用于治疗疼痛病征的钾通道开放剂和钠通道抑制剂或影响钠通道的活性物质的组合物的制作方法

文档序号:1097586阅读:281来源:国知局
专利名称:用于治疗疼痛病征的钾通道开放剂和钠通道抑制剂或影响钠通道的活性物质的组合物的制作方法
技术领域
本发明涉及钾通道开放剂和钠通道抑制剂的药物组合物,用于治疗与肌张力(muscle tone)增加有关的疼痛病征。
背景技术
许多不同的疼痛病症与骨骼肌张力增加有关。在一些情况下,疼痛的产生由关节处的炎症引起,由此产生疼痛体位,并经常伴随着令人疼痛的肌肉痉挛。这类病症的治疗包括例如苯二氮 类,但是它们具有很强的潜在的成瘾性,因此使用受限。对潜在的病症如类风湿性炎症的治疗经常得不到适当的、令人满意的治疗结果。因此经常需要给予另外的止痛剂和/或骨骼肌松弛剂。
为了减轻患有与类风湿病症有关的疼痛性肌肉痉挛和/或肌肉强直或与神经疾病有关的痉挛的病人的异常肌张力增加,临床实践中使用在中枢作用的肌肉松弛剂。许多相应的活性物质可以商业获得,但是它们的临床功效常常令人怀疑或者由于有害的副作用而受到限制。
这些活性物质中的一类是Na+通道抑制物质。有迹象表明它们能够松弛增加的肌张力。已经能够表明,临床相关浓度的普鲁泊福对肌膜的钠通道具有明显的抑制效应。该机制可能有助于减轻肌张力(Haeseler et al.,Anesth Analg 2001;921192-8)。同样已经能够表明,Na+通道的抑制作用导致神经递质从突触前端释放的抑制(Obrenovitch,Int Rev Neurobiol 1997;40109-35)。神经保护的活性成分利鲁唑是钠通道抑制剂和用于治疗肌萎缩性侧索硬化症的抗兴奋毒物质。最近Kennel等人(J Neurol Sci 2000;18055-61)已经能够证明利鲁唑显著延迟麻痹的开始以及与运动神经元疾病的小鼠模型中肌力相关的功能参数的进展。Metilexine,一种抗心律失常和抗肌强直物质,可以阻断骨骼肌的钠通道(Duranti et al.,Eur JMed Chem 2000;35147-56)并解决遗传性肌强直的小鼠模型中的骨骼肌兴奋过度(De Luca et al.,J Pharmacol Exp Ther 1997;28293-100)。骨骼肌钠通道在维持正常张力中的重要功能是由于下述事实,已经可以证明在电压诱导的Na+通道的α-亚单位(SCN4A)的基因变异和遗传性非营养不良性肌强直之间存在联系。有趣的是,给予Na+通道抑制物质氟卡胺后,肌强直显著消退(Rosenfeldet al.,Ann Neurol 1997;42811-4)。
托哌松(甲苯哌丙酮)是在中枢起作用的肌肉松弛剂,具有较好的临床耐受性。迄今为止,相对很少有出版物披露托哌松类化合物的作用机制。托哌松抑制脊髓节段反射的产生,并有效降低由传入神经的C类纤维在体内和体外所诱导的传导(Farkas et al.,Neurobiology 1997;557-58)。与利多卡因(一种局部麻醉剂)相比,该物质对A类纤维的传导具有较小的阻断效应。它的最有特点的效应是对单突触脊髓反射和多突触脊髓反射的强抑制性(Farkas et al.,Neurobiology 1997;557-58,Kocsis et al.,Acta Pharm Hung 2002;72(1)49-61,Okada et al.,Jpn J Pharmacol 200186134-136)。Ono等人(J Pharmacobio Dynam 1984;7171-178)能够证明托哌松显示出类似于在体内对运动神经元和初级传入(神经)二者的局部麻醉(“膜稳定化”)的效应,以及对在体外的大鼠外周神经的效应。托哌松的效应看起来与利多卡因相似,已知利多卡因是作为电压门控性钠通道的抑制剂(Strathmann 2002,www.ifap-index.de/bda/hausarzt/19-2002/64-83.pdf)。已经能够证明托哌松与利多卡因类似,会阻断河豚毒素(TTX)-敏感的和TTX-抗性的电流,因此暗示着对两种类型电压门控性钠通道的抑制效应(Bastigkeit,MMW-Forschr Med 2000;14250-51,Farkas et al.,2000,http//www.asso.univ-paris5.fr/ewcbr/Francais/EWCBR2000/Abstracts/ABST126.htm;Kocsis et al.,Acta Pharm Hung 2002;72(1)49-61)。在这方面,很可能托哌松的作用机制与利多卡因的作用机制有着某些不同。此外有迹象显示托哌松降低钠的通透性。这个效应可能是造成托哌松降低兴奋性效应以及因此的解痉效应的原因,解痉效应已经能够在临床观察中得到证实(Hinck and Koppenhofer,Gen Physiol Biophys 2001;20413-29)。此外,在对蜗牛神经元(snailneuron)的电压钳试验已经能够显示,托哌松及其类似物抑制电压门控性钙电流(Novalies-Li et al.,Eur J Pharmacol 1989;168299-305)。托哌松类似物如乙哌立松和西哌立松(silperisone)在电生理学试验中显示了类似的特性。因此,有可能显示例如西哌立松降低钠的通透性(During and Koppenhofer,Gen Physiol B iophys2001;20157-73)。从这一点可以得出结论,这些物质可以降低痉挛的骨骼肌张力。
在临床研究中有可能进一步显示,这些物质能够缓解与神经性或类风湿性疾病有关的痛苦的痉挛。已经报导托哌松被有效地用于治疗肌肉痉挛(Pratzel et al.,Pain 1996;67417-25)。托哌松的一些衍生物,例如乙哌立松,类似地显示出在治疗疼痛性肌肉痉挛中的有效性(Bose,Methods Find Exp Clin Pharmacol 1999;21209-13)。在某些病理状况下,神经元处于持续去极化的状态,以致它们的钠通道更敏感地响应一些物质的抑制效应。这使得它能够缓解肌肉痉挛和疼痛而在副作用方面却很有利。最近的数据表明,托哌松及其类似物对电压门控性钠通道具有选择性抑制效应。该机制可能是其抑制脊髓反射和肌肉松弛效应的原因。此外,该性能可能导致镇痛效应,基于观察到的较小差异,与利多卡因相反,该镇痛效应可能没有副作用。
另一类肌肉松弛物质是钾通道开放剂。它们包括例如来自三氨基吡啶类的氟吡啶,其用作具有肌肉松弛性能的非阿片样止痛剂。已经能够显示当以相当于抗疼痛反应效应的剂量使用时氟吡啶能降低骨骼肌张力(Nickel et al.,Arzn Forsch/Drug Res 1990a;40909-11)。
由于安定和其它苯二氮 类物质经常用作肌肉松弛剂,所以比较氟吡啶和苯二氮 类的药效性质是很明显的。在受体-结合研究中,直到10μmol/l的浓度,没有检测到对于特效药[3H]氟硝安定的亲和性(Nickel et al.,Arzn Forsch/Drug Res 1990b;40905-908)。关于EEG的变化,在由氟吡啶和苯二氮 类诱导的特征中可探测到明显的区别(Nickel,Postgrad Med J 1987;6319-28)。电生理学研究显示氟吡啶通过强化GABA的效应而影响GABA能的传导(Weiser et al.,Arch Pharmacol 1992;346(Suppl.)R22)。从体外和体内分析得到的数据显示氟吡啶的性能类似于功能性N-甲基-D-天冬氨酸盐(NMDA)拮抗剂。由此可以得出结论,该机制可能与氟吡啶的肌肉松弛效应有关(Schwarz et al.,Neuroreport 1994;51981-4)。最近的研究表明氟吡啶激活非电压依赖的钾通道(Kornhuber et al.,J Neural Transm 1999;106857-67)。氟吡啶的这种钾通道开启效应可能是其止痛和骨骼肌松弛效应的原因。
所述现有技术清楚表明,尽管有大量物质用于治疗带有肌张力增加的疼痛病症,但是由于有害的副作用的缘故,对它们的应用经常有所限制。因此,例如较高剂量的氟吡啶显示出神经毒性的效果,诸如嗜睡、协调性受损。托哌松没有显示出严重的有害的副作用,但在肌肉松驰中它的功效和作用持续时间不尽人意,可能是由于在人体内的相对较低的生物利用度和较短的半衰期的缘故(Ito et al.,Arch Int Pharmacodyn Ther 1985;275105-22,Matsunaga et al.,Jpn JPharmacol 1997;73215-20)。

发明内容
因此,本发明的目的是提供用于治疗与肌张力增加有关的疼痛病症的药物,其显示出较小的副作用和相当的效果,或者在同等剂量下具有增强的功效。
根据本发明,通过钾通道开放剂和钠通道抑制剂的新颖的结合,已经能够实现这一点。已经能够表明,通过抑制或影响钠通道的活性物质与钾通道开放剂的结合,增大了肌肉松弛效应。可以使用的抑制或影响Na+通道的物质的实例有托哌松及其类似物乙哌立松和西哌立松、利鲁唑、普罗帕酮、利多卡因、氟卡胺、美噻吨、及其可药用盐。氟吡啶将作为钾通道开放剂的实例被提及。
在这方面特别优选的是托哌松或其类似物与氟吡啶或其可药用盐的结合。
本发明的组合使得对与肌张力增加有关的疼痛病症的治疗更有效和安全。抑制或影响钠通道的物质与钾通道开放剂如氟吡啶的组合导致增强的治疗效果或提高的可耐受性。例如已经能够显示,诸如托哌松的抑制或影响Na+通道的活性物质能够增强氟吡啶的肌肉松弛效应,反之亦然。
然而,特别令技术人员惊奇和意想不到的是这一效果托哌松超加性地(superadditively)增强了氟吡啶的骨骼肌松弛效果,并且反之亦然。与此形成对照的是,托哌松却没有增大氟吡啶的神经毒性。
可以利用两种物质的组合来治疗与骨骼肌疾病相关的疼痛病症,这些疾病与肌张力过度和活动受限有关,尤其是由脊髓损伤、骨质疏松、关节炎和硬化/痉挛性病症引起的那些疾病。另外它还对由下列引起的疼痛病症有效腰神经型山黧豆中毒(lumbarneurolathyrism)、关节炎、外周循环系统疾病、更年期肌肉和血管症状、牙关紧闭症、肌源性头痛、与肌张力过高有关的风湿病、痉挛、疼痛、炎症和活动受限、多发性硬化、以及在外伤患者的术后治疗中,以及对于低位痉挛性轻瘫综合症(lower spastic paraparesissyndrome)的治疗低位两侧痉挛、横贯性脊髓炎、多发性硬化、遗传性下部痉挛性截瘫(Stuempel’s截瘫)、脊髓血循环损伤、带有低位痉挛性轻瘫的脑性麻痹、与颈段脊髓病有关的四肢轻瘫、脊椎发育异常、紧张性头痛和颈段臂神经痛(cervical brachialgia)。
药理学实施例1对大鼠中利血平诱导的肌肉强直的肌肉松弛效应结果氟吡啶和托哌松都剂量依赖性地降低在清醒大鼠中的利血平诱导的骨骼肌强直。氟吡啶的腹膜内注射(i.p.)ED50是6.45mg/kg。托哌松ED50是32.4mg/kg i.p.。
在表1和表2中的结果清楚地显示托哌松对氟吡啶的骨骼肌松弛效应具有令人惊奇的超加性增强作用,反之亦然。
表1结合托哌松以腹膜内给药的氟吡啶对清醒大鼠内利血平诱导的骨骼肌强直的效应

表2结合氟吡啶以腹膜内给药的托哌松对清醒大鼠中利血平诱导的骨骼肌强直的效应

实验说明将重200-220g的雄性斯-道大鼠(Sprague-Dawley rat)在没有食物和水的限制的标准条件(温度22℃,湿度40-60%)下分成两组。从6.00至18.00h进行照明。实验得到了负责实验动物的保护和适当使用的当地动物健康委员会的批准。
实验设计已经被详细披露(Nickel et al.,Arzn Forsch/Drug Res1997;471081-6)。简要叙述,通过连续测量屈肌和伸肌(它们在脚的伸展和弯曲期间在关节处具有相反的作用)的抵抗力来测量骨骼肌的肌强直。连续记录通过脚的运动产生的压力的差别。借助PC程序分析信号,该程序计算在10分钟期间脚的屈肌和伸肌的抵抗力的值。
每天制得新鲜的活性物质并在注射利血平(2mg/kg,腹膜内注射)后16小时同时腹膜内注射各种剂量。
通过单因素ANOVA对计算值和测量值之间的差别进行统计分析。(*)表示显著性水平p<0.01。
2在所谓的斜筛试验中研究小鼠的骨骼肌张力结果在对小鼠的试验中能够有说服力地证实实施例1的令人惊奇的结果。
氟吡啶和托哌松都剂量依赖性地降低在清醒小鼠中的骨骼肌张力,并因此提供了它们的肌肉松弛效应方面的信息。氟吡啶的腹膜内注射(i.p.)ED50是10.8mg/kg。托哌松的腹膜内注射(i.p.)ED50是51.0mg/kg。表3和4的结果清楚地示出,在同时腹膜内注射给予各种剂量的氟吡啶和托哌松后,托哌松超加性地增强了氟吡啶的骨骼肌松弛效应,并且反之亦然。
表3结合托哌松以腹膜内给药的氟吡啶对清醒小鼠的骨骼肌张力的效应

表4结合氟吡啶以腹膜内给药的托哌松对清醒小鼠的骨骼肌张力的效应

试验说明将重22-24g的NMRI小鼠在没有食物和水的限制的标准条件(温度22℃,湿度40-60%)下分成四组。从6.00至18.00h进行照明。所有实验得到了负责实验动物的保护和适当使用的当地动物健康委员会的批准。
为了能够预知肌肉松弛性能而使用的药理学模型是所谓的30度斜筛试验(Simiand et al.,Arch Int Pharmacodyn Ther 1989;297272-85)。该斜筛由带丝网筛的木制框构成,其可以以任何角度倾斜(在本试验中是80°)。该筛的下部在工作台上15cm。将动物置于斜筛上,然后在30秒时间内观察它们待在斜筛上的能力。对掉下网筛的动物计数,并计算每组中它们占总数的比例。
每天制得新鲜的活性物质并在开始试验之前1小时同时注射各种剂量以分析骨骼肌张力。
通过单因素ANOVA对计算值和测量值之间的差别进行统计分析。(*)表示显著性水平p<0.01。
3在对大鼠的旋转棒试验中测得的这些物质可能的神经毒性效应结果在中枢作用的物质可能具有神经毒副作用,其可能限制它们的治疗用途。表5和表6的结果清楚地示出氟吡啶和托哌松的结合对运动的协调性具有相加效应。没有观察到超相加效应,即,氟吡啶与托哌松的组合并不导致有害的中枢神经效应的增加。
表5.与托哌松组合以腹膜内给药的氟吡啶对大鼠运动协调性的影响(通过旋转棒测试)

表6.与氟吡啶结合以腹膜内给药的托哌松对大鼠运动协调性的影响(通过旋转棒测试)

试验说明将重200-220g的雄性斯-道大鼠在没有食物和水的限制的标准条件(温度22℃,湿度40-60%)下分成两组。从6.00至18.00h进行照明。实验得到了负责实验动物的保护和适当使用的当地动物健康委员会的批准。
用所谓的旋转棒试验(Jones and Roberts,J Pharm Pharmacol1968;20302-304)分析了这些动物的运动协调性和平衡能力。将动物放置在旋转棒(直径10cm;长60cm;5rpm)上,2分钟后记下留在棒上的动物的数目。每天制备新鲜的活性物质并在开始试验之前30分钟同时以各种剂量腹膜内给药。
这些描述的试验清楚地示出了氟吡啶/托哌松组合的效果。从钾通道开放剂与钠通道抑制或影响物质的相当的作用机制可以推出这些类物质中其它物质的组合将会有同样的积极效果。
抑制或影响Na+通道的活性物质与钾通道开放剂及其可药用盐的组合可以以所有的经口、经肠、经直肠、经舌、静脉内、肌肉内、腹膜内、透皮、皮下或皮内剂型给药。优选的口服剂型有,例如,片剂、薄膜衣片剂、糖衣片剂、硬胶囊剂、软胶囊剂、咀嚼片剂、吮吸片剂、糖浆剂、具有控释的制剂(如,二元制剂(dualformulation),缓释制剂)、丸剂、咀嚼片剂或可溶性颗粒剂。另外的适合剂型的实例有注射液、混悬剂、栓剂、霜剂、软膏剂、凝胶剂、透皮给药剂型、皮下或皮内植入物。
这些物质可以同时、先后、或以固定组合物的形式给药。它们可以以一种剂型或两种相同或不同的剂型一起给药。它们可以同时或者是相隔很短或较长相隔时间的先后给药,例如氟吡啶在晚上而托哌松在早上。
为达到所希望的效果,这些活性物质可以一天内以足够量地给药1至8次。这些活性物质优选每天给药1至4次。
每日量应该符合在组合物中使用的各种物质的许可量。这是优选的组合例如对于成年人托哌松在150到450mg/天之间,氟吡啶100-800mg/天,优选在200到400mg/天之间。
权利要求
1.与抑制或影响钠通道的物质或其可药用盐相结合的钾通道开放剂在治疗与肌张力增加有关的疼痛病症中的应用。
2.根据权利要求1所述的应用,其特征在于使用氟吡啶或其可药用盐作为钾通道开放剂。
3.根据权利要求1所述的应用,其特征在于使用托哌松或其类似物乙哌立松或西哌立松、或利鲁唑、普罗帕酮、利多卡因、氟卡胺、美噻吨、或其可药用盐作为抑制或影响钠通道的物质
4.根据权利要求1所述的应用,其特征在于使用托哌松或其类似物乙哌立松或西哌立松、或其可药用盐作为抑制或影响钠通道的物质。
5.与托哌松或其类似物如乙哌立松或西哌立松、或其可药用盐相结合的氟吡啶在治疗与肌张力增加有关的疼痛病症中的应用。
6.根据权利要求1所述的与抑制或影响钠通道的物质和其可药用盐相结合的钾通道开放剂在治疗神经痛中的应用。
7.根据权利要求1所述的与抑制或影响钠通道的物质和其可药用盐相结合的钾通道开放剂在治疗关节炎和关节病中的应用。
8.根据权利要求1所述的与抑制或影响钠通道的物质和其可药用盐相结合的钾通道开放剂在治疗慢性或阵发性紧张性头痛中的应用。
9.根据权利要求1所述的与抑制或影响钠通道的物质和其可药用盐相结合的钾通道开放剂在治疗低位痉挛性轻截瘫综合症(例如,低位两侧痉挛,横贯性脊髓炎,多发性硬化,遗传性下部痉挛性截瘫(Stuempel’s截瘫),脊髓血循环损伤,带有低位痉挛性轻瘫的脑性麻痹)中的应用。
10.根据权利要求1所述的与抑制或影响钠通道的物质及其可药用盐相结合的钾通道开放剂在治疗与颈段脊髓病有关的四肢轻瘫、颈段臂神经痛或者脊椎发育异常中的应用。
11.根据权利要求1所述的与抑制或影响钠通道的物质及其可药用盐相结合的钾通道开放剂在治疗帕金森病中的应用。
12.与抑制或影响钠通道的物质及其可药用盐相结合的钾通道开放剂在制备药物中的应用,其中所述药物是口服、直肠、静脉内、透皮、皮下或皮内给药,用来治疗与肌张力增加有关的疼痛病症。
全文摘要
本发明涉及钾通道开放剂与钠通道抑制剂的药物组合物,用于治疗与肌张力增加有关的疼痛病症。
文档编号A61P25/02GK1871000SQ200480030979
公开日2006年11月29日 申请日期2004年10月18日 优先权日2003年10月23日
发明者罗伯特·赫尔曼, 马蒂亚斯·洛赫尔, 伊斯特万·塞莱尼, 凯·布鲁内 申请人:美达医药两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1