式、半封闭式与封闭式等,培养系统包括天然湖泊、敞开式跑道式养殖池、管道式或平板式等形式的光生物反应器。人造池或容器中最典型、最常用的开放池培养系统是美国人Oswald设计的跑道式养殖池。该类培养系统一般水道面积约1000-5000 m2, 培养液一般深约20-30cm,培养池用水泥或黏土为底,或用塑料膜衬里覆盖,以自然光为光源和热源,借电力或风力带动桨叶轮搅拌培养液。目前国际上较著名的大规模生产微藻的公司(如Cyanotech、Earthrise Farms、福清市新大泽螺旋藻有限公司等)均采用这种培养方式生产螺旋藻、小球藻和盐藻。螺旋藻是一类低等植物,属于蓝藻门,颤藻科,自然生长于热带碱性湖中。它是良好的天然食品原料资源,蛋白质含量60%左右,含有丰富的β —胡萝卜素、维生素Ε、维生素B12,含锌、铁、钾、钙、镁、磷、硒、碘等矿物质元素。另外,螺旋藻中还含有大量的Y —亚麻酸,是调节血压、降低胆固醇的功能成分。螺旋藻需要的营养元素除氮、磷、钾外,最大的需求量是碳源(二氧化碳),其主要营养盐配方为小苏打、食盐、硫酸钾、硫酸镁、硝酸钠、氯化钙、硫酸亚铁等。小球藻为绿藻门单细胞藻类,光合效率高,富含蛋白质、不饱和脂肪酸、类胡萝卜素、叶黄素、虾青素和多种维生素,具有极高的营养价值和提高免疫力的功能。另外小球藻还含有一种非常重要的成分一小球藻生长因子,它既具有诱发干扰素、激发人体防御和免疫组织中的巨噬细胞、T细胞和B细胞的功能,又具有促进人体对环境污染有害物质解毒和排泄的作用。小球藻不仅在光合作用机理、跨膜转运机理等研究方面成为一种良好的模式生物,而且在保健食品、水产养殖饵料、畜牧饲料添加剂的生产等方面被广泛应用。 据研究,小球藻通过光合作用积累Img干物质需要Imol (1.8 mg) CO2,而水中溶解的可利用的CO2 (0. 04 mol/L)远不能满足小球藻生长的需要,因此大规模培养中CO2的补加是提高产量的有效途径。Miyachi等研究证明,不同种类和品种的小球藻利用无机碳的形式不同, 有的利用HC0”而更多的则直接利用溶于水中的C02。加入碳酸氢钠类盐,可以补充水中 HCO3-的浓度,但并不适合于所有的小球藻种类,且成本高,易使培养液PH值升高。

发明内容
本发明的目的在于为克服传统大规模培养微藻过程中二氧化碳利用率低的缺陷,提供一种提高微藻养殖过程中二氧化碳利用率的方法。本发明的另一目的在于提供一种提高微藻养殖过程中二氧化碳利用率的专用装置。本发明提高微藻养殖过程中二氧化碳利用率的方法是二氧化碳气体以0. 1-1. OM Pa压力通入二氧化碳溶解装置,二氧化碳溶解装置内装回流培养液,当溶液PH值由通入前 7. 0-10. 5下降到pH6. 0-8. 5,表明通入的二氧化碳已溶解于回流培养液中,然后将该回流培养液通过管道输送到微藻跑道式养殖池中。本发明所述微藻是指蓝藻门的螺旋藻,绿藻门的小球藻、红球藻,金藻门的微绿球藻。 本发明所述二氧化碳来源为尾气二氧化碳。 本发明所述提高微藻养殖过程中二氧化碳利用率方法的专用装置包括带压力表的二氧化碳气体储罐、带压力表的二氧化碳溶解装置、回流培养液储池,二氧化碳储罐通过管道经第三阀门与二氧化碳溶解装置连通,二氧化碳溶解装置两端分别连接第一管道及第二管道,第一管道及第二管道中部分别串接第一泵和第一阀门、第二阀门,第一管道另一端与回流培养液储池相连,第二管道另一端与微藻跑道式养殖池相连。本发明所述二氧化碳溶解装置为圆柱体或长方形容器,外部安装有压力表。本发明所述二氧化碳溶解装置采用厚度3-10 mm的不锈钢板、碳钢板或玻璃钢板制成,或用水泥和钢筋建成,其厚度为10-30 cm。本发明所述二氧化碳溶解装置为圆柱体,长1. 5m-4. 0m,直径0. 4-1. 8m ;或为长方体,长 1. 5m-4. 0m,宽 0. 4-1. 5m,高 0. 3-1. Om,
本发明所述二氧化碳溶解装置中心部位设置的用以将含二氧化碳的回流培养液输送到跑道式养殖池中的第二管道直径为0. 10-0. 35m。本发明具有的优点在于最大限度地利用尾气二氧化碳作为碳源,减少NaHCO3、冰醋酸等的用量,降低原料成本,增加收益,同时还可以实现对培养液的调控和维持碳平衡。 本发明适用的微藻种类有螺旋藻、小球藻、红球藻、微绿球藻等。


图1为本发明装置结构及方法流程图。
具体实施例方式
下面结合具体的实施例对本发明做进一步的说明。 实施例1
本发明提高微藻养殖过程中二氧化碳利用率的装置包括带压力表的二氧化碳气体储罐1、带压力表的二氧化碳溶解装置3、回流培养液储池6。二氧化碳储罐1通过管道经第三阀门10与二氧化碳溶解装置3连通,二氧化碳溶解装置3两端分别连接第一管道31及第二管道32,第一管道31及第二管道32中部分别串接第一泵7和第一阀门4、第二阀门5,第一管道31另一端与放置回流培养液的储池6相连,用以将含二氧化碳的回流培养液输送到养殖池中,第二管道32设置于二氧化碳溶解装置中心部位并与跑道式养殖池4相连。二氧化碳溶解装置3为圆柱体,长4. Om,直径0. 8m并采用厚度8mm的不锈钢板制成。第一管道和第二管道直径都为0. 25m。本发明方法包括以下步骤
1、二氧化碳的溶解先开启第一泵7和第一阀门4将回流培养液储池6内的回流培养液输送至二氧化碳溶解装置3。调节二氧化碳储气罐1的压力为0. 3MPa,打开二氧化碳输送管道的阀门10,将二氧化碳气体通入二氧化碳溶解装置3。当二氧化碳溶解装置3内溶液PH值由通入前10. 5,下降至pH为8. 5,表明溶解的二氧化碳浓度已达到要求。2、含二氧化碳培养液的利用对于采用跑道式养殖池生产螺旋藻而言,从二氧化碳溶解装置中通过管径为0. 25m的第二管道通入一定量的含有二氧化碳的回流培养液培养螺旋藻,一个培养周期螺旋藻产量提高80-100%,碳酸氢钠使用量减少70-90%,CO2的固定率为 163-178mg/L. h。实施例2:
本实施例所采用的装置中二氧化碳溶解装置为长方体,长4. Om,宽0. 6m,高1. 0m,并采用厚度10 mm的玻璃钢板制成,第一管道和第二管道直径都为0. lm,其它构成及结构与实施例1相同。1、二氧化碳的溶解先开启第一泵7和阀门4将回流培养液储池6内的回流培养液输送至二氧化碳溶解装置3。调节二氧化碳储气罐1的压力为0. 6MPa,打开二氧化碳输送管道的阀门10,将二氧化碳气体通入二氧化碳溶解装置3,溶液pH值由通入前7. 5下降至PH为6. 5,表明溶解的二氧化碳浓度已达到要求。2、含二氧化碳培养液的利用对于采用跑道式养殖池生产小球藻而言,从二氧化碳溶解装置中通过管径为0. IOm的管道通入一定量的含有二氧化碳的培养液培养小球藻,一个培养周期小球藻产量提高30-50%,冰醋酸用量减少18-25%,CO2的固定率为 115-124mg/L. h。实施例3
本实施例所采用的装置中二氧化碳溶解装置为长方体,长3. Om,宽1. 2m,高0. 5m, 采用水泥和钢筋建成壁厚为30cm的长方体容器,第一管道和第二管道直径都为0. 35m,其它构成及结构与实施例1相同。
本发明方法的步骤为1、二氧化碳的溶解先开启第一泵7和阀门4将回流培养液储池6内的回流培养液输送至二氧化碳溶解装置3。调节二氧化碳储气罐1的压力为0. 9MPa, 打开二氧化碳输送管道的阀门10,将二氧化碳气体通入二氧化碳溶解装置3。溶液pH值由通入前7. 3下降至pH为6. 3,表明溶解的二氧化碳浓度已达到要求。
2、含二氧化碳培养液的利用对于采用跑道式养殖池生产微绿球藻而言,从二氧化碳溶解装置中通过管径为0. 35m的管道通入一定量的含有二氧化碳的回流培养液培养微绿球藻,一个培养周期微绿球藻产量提高20-35%,冰醋酸用量减少13-17%,CO2的固定率为 104-113mg/L. h。实施例4
本实施例二氧化碳溶解装置为圆柱体,长1. 8m,直径1. 5m,第二管道管径0. 3m ;采用厚度6mm的不锈钢板制成。二氧化碳气体以0. 8M Pa压力通入二氧化碳溶解装置3,回流培养液PH值由通入前10. 0下降至pH为8. 0,将该回流培养液通过管道输送到跑道式养殖池生产螺旋藻。一个培养周期螺旋藻产量提高70%,碳酸氢钠使用量减少75%,CO2的固定率为 156mg/L. h0实施例5
本实施例的二氧化碳溶解装置为长3.0m、直径0. 5m的圆柱体,采用厚度为3 mm碳钢板制成,与之相连的第二管道直径为0.2m。二氧化碳气体以1.0M Pa压力通入二氧化碳溶解装置,当二氧化碳溶解装置内装的回流培养液pH值由通入前8. 0下降到pH6. 5,然后将该培养液通过管道输送到跑道式养殖池生产红球藻。一个培养周期红球藻产量提高20%,冰醋酸用量减少15%,C02的固定率为102mg/L. h。实施例6
本实施例的二氧化碳溶解装置为长方体,长1. 2m,宽0. 6m,高0. 3m,用水泥和钢筋建成,其厚度为10cm,与之相连的第二管道直径为0.2m。二氧化碳气体以1. OM Pa压力通入二氧化碳溶解装置,当二氧化碳溶解装置内装的回流培养液PH值由通入前8. 0下降到pH6. 5,然后将该培养液通过管道输送到微绿球藻养殖池中。其它工艺参数及过程与实施例1相同。一个培养周期微绿球藻产量提高12-20%,冰醋酸用量减少13-16%,C02的固定率为 98-106mg/L. h。实施例7
本实施例的二氧化碳溶解装置为长方体,长2m,宽1. Om,高0. 8m,用水泥和钢筋建成, 其厚度为20cm,与之相连的第二管道直径为0.25m。二氧化碳气体以0.9M Pa压力通入二氧化碳溶解装置,当二氧化碳溶解装置内装的回流培养液PH值由通入前10. 0下降到 PH8. 5,然后将该培养液通过管道输送到螺旋藻养殖池中。其它工艺参数及过程与实施例3 相同。一个培养周期螺旋藻产量提高60-80%,碳酸氢钠使用量减少65-85%,CO2的固定率为 155-165mg/L. h。实施例8
本实施例的二氧化碳溶解装置为长方体,长2. 5m,宽0. 8m,高0. 6m,用水泥和钢筋建成,其厚度为30cm,与之相连的第二管道直径为0.1m。二氧化碳气体以0.5M Pa压力通入二氧化碳溶解装置,当二氧化碳溶解装置内装的回流培养液PH值由通入前8. 0下降到 PH6. 2,然后将该培养液通过管道输送到微绿球藻养殖池中。其它工艺参数及过程与实施例 2相同。一个培养周期绿球藻产量提高25-35%,冰醋酸用量减少15-22%,C02的固定率为 113-121mg/L. h。
权利要求
1.一种提高微藻养殖过程中二氧化碳利用率的方法,其特征是二氧化碳气体以0.1-1. OM Pa压力通入二氧化碳溶解装置,二氧化碳溶解装置内装回流培养液,当溶液PH 值由通入前7. 0-10. 5下降到pH6. 0-8. 5,表明通入的二氧化碳已溶解于回流培养液中,然后将该回流培养液通过管道输送到微藻跑道式养殖池中。
2.根据权利要求1所述的提高微藻养殖过程中二氧化碳利用率的方法,其特征是微藻是指蓝藻门的螺旋藻,绿藻门的小球藻、红球藻,金藻门的微绿球藻。
3.根据权利要求1或2所述的提高微藻养殖过程中二氧化碳利用率的方法,其特征是 二氧化碳来源为尾气二氧化碳。
4.一种提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是包括带压力表的二氧化碳气体储罐、带压力表的二氧化碳溶解装置、回流培养液储池,二氧化碳储罐通过管道经第三阀门与二氧化碳溶解装置连通,二氧化碳溶解装置两端分别连接第一管道及第二管道,第一管道及第二管道中部分别串接第一泵和第一阀门与第二阀门,第一管道另一端与回流培养液储池相连、第二管道另一端与微藻跑道式养殖池相连。
5.根据权利要求4所述提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是 二氧化碳溶解装置为圆柱体或长方形容器,外部安装有压力表。
6.根据权利要求4所述提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是 所述二氧化碳溶解装置采用厚度3-10 mm的不锈钢板、碳钢板或玻璃钢板制成,或用水泥和钢筋建成,其厚度为10-30 cm。
7.根据权利要求5所述提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是所述二氧化碳溶解装置为圆柱体,长1. 5m-4. 0m,直径0. 4-1. 8m ;或为长方体,长1.5m-4. 0m,宽 0. 4-1. 5m,高 0. 3-1. Om0
8.根据权利要求4或5或6所述提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是所述二氧化碳溶解装置中心部位设置的用以将含二氧化碳的回流培养液输送到跑道式养殖池中的第二管道直径为0. 10-0. 35m。
9.根据权利要求7所述提高微藻养殖过程中二氧化碳利用率的专用装置,其特征是 所述二氧化碳溶解装置中心部位设置的用以将含二氧化碳的回流培养液输送到跑道式养殖池中的第二管道直径为0. 10-0. 35m。
全文摘要
本发明公开了一种提高微藻养殖过程中二氧化碳利用率的方法及专用装置。本发明方法步骤为首先二氧化碳气体以0.1-1.0MPa压力通入二氧化碳溶解装置,二氧化碳溶解装置内装回流培养液,当溶液pH值由7.0-10.5降至6.0-8.5时,表明通入的二氧化碳已溶解于回流培养液中,然后将该回流培养液通过管道输送到跑道式养殖池供养殖微藻使用。本发明有效利用二氧化碳作为碳源,充分利用尾气二氧化碳,可为藻的生长补充碳源,减少NaHCO3、冰醋酸等的用量,降低原料成本,增加收益,同时还可实现对培养液的调控和维持碳平衡,适用于微藻的种类有螺旋藻、小球藻、红球藻、微绿球藻等。
文档编号C12M1/08GK102329732SQ201110295098
公开日2012年1月25日 申请日期2011年9月28日 优先权日2011年9月28日
发明者郑行 申请人:福清市新大泽螺旋藻有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1