一种基于活性功能分子标记蔗糖酶信号系统及其应用的制作方法

文档序号:476377阅读:230来源:国知局
一种基于活性功能分子标记蔗糖酶信号系统及其应用的制作方法
【专利摘要】本发明涉及生物化学物质的检测和分析领域,具体的说是一种基于活性功能分子标记蔗糖酶信号系统及其应用。信号系统为结合有特异性的功能分子的蔗糖酶。所述信号系统作为信号探针用于生物分析领域中对生物分子进行检测。本发明利用活性功能分子标记蔗糖酶生物分子,用其检测检测控制生物分子浓度的变化,能够快速检测对微生物和细胞。相对于传统的酶联免疫反应吸附的测量,利用便携式血糖仪分析系统来快速检测和分析生物分子具有显著的特异性,同时准确性高。利用活性功能小分子标记半导体聚合物信号系统来快速检测和分析生物分子,具有稳定性好、灵敏度高,不容易失活,价格便宜等优势。
【专利说明】 一种基于活性功能分子标记蔗糖酶信号系统及其应用

【技术领域】
[0001]本发明涉及生物化学物质的检测和分析领域,具体的说是一种基于活性功能分子标记蔗糖酶信号系统及其应用。

【背景技术】
[0002]在环境安全检测和人体健康的监控中,许多生物靶点分子的含量非常低。很多生物信号分子、有害微生物或肿瘤细胞在初期浓度非常低,需要对靶点物质进行信号放大才可以检测分析。目前,研究者们已经发现了集中几种信号放大的技术来检测低丰度靶点,包括银增加强反应、酪氨酸信号放大、酶金属矿化和滚环放大报告系统。银增强反应基于纳米金催化沉淀银,从而来检测核酸、蛋白质和微生物等有害物质(Wan, Y.,Wang, Y.,ffu, J., Zhang, D., 201 lb.Analytical Chemistry83 (3), 648-653 ;Taton, T.A., Mirkin, C.A.,Letsinger, R.L.,2000.Science289 (5485),1757-1760.)。相对银增强的技术来说,替代的方案用过氧化物酶来催化银的沉淀,这种方法叫酶矿化技术(Mdl ler, R.,Powell, R.D.,Hainfeld, J.F.,Fritzsche, W.,2005.Nano Letters5 (7),1475-1482)。最近出现一种超灵敏的技术,结合氢化酶标记的酶联免疫反应来控制纳米金生成过程,产生肉眼可见的信号(de la Rica, R., Stevens, Μ.Μ., 2012.Nature Nanotechnology do1:10.1038/nnan0.2012.186),来分析生物靶点物质。酪氨酸信号放大系统结合生物沉淀和荧光标记来增强标准免疫反应的灵敏度(Clutter, M.R., Heffner, G.C., Krutzik, P.0., Sachen, K.L., Nolan, G.P., 2010.Cytometry Part A77A(11),1020-1031)。滚环放大技术是一种恒温核酸扩增方法,在RCA反应中,DNA目标链可沿环形探针顶替扩增,实现高灵敏度的检测;同时环形探针的链接成环对DNA单碱基错配有很高的特异性,适合单核苷酸突变的分析检测。
[0003]聚合物信号标记也得到了广泛的应用和发展。比如,Chan等报道一种聚合物与半导体量子点杂合的信号标记物,再用亲和素修饰得到相应的标记物来标记肿瘤细胞(Chan, Y.-H.;Ye, F.;Gallina, Μ.Ε.;Zhang, X.; Jin, Y.;ffu, 1.C.;Chiu, D.T., HybridSemiconducting Polymer Dot-Quantum Dot with Narrow-Band Emiss1n, Near-1nfraredFluorescence,and High Brightness.Journal of the American ChemicalSociety2012, 134,7309-7312.)。
[0004]酶标的分析检测一直以来都得到生化学家的关注和亲睐。比如辣根过氧化物用于酶联免疫反应、碱性磷酸酶用于生物化学组织染色,最近的氢化酶也用于超灵敏的分析和检测。


【发明内容】

[0005]本发明目的在于提供一种基于活性功能分子标记蔗糖酶信号系统及其应用。
[0006]为实现上述目的,本发明采用技术方案为:
[0007]—种基于活性功能分子标记蔗糖酶信号系统,信号系统为结合有特异性的功能分子的蔗糖酶。
[0008]所述特异性的功能分子为凝集素、微生物抗体、微生物适配体、抗生素、寡糖、适配体或D-型氨基酸。
[0009]所述凝集素为麦胚素、刀豆素、花生凝集素或大豆凝集素。
[0010]所述微生物抗体为大肠杆菌抗体、金黄色葡萄球菌抗体、爱德华迟缓细菌抗体、铜绿假单胞菌抗体或费氏弧菌抗体。
[0011]所述抗生素为万古霉素、多粘菌素、达托霉素或枯草杆菌肽。
[0012]所述寡糖为括棉籽糖、水苏糖、麦芽寡糖或大豆寡糖。
[0013]所述D-型氨基酸为D-丙氨酸或D-谷氨酸。
[0014]一种基于活性功能分子标记蔗糖酶信号系统的应用,所述信号系统作为信号探针用于生物分析领域中对生物分子进行检测。
[0015]所述所述信号系统作为信号探针定量和/定性的对微生物和细胞进行检测。
[0016]所述所述信号系统作为血糖仪分析系统中的信号探针定量和/定性的对微生物和细胞进行检测。
[0017]本发明所具有的优点:
[0018]本发明利用活性分子(微生物抗体、凝集素、微生物适配体、抗生素、寡糖)标记的蔗糖酶系统来快速检测和分析微生物细胞,用其检测检测控制生物分子浓度的变化,能够快速检测对微生物和细胞。同时将本发明信号系统应用于便携式血糖仪系统中,能够对微生物快速检测。其相对于传统的酶联免疫反应吸附的测量,利用信号标记系统来快速检测和分析生物分子具有显著的特异性,同时准确性高。利用活性功能小分子标记信号系统来快速检测和分析生物分子,具有稳定性好、灵敏度高,不容易失活,价格便宜等优势。

【专利附图】

【附图说明】
[0019]图1为本发明实施例提供的基于适配体标记蔗糖酶快速便携式血糖仪诊断示意图(a),比较不同模式下检测信号(b):单独微生物存在(I),微生物加蔗糖(2),微生物-蔗糖标记适配体与蔗糖培育PH7.4 (3)和微生物-蔗糖标记适配体与蔗糖培育pH4.5 (4)。
[0020]图2为本发明实施例提供的微生物-适配体蔗糖酶复合物在不同PH条件培育信号变化(a)、微生物-适配体蔗糖酶复合物在不同温度条件培育信号变化(b)、微生物与适配体蔗糖酶复合物培育不同时间变化的信号变化(C)和微生物与适配体蔗糖酶复合物和蔗糖培育不同时间的信号变化(d)。
[0021]图3为本发明实施例提供的便携式血糖仪系统对金黄色葡萄球菌和迟缓爱德华菌检测的线性关系(a),快速分析八种微生物的信号特异性(b)和细菌混合的信号变化影响(C)。

【具体实施方式】
[0022]下面通过实施例对本发明做进一步说明。
[0023]实施例1:
[0024]万古霉素功能化的蔗糖酶对微生物的检测功能:
[0025]万古霉素-蔗糖酶复合物的制备:0.1ml聚乙二醇(5% )和0.1ml HEPES缓冲液(lmol L—1)分别加入到5ml蔗糖酶溶液中。而后再将0.5ml万古霉素(5mg mL—1)接着加入,搅拌混合体系30min。然后,再将新鲜配置的0.1mll-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐EDC(5mg ml/1)加入混合液中搅拌2小时。反应的混合物在透析袋(截留分子量300)中透析2天,移除未交联的分子。再加入50 μ L Triton X-100 (聚乙二醇辛基苯基醚)(2.0wt% );即得到万古霉素-蔗糖酶复合物。
[0026]微生物标记检测:金黄色葡萄球用PBS缓冲液清洗两次。再与万古霉素-蔗糖酶复合物(5μ g mL—1)室温下培育0.5小时。过量未结合的万古霉素-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节P H到中性。得到的溶液取5yL用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。大肠杆菌的检测线为4.5X 13Cfu ml—1,线性范围为4.5X 104cfu ml—1—4.5 X 19Cfu Iiir1O
[0027]实施例2:
[0028]金黄色葡萄球菌适配体功能化的蔗糖酶对微生物的检测功能:
[0029]50 μ L氨基修饰金黄色葡萄球菌适配体(ImM)与25 μ L硼酸缓冲液(ρΗ9.2)。然后加入25mg PPD,在室温下反应2h。然后加入5mL水and5mL正丁醇反应15min,有机溶液被移除。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的适配体。再加入8mg蔗糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得适配体标记蔗糖酶。
[0030]微生物标记检测:金黄色葡萄球菌用PBS缓冲液清洗两次。再与金黄色葡萄球菌适配体-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的金黄色葡萄球菌适配体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L—1蔗糖(pH4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的ρ H (4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为3.0X 13Cfu ml-1,线性范围为 3.0XlO4Cfuml-1 — 3.0XlO9Cfu ml'
[0031]实施例3:
[0032]微生物抗体功能化的蔗糖酶对微生物的检测功能:
[0033]50 μ L大肠杆菌抗体(ImM)。然后加入5mg马来酸和琥拍酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得抗体标记鹿糖酶。
[0034]微生物标记检测:大肠杆菌用PBS缓冲液清洗两次。再与大肠杆菌抗体-蔗糖酶复合物(5 yg mL—1)室温下培育0.5小时。过量未结合的大肠杆菌抗体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图1a)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。大肠杆菌的检测线为2.7X 13Cfu ml-1,线性范围为2.7X 14Cfuml 1—2.7 X 109cfu ml、
[0035]实施例4:
[0036]微生物凝集素功能化的蔗糖酶对微生物的检测功能:
[0037]50 μ L凝集素(ImM)。然后加入5mg马来酸和琥珀酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-100Κ)纯化,获得凝集素标记蔗糖酶。
[0038]微生物标记检测:大肠杆菌用PBS缓冲液清洗两次。再与凝集素-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的凝集素-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρH到中性。得到的溶液取5μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为 3.6X 13Cfu ml-1,线性范围为 3.6X 14Cfu ml-1—3.6X 109cfu ml'
[0039]实施例5:
[0040]微生物抗体功能化的蔗糖酶对微生物的检测功能:
[0041]50 μ L金黄色葡萄球菌抗体(ImM)。然后加入5mg马来酸和琥珀酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-100Κ)纯化,获得金黄色葡萄球菌抗体标记蔗糖酶。
[0042]微生物标记检测:金黄色葡萄球菌用PBS缓冲液清洗两次。再与金黄色葡萄球菌抗体-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的金黄色葡萄球菌抗体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1yL的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图1a)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为1.5Χ 13Cfu ml-1,线性范围为 1.5 X 14Cfu ml-1 — Ι.5 X 19Cfu ml'
[0043]实施例6:
[0044]微生物抗体功能化的蔗糖酶对微生物的检测功能:
[0045]50 μ L爱德华迟缓细菌抗体(ImM)。然后加入5mg马来酸和琥珀酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得爱德华迟缓细菌抗体标记鹿糖酶。
[0046]微生物标记检测:爱德华迟缓细菌用PBS缓冲液清洗两次。再与爱德华迟缓细菌抗体-蔗糖酶复合物(5yg ml-1)室温下培育0.5小时。过量未结合的爱德华迟缓细菌抗体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1yL的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的ρ H (4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为2.0X 13Cfu ml-1,线性范围为 2.0XlO4Cfu ml-1—2.0X 18Cfu ml'
[0047]实施例7:
[0048]微生物抗体功能化的蔗糖酶对微生物的检测功能:
[0049]50 μ L铜绿假单胞菌细菌抗体(ImM)。然后加入5mg马来酸和琥珀酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得铜绿假单胞菌抗体标记鹿糖酶。
[0050]微生物标记检测:铜绿假单胞菌用PBS缓冲液清洗两次。再与铜绿假单胞菌细菌抗体-蔗糖酶复合物(5yg mL—1)室温下培育0.5小时。过量未结合的铜绿假单胞菌细菌抗体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L—1蔗糖(pH4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的ρ H (4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为5.5X 13Cfu ml-1,线性范围为 5.5 X 15Cfu ml-1—5.5 XlO9Cfu ml-1.
[0051]实施例8:
[0052]微生物抗体功能化的蔗糖酶对微生物的检测功能:
[0053]50 μ L费氏弧菌细菌抗体(ImM)。然后加入5mg马来酸和琥珀酸功能化的乙二醇交联剂,在室温下反应2h。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的抗体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得费氏弧菌抗体标记蔗糖酶。
[0054]微生物标记检测:费氏弧菌用PBS缓冲液清洗两次。再与费氏弧菌细菌抗体-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的费氏弧菌细菌抗体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L—1蔗糖(pH4.5),培育0.5h,取40 μ L混合液,用
1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为6.5X 13Cfu ml—1,线性范围为6.5X 104cfuml- 1—6.5 X 109cfu ml、
[0055]实施例9:
[0056]大肠杆菌适配体功能化的蔗糖酶对微生物的检测功能:
[0057] 50 μ L氨基修饰大肠杆菌适配体(ImM)与25 μ L硼酸缓冲液(ρΗ9.2)。然后加入25mg PPD,在室温下反应2h。然后加入5mL水and5mL正丁醇反应15min,有机溶液被移除。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的适配体。再加入8mg鹿糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得适配体标记鹿糖酶。
[0058]微生物标记检测:大肠杆菌用PBS缓冲液清洗两次。再与大肠杆菌适配体-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的大肠杆菌适配体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L-1蔗糖(ρΗ4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图1a)。这种方法首先在蔗糖酶最优化的P H(4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为7.2X 12Cfu ml—1,线性范围为7.2X 104cfu ml—1—
7.2 X 17Cfu ml-1.,
[0059]实施例10:
[0060]爱德华迟缓细菌适配体功能化的蔗糖酶对微生物的检测功能:
[0061]50 μ L氨基修饰爱德华迟缓细菌适配体(ImM)与25 μ L硼酸缓冲液(ρΗ9.2)。然后加入25mg PPD,在室温下反应2h。然后加入5mL水and5mL正丁醇反应15min,有机溶液被移除。用超滤离心管(Amicon Ultra-ΙΟΚ)纯化活化的适配体。再加入8mg蔗糖酶,使其在室温下反应2天,用超滤离心管(Amicon Ultra-ΙΟΟΚ)纯化,获得适配体标记蔗糖酶。
[0062]微生物标记检测:爱德华迟缓细菌用PBS缓冲液清洗两次。再与爱德华迟缓细菌适配体-蔗糖酶复合物(5 μ g mL—1)室温下培育0.5小时。过量未结合的爱德华迟缓细菌适配体-蔗糖酶复合物用PBS清洗两次,再加入0.5mol L—1蔗糖(pH4.5),培育0.5h,取40 μ L混合液,用1.1 μ L的NaOH(IM)调节ρ H到中性。得到的溶液取5 μ L用罗氏血糖仪检测(参见图la)。这种方法首先在蔗糖酶最优化的ρ H (4.5)条件下催化蔗糖分解,然后用氢氧化钠调节到中性,用便携式血糖仪来检测微生物。检测线为6.5X 13Cfu ml-1,线性范围为 6.5 X 14Cfu ml-1 — 6.5 X 17Cfu ml'
【权利要求】
1.一种基于活性功能分子标记蔗糖酶信号系统,其特征在于:信号系统为结合有特异性的功能分子的蔗糖酶。
2.按权利要求1所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述特异性的功能分子为凝集素、微生物抗体、微生物适配体、抗生素、寡糖、适配体或D-型氨基酸。
3.按权利要求2所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述凝集素为麦胚素、刀豆素、花生凝集素或大豆凝集素。
4.按权利要求2所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述微生物抗体为大肠杆菌抗体、金黄色葡萄球菌抗体、爱德华迟缓细菌抗体、铜绿假单胞菌抗体或费氏弧菌抗体。
5.按权利要求2所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述抗生素为万古霉素、多粘菌素、达托霉素或枯草杆菌肽。
6.按权利要求2所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述寡糖为括棉籽糖、水苏糖、麦芽寡糖或大豆寡糖。
7.按权利要求2所述的基于活性功能分子标记蔗糖酶信号系统,其特征在于:所述D-型氨基酸为D-丙氨酸或D-谷氨酸。
8.—种权利要求1所述的基于活性功能分子标记蔗糖酶信号系统的应用,其特征在于:所述信号系统作为信号探针用于生物分析领域中对生物分子进行检测。
9.按权利要求8所述的基于活性功能分子标记蔗糖酶信号系统的应用,其特征在于:所述信号系统作为信号探针定量和/定性的对微生物和细胞进行检测。
10.按权利要求8所述的基于活性功能分子标记蔗糖酶信号系统的应用,其特征在于:所述信号系统作为血糖仪分析系统中的信号探针定量和/定性的对微生物和细胞进行检测。
【文档编号】C12Q1/34GK104076153SQ201410203085
【公开日】2014年10月1日 申请日期:2014年5月14日 优先权日:2014年5月14日
【发明者】万逸, 张盾 申请人:中国科学院海洋研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1