含有小分子干扰核糖核酸的喷雾剂的制作方法

文档序号:1131599阅读:348来源:国知局

专利名称::含有小分子干扰核糖核酸的喷雾剂的制作方法
技术领域
:本发明属于生物工程技术应用领域,具体涉及一种含有小分子干扰核糖核酸的喷雾剂。
背景技术
:早期存在于少数植物中的转录后基因沉默现象被认为是一种很奇特的现象。但近几年却成了分子生物学的热门话题。1995年,Guo和Kemphues发现双链DNA(dsDNA)可在C.elegans中引起基因沉默现象。1998年,AndyFire和CraigMello在蠕虫中也发现同样的现象,并正式将RNA干扰(RNAinterfernece,RNAi)名词用于基因沉默机制中。2001年TomTuschl,s的研究组发现一种小型干扰RNA(smallinterferencingRNAs,siRNA)在哺乳动物细胞中可引起基因沉默。这种在哺乳动物中针对基因特异性降解的现象的发现为功能基因组学研究提供了新的有力工具,也为抗病毒感染和药物开发开辟了新的领域。RNA干扰(RNAi)是由双链RNA介导的特异同源耙基因转录后沉默的过程。RNAi可以通过人为地引入与内源靶基因具有相同序列的双链RNA,诱导内源靶基因mRNA降解,达到阻止基因表达的目的,所以RNAi可以作为一种简单、有效的可代替基因敲除技术来抑制特定基因表达的有力遗传工具。RNAi技术作为新兴的基因阻断技术具有明显优势,它具有高度特异性,靶基因中一个碱基的改变就会使RNAi效率大幅下降,因此它可以使等位基因特异性沉默;它的高效性可使靶基因表达的蛋白量下降90%以上。它比反义核酸技术有效,比基因敲除技术简单,已经迅速广泛地应用到基因功能研究、基因表达调控机制和抗病毒感染等热门领域,并为基因治疗开辟了全新的途径。弓I起RNAi的小分子干扰RNA可以是双链RNA(siRNA),也可以是双链茎环结构的短发夹状RNA(shRNA),也可以是单链microRNA。shRNA是siRNA的前体,在生物体内通过特定的RNA酶转化成siRNA。microRNA(miRNA)为单链RNA,它能够与mRNA的3'非翻译区互补配对(50—85%),引起翻译受阻,但不降解mRNA。siRNA约为19-25bp和microRNA约为19-25nt,由长的双链RNA前体经RNaseIII酶切形成。RNA干扰现象是植物抗病毒感染的一个主要机制。但在哺乳动物中是否作为一种天然的抗病毒防疫屏障还不是很清楚。但最近的多篇体外实验的报道,已显示了siRNA的抗病毒效果。Gitlin等人在进行脊髓灰质炎病毒(和FMDV同属于细小病毒科成员)的病毒复制的研究过程中发现,针对病毒基因组不同区域而设计合成的siRNA能有效的抑制病毒的繁殖。数据显示同时在脊髓灰质炎病毒的RNA合成和蛋白合成水平上,滴度下降97-99%。同时结果也显示,不是所有设计出来的siRNA对病毒复制都有阻断作用,但经过筛选,siRNA的沉默效果可达70~90%。这是因为RNA二级结构和三级结构以及RNA和蛋白之间的相互作用都会影响到siRNA的工作效能。最令人感到兴奋的是来自于中国学者的实验结果,他们直接设计筛选到一个针对FMDVO/HKN/2002亚型的VP1结构蛋白编码区域的siRNA/shRNA,首先对BHK-21细胞株进行转染,然后用同源性和非同源性的FMDV病毒以及假性狂犬病毒感染细胞,感染后24小时观察细胞病变的情况,siRNA明显的延缓了同源性FMDV的细胞病变效应,而非同源性的FMDV(仅和同源性的FMDV有2个核甘酸不同)和假性狂犬病毒产生了典型的细胞病变。表明siRNA抑制作用的特异性极佳。作者还进行了小鼠的动物模型实验,所有对照组的小鼠在感染了病毒后的1-2天内,全部死亡。而低剂量(20LD5o)注射了VP1特异性的shRNA的小鼠有75%的存活,髙剂量(100LD5o)的有20%的存活。虽然有些学者对实验的应用前景提出了某些担忧的问题,这主要是基于此类病毒的高变异度,广泛的宿主范围,以及不同血清型病毒合并感染引起的疫情爆发的潜在危害性而造成的siRNA在防治的有效性,可行性和安全性方面所面临的问题。例如不同宿主动物,不同的病程,以及不同的给药剂量和给药方式,目前都还缺乏临床的实验资料。不过下面的另一研究成果给了我们足够的信心。这一研究成果同样来自于中国学者,他们利用siRNA抑制剂在SARS感染的恒河猴动物模型上成功地抑制了病毒的复制,阻断了病情的发展,从而达到了治疗的效果。比较了三种剂量的治疗方案,对其有效性和安全性进行了评估。通过对SARS相关症状的观察,SARS病毒RNA量的测定和肺组织病理学以及免疫组织化学各项指标均显示了siRNA对SARS预防和治疗方面的有效性。且siRNA累计剂量为10-40mg/kg时,都没有产生siRNA诱导的毒性作用。这对于像SARS这样的急性传染病开发新的特异性的治疗药物提供了美好的前景。以上这些结果表明,RNAi技术作为一种全新的抑制基因表达的技术,在抗病毒感染方面显示出广阔的前景,因为它与其他抗病毒手段相比有显著的优点其一它只降解同源基因mRNA,对非同源基因表达没有影响;其二能高效抑制病毒复制,比反义RNA技术高出近两个数量级,当病毒基因在某个区域突变时,可以针对另一个区域重新设计siRNA,以达到持久抑制的目的;其三RNAi可以阻断病毒受体的表达,切断病毒感染途径;其四对已整合入宿主细胞基因组的病毒RNAi也可以起到有效的抑制作用,RNAi可作为一种高度特异性的基因治疗策略用于病毒感染的防治。甲型和乙型流感病毒的RNA由8个节段组成,丙型流感病毒则比他们少一个节段,第1、2、3个节段编码的是RNA多聚集酶,第4个节段负责编码血凝素,抗原性易变;第5个节段负责编码核蛋白,抗原性较稳定,第6个节段编码的是神经氨酸酶,抗原性易变;第7个节段编码基质蛋白,抗原性稳定,第8个节段编码的是一种能起到拼接RNA功能的非结构蛋白,抗原性稳定,这种蛋白的其他功能尚不得而知。丙型流感病毒缺少的是第六个节段,其第四节段编码的血凝素可以同时行使神经氨酸酶的功能。在感染人类的三种流感病毒中,甲型流感病毒有着极强的变异性,乙型次之,而丙型流感病毒的抗原性非常稳定。因而流行性感冒的功能保守区在编码核蛋白的第五节,编码基质蛋白的第七节和编码非结构蛋白的第八节。(对于流感病毒,我们研究的焦点主要集中于那些保守的病毒基因组,特别是那些不同病毒亚型的NP,PA,PB1,PB2,M,和NS节段。由于病毒亚型之间的变异很大,所以我们这里没有设计HA和NA的小干扰RNA。)因此,除了第4和第6节段,其他所有的节段都可用来设计小干扰RNA。由于流感病毒C型比较常见,也很少引起临床症状,流感病毒B型只偶尔引起疾病,所以我们重点研究流感病毒A型口蹄疫病毒FMDV是偶蹄类动物高度传染性疾病-口蹄疫的病原,口蹄疫病毒其大小只有20-25纳米。它由一条单链正链RNA和包裹于周围的蛋白质组成,蛋白质决定了病毒的抗原性、免疫性和血清学反应能力;病毒外壳为对称的20面体。它有7个血清型(A,0,C,南非l,南非2,南非3和亚洲1型),下属60多个亚型,各型间几乎没有什么交叉免疫,也就是说患了O型口蹄疫对其他型口蹄疫病毒感染无保护作用。这个现象有点类似流感病毒感染无交叉保护现象。中国流行的主要为O型,A型和亚洲1型也时有发生。口蹄疫病毒P1区依次编码VP4(1A),VP2(1B),VP3(1C)和VP(1D)4种结构蛋白,P2区依次编码2A,2B,2C3种非结构蛋白,P3区编码4种非结构蛋白3A,3B,3C和3D。口蹄疫病毒的功能保守机密区在编码RNA聚合酶的2B,3C,3D区。流行性感冒和口蹄疫都是髙度传染性疾病,流感病毒,由气源性传染,病毒首先在咽部复制开始在咽--食道粘膜处病毒的滴度增加,接着出现病毒血症,最后出现临诊表现,由于此类病毒容易产生变异,目前还没有特异的预防和治疗药物,因而易发生大流行。虽然小分子干扰技术在防治病毒引起的疾病中孕育着极大的潜能,但由于其某些技术难点还没有解决,所以没有任何突破性的进展。如果将siRNA直接注射到血液里,首先siRNA作用是要转运到细胞中,目前认为这种转运属于被动运输;第二,由于siRNA在血液循环中的半衰期问题,使其生物利用率降低;由前面第一和第二个问题产生第三个问题,就是加大siRNA在血液中的浓度,而由此引起的副反应的情况更令人担忧,并且成本相当高。为此避开血液给药途径,而另辟蹊径是突破目前停滞不前的最佳方法。
发明内容本发明针对上述不足提供一种含有小分子干扰核糖核酸(小干扰RNA)的喷雾剂,用于预防病毒经呼吸道传播而致病。本发明的喷雾剂含有根据病毒基因组的高度保守序列设计的小分子干扰核糖核酸。所述的小分子干扰核糖核酸可以为siRNA或shRNA或microRNA。本发明的小分子干扰核糖核酸可以通过下述途径获得用病毒基因组的高保守序列的基因作为靶基因,设计一系列小分子干扰核糖核酸(siRNA/shRNA/microRNA);体外制备小分子干扰核糖核酸;将小分子干扰核糖核酸转染细胞或个体;检测小分子干扰核糖核酸作为疫苗诱导基因沉默的效果,选择沉默效果好的小分子核糖核酸作为疫苗。下面对上述方案进行具体的描述1、RNAi耙系列的选择靶序列选择是RNAi实验成败的关键。目前,靶系列的选择原则可以概括为以下几点①选择含GC量在50。/。左右的mRNA区域;②避免选择启动子起始部位下游50-100nt内的区域或终止子上游50-100nt内的区域;③避免超过三个G或三个C的重叠。多聚G或多聚C系列能产生堆积形成类聚物而干扰RNAi沉默机制;选择以两个AA开始的序列;⑤要保证靶系列与其他基因没有同源性,以避免产生同源系列的基因干扰。将所设计的RNAis进行序列同源性分析,确保其与相应的基因组数据库中基因编码序列的连续配对碱基不超过10个。由于流感病毒,口蹄疫病毒的遗传的多样性,易产生变异,在筛选设计RNAi时,通过病毒亚种基因系列比对,选择流感病毒和口蹄疫病毒病毒基因组的高保守区作为靶序列,以防止由于病毒突变而造成的RNAi攻击对象的逃逸。2、RNAi设计shRNA是siRNA前体,区别在于shRNA带有发卡环,因而shRNA和siRNA设计原则是一致的。microRNA的设计主要是根据我们的靶序列通过在线软件筛选microRNA。高效siRNA的序列结构特征哺乳动物细胞RNAi实验中,使用最广泛且最有效的是21bpsiRNA。siRNA由正义链和反义链组成,两条链3端均有2个碱基突出,一般为UU或dTdT,其中正义链的前19nt与靶基因序列相同。Reynolds等通过对2个基因的180条siRNA序列分析,归纳出以下8个与siRNA高效性相关的特征G/C含量低(30%~52%);正义链3'端具较低稳定性(有利于siRNA与RISC(RNA-inducedsilencingcomplex,RISC)的结合和解链);无反向重复序列(有利于减小siRNA的有效作用浓度,提高siRNA干扰效率);正义链碱基的偏爱性A19(正义链中第19位碱基为A,如下表示类同);A3;U10;无G/C19(正义链中第19位碱基不为G或C);无G13。依此规则,Reynolds等设计的30条siRNA中有29条是有效的。Kumiko等亦认为siRNA反义链5'端为A/U(即反义链U/A19)和最后7个碱基中有5个A/U,会有助于RNAi的高效发挥,且正义链G/Cl和序列中无连续9nt以上的GC重复片段与基因沉默效率呈显著相关。siRNA双链设计时,一般在靶mRNA起始密码下游100-200bp至翻译终止密码上游50~100bp的范围内搜寻AA序列,并记录每个AA3'端相邻19个核苦酸作为候选siRNA靶位点。其中AA(N19)TT是最理想的序列,若靶mRNA中无此序列,亦可选用NA(N21)或NAR(N17)YNN(R表示喋呤,Y表示嘧嚏),但在合成时,siRNA的正义链3端可用dTdT代替。最后还应将候选siRNA序列在GenBank进行BLAST检索,与非同源基因具有3个或3个以上碱基相异的序列方可选用,特别需要避免其序列与mRAN3'端的非编码的同源性序列,确保siRNA的序列不超过7个连续配对碱基。根据上述结果,同时选择几个保守区靶序列的小分子干扰核糖核酸,制成联合制剂,抑制各型病毒的合并交叉感染。3、制备小分子干扰核糖核酸的方法制备小分子干扰核糖核酸的方法包括化学合成法、体外转录法、小分子干扰核糖核酸表达载体转录法和小分子干扰核糖核酸表达盒等。3.1化学合成法最方便,首先知道目的基因序列,然后合成相应的小分子干扰核糖核酸导入细胞,但体外合成小分子干扰核糖核酸的成本较高,而且在体内表达时间短暂,它最适用的情况是在已经找到最有效的小分子干扰核糖核酸序列后而需要大量合成小分子干扰核糖核酸进行研究时。3.2体外转录法这种方法采用T7RNA聚合酶,以先合成的DNA链为模板反转录合成dsRNA,再用脂质体法转入细胞,此法费用低,毒性小,稳定性好,效率高,主要适用于筛选siRNA,尤其当需要制备多种小分子干扰核糖核酸或化学合成的价格太高时可选用此法。但此法特异性不强,无法确知有效靶片段,还有可能引发非特异的基因沉默。3.3体外用RNaseIII消化长片断双链RNA制备小分子干扰核糖核酸将2001000bp的靶mRNA作为模板,用体外转录的方法制备长片断双链dsRNA,然后,用RNaselII(或DICER)体外消化,得到小分子干扰核糖核酸。该法主要优点是可以跳过检测和筛选步骤,缺点是可能引发非特异的基因沉默。适用于快速而经济地研究某个基因功能缺失的表型。3.4小分子干扰核糖核酸表达载体转录法把转录小分子干扰核糖核酸的靶DNA克隆入含有U6或H1启动子的表达载体,导入受体细胞中经细胞内转录后持久和稳定地表达小分子干扰核糖核酸。此法克服了体外合成小分子干扰核糖核酸成本较高,不稳定,体内表达短暂并受到转染技术和效率的影响等不足,使小分子干扰核糖核酸技术真正成为可被广泛采用的有力工具,但在体内转录合成siRNA需要一定的时间,因此将siRNA表达载体作为喷雾剂使用,效果不佳。3.5小分子干扰核糖核酸表达盒(SECs):—种由PCR得到的小分子干扰核糖核酸表达模板,它能够直接导入细胞进行表达而无需先克隆到载体中.因此,SECs是筛选小分子干扰核糖核酸的最简单有效的工具,可作为构建高效的体内转录载体进行RNAi研究的预实验.这个方法的主要缺点是PCR产物比较难转染到细胞中,不能进行序列测定,PCR和DNA合成时可能产生的误读不能被发现,从而导致结果不理想。总之,以上小分子干扰核糖核酸合成法各有优缺点,基本思路如下由化学合成法得到的小分子干扰核糖核酸直接导入细胞进行表达而无需先克隆到载体中,是筛选小分子干扰核糖核酸的最简单有效的工具,可作为构建高效的体内转录载体进行RNAi研究的预实验。然后,把筛选好的小分子千扰核糖核酸的靶DNA克隆入含有U6或H1启动子的表达载体,导入E.coli中持久和稳定地产生小分子干扰核糖核酸。当选择到有效的siRNA序列后,可引入8-10碱基组成的环,使siRNA转变成相应的shRNA。这样可以用上述的方法进行合成或表达。一般来说,shRNA在体内的稳定性和沉默效果,都比相应siRNA更好。(注E.coli本身不能用U6或Hl启动子来表达,除非把E.coli感染哺乳动物细胞进行表达。用T7RNA聚合酶的启动子,可在E.coli转录表达。)4、RNAi负对照一个完整的RNAi实验必须有负对照,通过负对照RNAi排除非特异性影响。作为负对照的RNAi应该和选中的RNAi序列有相同的组成,但是与靶mRNA没有明显的同源性。通常的做法是将选中的RNAi序列打乱,同样要检查结果以保证它和其它基因没有同源性。5、转染细胞和个体的方法高效地将小分子干扰核糖核酸转入细胞和个体内是成功抑制基因表达的关键步骤.小分子干扰核糖核酸进入细胞的方式有脂质体转染、电穿孔、显微注射及其构建逆转录病毒载体或腺病毒载体来实现。研究表明,用脂质体转染细胞,24h后转染效率9(T/。以上,3d后仍达80%以上,表明脂质体是较好的转染方法。6、分析小分子干扰核糖核酸作为疫苗的效果RNA干扰作用的检测将从多个水平全方位、多层次进行检测.整体水平上可测定生物表征、组织器官的结构、细胞的代谢过程、生理生化系数等表型参数的改变;6.1生物表征、组织器官的结构观察细胞病变效应(CPE);观察细胞中靶标mRNA含量变化6.2表达水平上(蛋白质水平上)通过Western杂交,酶联免疫吸咐实验ELISA,免疫荧光检测等检测蛋白含量变化;6.3转录水平上(mRNA水平上)采用RT-PCR,定量PCR,或Northern杂交等通过信号强弱判断目的基因的沉默效果。通过上述方法选择具有较好沉默效果的小分子干扰核糖核酸,制备成喷雾剂。并且可以将小分子干扰核糖核酸用脂质体包裹,通过脂质体介导法进入细胞,提高小分子干扰核糖核酸的生物利用率。小分子核糖核酸浓度为0.10-0.75mmol/l,优选为0.35-0.60mmol/l,更优选为0.50mmol/l。本发明的喷雾剂的基质可以由脂质体3070。/。和PBS30~70%组成。优选地,脂质体为50%,PBS为500/。。其中,脂质体的配制用下列例子,但不应局限于如下配方如下胆固醇5~15%,卵磷月旨20~50%,磷脂酰乙醇胺20~50%,磷脂酰丝氨酸5~15%,磷酸肌醇4,5双磷酸(Ptdlns(4,5)P2)5%~15%。优选地,胆固醇10%,卵磷脂35%,磷脂酰乙醇胺35%,磷脂酰丝氨酸10%,磷酸肌醇4,5双磷酸(Ptdlns(4,5)P2)10%。本发明所述的通过呼吸道感染的病毒包括流感病毒和口蹄疫病毒等等。基于前面学者的研究,FMDV保守的功能域为2B,3C和3D。2B位于病毒基因组复制的位点。3C是由213个氨基酸组成的蛋白酶,能够引起大多数病毒前体蛋白以及与翻译和转录有关的主效因子(elF4A和elF4G)(组氨酸H3)的裂解。3D区负责RNA依赖性聚合酶合成,FMDVRNA的合成由3D蛋白完成.对于流感病毒,我们研究的焦点主要集中于那些保守的病毒基因组,特别是那些不同病毒亚型的NP,PA,PB1,PB2,M,和NS基因。由于病毒亚型之间的变异很大,所以我们这里没有设计HA和NA的小的干扰RNA。由于流感病毒C型比较常见,也很少引起临床症状,流感病毒B型只偶尔引起疾病,所以我们重点研究流感病毒A型。利用小干扰RNA目标finder(基因印记的在线软件)和小RNA设计(Sanger在线设计)(http:〃microrna.sanger.ac.uk/sequences)来筛选候选耙标和小干扰RNA,这些在线软件本身是根据以上标准设计,在选择各种亚型一般的靶标后,把这些靶标与人和牛的基因组进行同源比对(剔除与人或牛基因具有高同源性的靶标),另外再将该靶标与所有的FMDV和流感病毒在NCBI上单独比对,并通过实验室实验进行扫描和沉默效应检测,本发明筛选得到的小干扰RNA如表3所示。本发明中,所述的小干扰RNA包括siRNA、shRNA以及microRNA,siRNA是指的能引起基因沉默的dsRNA(特别注明的除外)。本发明中类似于siRNA-3D-3的表述指的是针对3D区域设计的siRNA,最后一个数字3,用于区别该区域中的不同耙序列;类似PA-l(si)的表述表示针对PA基因设计的siRNA,数字l用于区别该基因中的不同靶序列,PA-l(si)的表述等同于siRNA-PA-l。在病毒感染的窗口期对周边地区感染和怀疑可能感染的群体施用本发明的喷雾剂,能有效阻遏病毒的繁殖,延迟病情的发展或停止其发病。等待其自生免疫抗体的产生。本发明喷雾剂的生物利用率高,副反应低,成本低,使用简单方便。图1是用100TCIDW0.1ml的FMDVFMO病毒分别感染对照组以及转染小干扰RNA后的BHK-21细胞,感染24小时后的显微照片,图中mock为空白对照,control为阴性对照,阴性对照所用的小干扰RNA为siRNA-PA-7;图2是是用100TCIDM)/0.1ml的FMDVFMO病毒分别感染对照组以及转染小干扰RNA后的BHK-21细胞,感染48小时后的显微照片;图3是用感染复数为0.01的流感病毒A亚型分别感染对照组以及转染小干扰RNA后的MDCK细胞,感染24小时后的照片;图4是用FMDV不同的亚型来感染转染小干扰RNA后的细胞,mock至3D15分别是空白对照、阴性对照以及3D115,阴性对照所用的小干扰RNA为siRNA-PA-7;图5是小干扰RNA对FMDV的沉默作用,图A、B分别用siRNA以及shRNA转染,由mock至3D15分别是空白对照、阴性对照以及3D115,阴性对照所用的小干扰RNA分别是siRNA-PA-7,shRNA-PA-7;图C、D中由左向右的顺序分别为mock,阴性对照,2B-3(si),2B-3(si)+3C-5(sh),2B-3(si)+3C-5(sh)+3D-7(sh),阴性对照所用的小干扰RNA是siRNA-PA-7;图6是不同感染时间的沉默效果,由mock至3D15分别是空白对照、阴性对照以及3D115,阴性对照所用的小干扰RNA分别是siRNA-PA-7,shRNA-PA-7;图7小干扰RNA对InfA的沉默作用,图A、B、C分别用siRNA以及shRNA转染,mock为空白对照、control为阴性对照,阴性对照所用的小干扰RNA为分别是siRNA-3D-3、shRNA-3D-3;图D、E由左向右的顺序分别时是空白对照,阴性对照,PA-l(si),NS-4(sh)+PA-1(si),NS-4(sh)+PA-1(si)+M-5(sh),阴性对照所用的小干扰RNA是siRNA-3D-3。具体实施方式下面实施例用于对本发明方案的进一步说明,但不用来限制本发明的范围。实施例1材料和方法1、实验材料受体细胞系幼鼠肾细胞系(BHK-21)和犬肾细胞系(MDCK)(购自上海坤肯生物化工有限公司,货号分别是QK10311、QK10124);病毒分离株FMDV(口蹄疫病毒)FMO(0亚型)、FMA(A亚型)、FMAsia(Asia亚型)。Influenzavirus(流感病毒)InfA(A亚型)(购自AmericanTypeCultureCollection(ATCC),保藏号为ATCCVR-1331)脂质体胆固醇10%,卵磷脂35%,磷脂酰乙醇胺35%,磷脂酰丝氨酸10%,磷酸肌醇4,5双磷酸(Ptdlns(4,5)P2)10%。Q-RE-PCR引物用于扩增FMDV3D正向引物5'ACACCAGAGATGTGGAAG3,用于扩增FMDV3D反向引物:5,GACGGCATTCCGCCTTCAAC3,用于扩增流感病毒PA反向引物:5'GAAGGAAGAGACCGAGCAATG3,用于扩增流感病毒PA反向引物:5'AGGCAGTTGAACACAGA3'实施例中涉及到的siRNA、shRNA以及引物均由DharmaconResearch(Lafayette,CO)合成。2、细胞和病毒培养,以及病毒滴度测定BHK-21细胞用于接种口蹄疫病毒,MDCK细胞用于接种流感病毒。BHK-21细胞用含有5%的胎牛血清和0.15%的胰蛋白示磷酸的DMEM培养基,在C02培养箱中培养,C02浓度维持在5。/。,温度37。C。MDCK细胞用含有10%的胎牛血清和2mmol/LL-谷氨酰胺的DMEM培养基,在C02培养箱中培养,C02浓度维持在5n/。,温度37。C。用上述培养条件在96孔培养板中,分别培养BHK-21细胞和MDCK细胞,初始每孔含有细胞数5xl(^个,培养24小时,将各种病毒样本10倍递次稀释后,分别接种到培养板中,继续培养,并监测细胞病变的程度。用Reed-Muench法来计算细胞半数感染剂量。病毒的感染实验使用病毒悬浮液滴度105~106TCID5()/ml的病毒,FMDV的感染实验使用病毒悬浮液滴度100TCID5()/0.1ml,用于流感病毒感染实验的病毒感染复数(moi)为0.01。3、siRNA/shRNA转染和病毒感染用PBS按体积比1:1来稀释脂质体。将2.5nmol的siRNA/shRNA溶解于30^1稀释后的脂质体混合,在室温放置30分钟。当培养的BHK-21和MDCK细胞覆盖达70%-80%时,siRNA/shRNA通过脂质体介导转入96孔板(Nunc公司)培养的BHK-21和MDCK细胞18个小时。在转染的后期,用含有P/。抗生素的DMEM来洗涤细胞两次,然后在每个培养孔中加入含有1。/。抗生素以及病毒(FMDV为100TCID50/0.1ml,流感病毒为moiO.Ol)的DMEM溶液。在37。C吸收l小时后,去除接种体后,用DMEM洗涤细胞2次。然后换用含有10%胎牛血清的DMEM继续培养。在感染后不同时期,收集悬浮液,并测定病毒的滴度。显微镜观察细胞病变效应(CPE),并用OlympusBH-2拍照。并且设置两个对照组,一种是空白对照(只含有脂质体不含小干扰RNA),—种是阴性对照(含有小干扰RNA,但对于感染的病毒不具备特异性),其它操作同上。4、RNA抽提利用TRIzol试剂(GIBCO)按照生产厂家的使用手册来抽提感染细胞以及对照组细胞的总RNA并加入DNaseRQ1,37°C温育1小时,去除里面的DNA。5、实时定量RT-PCR(Q-RT-PCR)利用Omniscript反转录酶试剂盒(Qiagen,Valencia,CA)进行反转录实验,20氺1反应体系包括200ng的总RNA以及特异引物,37'C反应1小时。实时定量PCR的反应体系包括特异引物,SYBRgreenPCR反应液(AppliedBiosystems)以及SYBRgreenI双链DNA结合染料。反应条件为48°C,30分钟;95°C,2分钟;接着为40个循环的95°C,15秒;60°C,30秒;72°Cl分钟。以后的所有的计算都由ABIPrism7000SDS软件(AppliedBiosystems)完成。实施例2沉默效应1、细胞病变效应(CPE)的滞后和降低本实施例中的细胞都为纤维原细胞,单层生长,排列规则。病毒感染后,引起显著的细胞病变效应(CPE),通过显微镜可以观察到总细胞分离,悬浮,以及破坏。幼鼠肾细胞系(BHK-21)已被广泛用于FMDV的诊断以及病毒鉴定。而MDCK细胞系用于流感病毒的病毒免疫。为了研究siRNA/shRNA沉默对病毒感染的效应,分别利用100TCID5o的FMDVFMO,FMA,FMAsia各亚型病毒感染已经转染的BHK-21细胞(转染后24小时),感染复数(MOI)为0.01的InfA病毒株来感染已经转染的MDCK细胞(转染后18小时)。图1、2、3是利用OlympusBH-2显微镜进行观察,并对有代表性的清晰的区域所拍的照片。图1、2是用100TCID5()/0.1ml的FMDVFMO病毒分别感染对照组以及转染小干扰RNA后的BHK-21细胞,图l是感染24小时后的照片,图2是感染48小时后的照片。图3是用感染复数为0.01的流感病毒A亚型分别感染对照组以及转染小干扰RNA后的MDCK细胞,感染24小时后的照片。其中mock表示空白对照,control表示阴性对照。通过图片可以看出,siRNA7shRNA转染BHK-21细胞或MDCK细胞后,细胞感染的病变效应相对于对照组滞后。但感染后72小时观察不到明显的抑制作用。2、病毒RNA复制受到抑制用siRNA/shRNA或者靶序列不同的siRNA/shRNA的混合物对BHK-21细胞和MDCK细胞转染18个小时。在转染末期,将分离的病毒接种于细胞进行病毒免疫反应。在不同的时间点,采集样品抽提RNA,用作实时定量PCR(Q-RT-PCR)的模板。用流感病毒A亚型感染siRNA/shRNA转染的细胞,12个小时后,靶mRNA在细胞中的相对含量为9.09-15.06,而没有用小干扰RNA进行转染的细胞(空白对照)的靶mRNA在细胞中的相对含量超过90,而用抗口蹄疫病毒的小干扰RNA转染的细胞(阴性对照),其靶mRNA在细胞中的相对含量约为90个,由此说明对流感病毒各自的抑制能力为60-90%(表1)。表l.转染和感染的MDCK细胞中靶mRNA的相对量耙mRNA的相对量<table>tableseeoriginaldocumentpage11</column></row><table>用FMDVFMO感染siRNA/shRNA转染的细胞,12个小时后,靶mRNA在细胞中的相对含量为8.31~19.84,而没有用小干扰RNA进行转染的细胞,其靶mRNA在细胞中的相对含量超过90,用抗流感病毒的小干扰RNA转染的细胞,其靶mRNA在细胞中的相对含量约为90,由此说明对流感病毒各自的抑制能力为60-90%(表2)。表2转染和感染的BHK-21细胞中靶mRNA的相对量耙mRNA的相对量<table>tableseeoriginaldocumentpage11</column></row><table><formula>formulaseeoriginaldocumentpage12</formula>对流感病毒和口蹄疫病毒而言,shRNA的沉默效应比siRNA要好。表l、2都是通过前面所述的实时定量PCR(Q-RT-PCR)方法,来确定细胞中靶mRNA的相对量。实施例3病毒滴度降低本实施例中利用4种病毒来感染细胞并收集转感染后12、24、48小时的病毒量来进一步证实抗病毒活性。为了确定小干扰RNA对FMDV不同亚型的沉默效应是否存在差异,本实施例用同一种小干扰RNA检测了其对0、A、AsiaI三种亚型的沉默效应。用空白转染以及小干扰RNA(2.5nrno1)分别瞬时转染BHK-21细胞,然后按照实施例1中的方法,分别加入100TCID5。/0.1ml的FMDVFMO、FMA和FMAsia(AsiaI亚型)进行感染。研究表明,从感染开始直到感染后48小时,小干扰RNA转染的BHK-21细胞中病毒产量都明显减少。因此,小干扰RNA对同种病毒的不同亚型都具有沉默效应(图4)。为了验证siRNA/shRNA是否抑制FMDV和流感病毒的产量,本实施例检测了BHK-21细胞和MDCK细胞中它们的含量。用脂质体介导的方法将siRNA/shRNA(2.5nmol/L)转入培养的BHK-21细胞和MDCK细胞(每孔细胞为1x107),18个小时后,再用感染复数(moi)为0.01的InfA病毒感染MDCK细胞,用病毒悬浮液滴度100TCID5o/0.1mlFMDV感染BHK-21细胞。在感染后的不同时期,收集悬浮液,确定病毒滴度(FMDV病毒量单位为log1()TCID50,流感病毒用HA检测法来,单位为HAunits,。如图5、6和7所示,在空白转染(无siRNA/shRNA)和阴性对照中,病毒滴度在感染后迅速增加,48小时达到峰值。阴性对照中的转染在任何时间段都不影响病毒产量,显示siRNA/shRNA不会干扰非特异病毒产量。用siRNA/shRNA转染的细胞,病毒产量与对照组相比显著下降。这就证明病毒复制被siRNA/shRNA充分抑制。实施例4喷雾剂的构成脂质体胆固醇10%,卵磷脂35%,磷脂酰乙醇胺35%,磷脂酰丝氨酸10%,磷酸肌醇4,5双磷酸(Ptdlns(4,5)P2)10%。其中,PBS的配制如下Na2HP041.09gNaH2P040.32gNaCl9g蒸馏水1000ml调节pH至7.21、针对FMDV3Dpo1基因设计的小干扰RNA喷雾剂喷雾剂组成50%脂质体,50%PBS,0.55mmo1/1siRNA-3D-2。siRNA-3D-2的序列是5'ACAAACCUGUGAUGGCCUCAAUU3'3'UUUGUUUGGACACUACCGGAGUU5'2、针对流感病毒RNA聚合酶基因设计的小干扰RNA喷雾剂喷雾剂组成30%脂质体,70%PBS,0.25mmo1/1shRNA-PA-2。shRNA-PA-2的序列是3、针对FMDV2B基因设计的小干扰RNA喷雾剂喷雾剂组成70%脂质体,30%PBS,0.70mmo1/1shRNA-2B-3。shRNA-2B-3:4、针对FMDV3Dpol基因设计的小干扰RNA喷雾剂喷雾剂组成60%脂质体,40。/。PBS,0.75mmolAshRNA-3D-7。shRNA-3D-7:5、针对流感病毒NS基因设计的小干扰RNA喷雾剂喷雾剂组成40。/。脂质体,60%PBS,O.lOmmol/1siRNA-NS-ll。siRNA-NS-11:5'CAUACUGAUGAGGAUGUCAAAUU3,3,UUGUAUGACUACUCCUACAGUUU5'6、针对FMDV几种不同耙序列设计的小干扰RNA喷雾剂喷雾剂组成50%脂质体,50%PBS,0.25誰o1/12B-3(si)+0.25mmol/l3C-5(sh)+0.15rnrno1/13D-7(si)。2B-3(si)+3C-5(sh)+3D-7(si)的核酸序列如表3所示。实施例52006年2月,在一农场的牛群中发现有FMDV感染,从该牛群中随机选取30头牛,分成A、B、C三组,每组10头,隔离培养,A组喷施实施例4中方案l的喷雾剂,B组喷施实施例4中方案6的喷雾剂,口腔喷施,连续喷施15天,每天早晚2次,每次喷施l2ml,C组作为对照不喷施。观察2个月,并采取血样检测,结果发现,A组和B组均未发现FMDV感染,C组检出FMDV感染5头,其中3头已经呈明显患病状态。由此可见,本发明喷雾剂能够有效预防和阻断病毒的呼吸道感染,减少患病的几率。关于安全性对牛口腔粘膜刺激实验以及皮肤过敏实验未见刺激反应及过敏反应。对实验牛进行了三个月的观察,亦未见其它异常反应。表3针对口蹄疫病毒设计的小干扰RNA:1,Target2B-15'CCTTCTTCTTCTCCGACGTTA3,5'CCUUCUUCUUCUCCGACGUUAUU3,3'UUGGAAGAAGAAGAGGCUGCAAU5'siRNA-2B-lshRNA-2B-lmicroRNA-2b-l2,Target2B-2siRNA-2B-2shRNA-2B-2microRNA-2B-l:5,UCGUCCUCCCCUUCUUCACCG3'5'TGCAGGAGGACATGTCAACAA3'5'UGCAGGAGGACAUGUCAACAAUU3'3'UUACGACCUCCUGUACAGUUGUU5';'UGACAUGUCUUCUAUUUUUAGGGA3'3,Target2B-35'ATGCAGGAGGACATGTCAACA3'siRNA-2B-35'AUGCAGGAGGACAUGUCAACAUU3'3'UUUACGUCCUCCUGUACAGUUGU5'shRNA-2B-3microRNA-2B-3:5'AAACUCUACUUGUCCUUCUGAGU3'4,Target2B45'GCAGGAGGACATGTCAACAAA3's翻A-2B45'GCAGGAGGACAUGUCAACAAAUU3'3'UUCGUCCUCCUGUACAGUUGUUU5'shRNA-2B-4microRNA-2B-4:No5,Target2B-55,GTGGAAACCATCAACCAGATG3'siRNA-2B-55,GUGGAAACCAUCAACCAGAUGUU3'3'UUCUCCUUUGGUABUUGGUCUAC5'shRNA-2B-5microRNA-2B-5:UUGGUCCCCUUCAACCAGCUG6,Target3C-1s涯A-3C-lshRNA-3C-lmicroRNA-3C-l:7,Target3C-2siRNA-3C-2shRNA-3C-2microRNA-3C-2:5,GGACCACTCGAGCGTCAGAAA3'5'GGACCACUCGAGCGUCAGAAAUU3'3'UUCCUGGUGAGCUCGCAGUCUUU5'5'GCGAGGACCCCUCGGGGUCUGAC3'5,CTTTGAAGGTGAAAGCTAAGA3'5,CUUUGAAGGUGAAAGCUAAGAUU3,;,UUGAAACUUCCACUUUCGAUUCU5';'AGACUUCCCAUUUGAAGGUGGC3'<table>tableseeoriginaldocumentpage15</column></row><table>15,Target3C-10siRNA-3C-10shRNA-3C-105'GGTCGTGAAGGAAGGACCTTA3'5'GGUCGUGAAGGAAGGACCUUAUU3''UUCCAGCACUUCCUUCCUGGAAU5'microRNA-3C-10:5,CUCUUGAGGGAAGCACUUUCUGUU3'16,Target3C-11siRNA-3C-llshRNA-3C-llmicroRNA-3C-ll:5'GTAGCCATCTGCTGCGCTACT3'5'GUAGCCAUCUGCUGCGCUACUUU3''UUCAUCGGUAGACGACGCGAUGA5';'GCAGAGCUGCAGAUGGGAUUC3'17,Target3D-1siRNA-3D-lshRNA-3D-l5'TGATGCTAATCACTGCAGTGA3'5'UGAUGCUAAUCACUGCAGUGAUU3'3'UUACUACGAUUAGUGACGUCACU5,microRNA-3D-l:;,UAAUCUCUGCAGGCAACUGUGA3'■18,Target3D-2siRNA-3D-2shRNA-3D-25,ACAAACCTGTGATGGCCTCAA3'5'ACAAACCUGUGAUGGCCUCAAUU3';,UUUGUUUGGACACUACCGGAGUU5'raicroRNA-3D-2:;'AAACCUGUGUUGUUCAAGAGUC3'19,Target3D-siRNA-3D-3shRNA-3D-35'ACCGATGTCACTTTCCTCAAA3'5,ACCGAUGUCACUUUCCUCAAAUU3'3,UUUGGCUACAGUGAAAGGAGUUU5'microRNA-3D-3:5,UGUUUGCAGAGGAAACUGAGAC3,20,Target3D-4siRNA-3D-4shRNA-3D4microRNA-3D-4:5'TTGTTCTTGGTCACTCCATTA3'5'UUGUUCUUGGUCACUCCAUUAUU3''UUAACAAGAACCAGUGAGGUAAU5',UUGUGCUUGAUCUAACCAUGUG3'21,Target3D-siRNA-3D-5shRNA-3D-5microRNA-3D-5'GAGACGACATCGTGGTGGCAA3'5'GAGACGACAUCGUGGUGGCAAUU3,;,UUCUCUGCUGUAGCACCACCGUU5';,CCACCACCAUGUCUGACACUUU3,22,Target3D-6siRNA-3D-6shRNA-3D-6microRNA-3D-623,Target3D-7siRNA-3D-7shRNA-3D-7microRNA-3D-724,Target3D-8siRNA-3D-8shRNA-3D-8microRNA-3D-825,Target3D-9siRNA-3D-9shRNA-3D-9microRNA-3D-926,Target3D-10siRNA-3D-10shRNA-3D-10microRNA-3D-1027,Target3D-11siRNA-3D-llshRNA-3D-llmieroRNA-3D-ll:28,Target3D-12siRNA-3D-12shRNA-3D-12microRNA-3D-1229,Target3D-135'AGAAAGTACGTGCCGGCAAGA3'5,AGAAAGUACGUGCCGGCAAGAUU3'3'UUUCUUUCAUGCACGGCCGUUCU5'5'CUCCAGAGGGAAGUACUUUCU3'5'CCGTCTGGTTGTTCCGCAACA3'5'CCGUCUGGUUGUUCCGCAACAUU3,3'UUGGCAGACCAACAAGGCGUUGU5''UGGAGGCCUGGUUGUUUGUGC3'5,CATCGTGGTGGCAAGTGATTA3'5'CAUCGUGGUGGCAAGUGAUUAUU3'3'UUGUAGCACCACCGUUCACUAAU5'5'CCCAUCUGGGGUGGCCUGUGACUUU3'5'GAACAACATCTACGTGCTCTA3'5,GAACAACAUCUACGUGCUCUAUU3'3'UUCUUGUUGUAGAUGCACGAGAU5'5,UAGCAGCACGUAAAUAUUGGUG3'5'GCATCACTGTTGAAGGCGGAA3'5,GCAUCACUGUUGAAGGCGGAAUU3,,UUCGUAGUGACAACUUCCGCCUU5,5'UGAGAUCACUUUGAAAGCUGAUU3'5'ATCGTGGTGGCAAGTGATTAT3'5'AUCGUGGUGGCAAGUGAUUAUUU3,'UUUAGCACCACCGUUCACUAAUA5'5'GCGAGGACCCCUCGGGGUCUGAC3,5'TACCGATGTCACTTTCCTCAA3'5,UACCGAUGUCACUUUCCUCAAUU3'3'UUAUGGCUACAGUGAAAGGAGUU5',UGUUUGCAGAGGAAACUGAGAC3,;'CAAACCTGTGATGGCCTCAAA3'siRNA-3D-13shRNA-3D-135'CAAACCUGUGAUGGCCUCAAAUU3'3'UUGUUUGGACACUACCGGAGUUU5,microRNA-3D-135'AAUCACAGGAUUAUACUGUGAG3'30,Target3D-14siRNA-3D-14shRNA-3D-145'TGTTCTTGGTCACTCCATTAC3'5'UGUUCUUGGUCACUCCAUUACUU3'3,UUACAAGAACCAGUGAGGUAAUG5'microRNA-3D-14;'AAGGGAUUCUGAUGUUGGUCACA3'31,Target3D-15siRNA-3D-15shRNA-3D-15microRNA-3D-15针对流感病毒设计的小干扰RNA:5,CTCATGCGTTTCCAGGTCCAT3'5'CUCAUGCGUUUCCAGGUCCAUUU3'3'UUGAGUACGCAAAGGUCCAGGUA5'AGGUUGACAUACGUUUCCC3'1,TargetPA-1siRNA-PA-1shRNA-PA-15'TCTCAAATGTCCAAAGAAGTA3,5,UCUCAAAUGUCCAAAGAAGUAUU3,3,UUAGAGUUUACAGGUUUCUUCAU5'microRNA-PA-15'CUCCUGACUCCAGGUCCUGUGU3'2,TargetPA-2siRNA-PA-2shRNA-PA-25'ACCGCTATATGATGCGATCAA3'5'ACCGCUAUAUGAUGCGAUCAAUU3'3'UUUGGCGAUAUACUACGCUAGUU5'microRNA-PA-2;,UUCAGCUCCUAUAUGAUGCCUUU3'3,TargetPA-3siRNA-PA-3shRNA-PA-35'GCATGCGAACTGACCGATTCA3'5'GCAUGCGAACUGACCGAUUCAUU3',UUCGUACGCUUGACUGGCUAAGU5'microRNA-PA-3;'UGAGAUCGUUCAGUACGGCAAU3,4,TargetPA-4siRNA-PA-4shRNA-PA45,GACCGATTCAAGCTGGATAGA3'5,GACCGAUUCAAGCUGGAUAGAUU3,3,UUCUGGCUAAGUUCGACCUAUCU5'microRNA-PA4'UAGCACCAUCUGAAAUCGGUU3,5,TargetPA-5s羅A-PA-5;,CATGCGAACTGACCGATTCAA3'5'CAUGCGAACUGACCGAUUCAAUU3'shRNA-PA-53'UUGUACGCUUGACUGGCUAAGUU5'microRNA-PA-;,UGAGAUCGUUCAGUACGGCAAU3'6,TargetPA-6siRNA-PA-6shRNA-PA-6microRNA-PA-6:5,TGGTTCAACTCCTTCCTCACA3'5,UGGUUCAACUCCUUCCUCACAUU3'3'UUACCAAGUUGAGGAAGGAGUGU5''CAGUCCAAUAGUAUUGUCAAAGC3'7,TargetPA-7siRNA-PA-7shRNA-PA-75'TTGTATGCATCTCCACAACTA3'5,UUGUAUGCAUCUCCACAACUAUU3,3,UUAACAUACGUAGAGGUGUUGAU5,microRNA-PA-7'UUCACCACCUUCUCCACCCAGC3'8,TargetPB1-1siRNA-PB1-1shRNA-PB1-1microRNA-PBl-l:No9,TargetPB1-2s腦A-PB1-2shRNA-PB1-2microRNA-PBl-2:No10,TargetPB1-3siRNA-PB1-3shRNA-PB1-35'TTTCGAATCTGGAAGGATAAA3'5'UUUCGAAUCUGGAAGGAUAAAUU3,3,UUAAAGCUUAGACCUUCCUAUUU5'5,CCGAATTGATGCACGGATTGA3'5'CCGAAUUGAUGCACGGAUUGAUU3'3'UUGGCUUAACUACGUGCCUAACU5'5'CTCCAATAATGTTCTCAAACA3'5,CUCCAAUAAUGUUCUCAAACAUU3,3'UUGAGGUUAUUACAAGAGUUUGU5'microRNA-PB1-3,CAGUCCAAUAGUAUUGUCAAAGC3'11,TargetPB1-4siRNA-PBl-4shRNA-PB145'CTTTCACCATCACTGGAGATA3'5,CUUUCACCAUCACUGGAGAUAUU3'3,UUGAAAGUGGUAGUGACCUCUAU5'microRNA-PB1-4,AGCUCGACUCAUGGUUUGAACC3'12,TargetPB1-5siRNA-PBl墨55'TCTTGAAAGTGCCAGCGCAAA3'5,UCUUGAAAGUGCCAGCGCAAAUU3'3'UUAGAACUUUCACGGUCGCGUUU5,shRNA-PB1-5microRNA-PB1-,CCCAGAUAAUGGCACUCUCAA3'13,TargetPB1-6siRNA-PB1-6shRNA-PB1-65'ACCTATGACTGGACTCTAAAT3,5,ACCUAUGACUGGACUCUAAAUUU3,3'UUUGGAUACUGACCUGAGAUUUA5'microRNA-PB1-6'CUGACCUAUGAAUUGACA3'14,TargetPB1-'s腦A-PB1-7shRNA-PB1陽75,CCTATGACTGGACTCTAAATA3,5'CCUAUGACUGGACUCUAAAUAUU3'3'UUGGAUACUGACCUGAGAUUUAU5'microRNA-PB1-;,UACUGGCCUCCAAAUUUUCGCU3'15,TargetPB1-8siRNA-PB1-8shRNA-PB1-85'ATGGAGGTTGTTCAGCAAACA3'5'AUGGAGGUUGUUCAGCAAACAUU3'3,UUUACCUCCAACAAGUCGUUUGU5'microRNA-PB1-8;'ACUCUACAACCUUAGGACUUGC3'16,TargetPB1-9siRNA-PB1-9shRNA-PB1-95,ATTCCTGAAGTCTGCTTGAAA3'5'AUUCCUGAAGUCUGCUUGAAAUU3,3'UUUAAGGACUUCAGACGAACUUU5'microRNA-PB1-95,AUUCCUGAAGAGAGGCAGAAAA3'17,TargetPB1-10siRNA-PBl-10shRNA-PB1-105'TTTCACCATCACTGGAGATAA3'5,UUUCACCAUCACUGGAGAUAAUU3,3,UUAAAGUGGUAGUGACCUCUAUU5'microRNA-PB1-10'UAAUGUGAUGAUGAAAUGACG3'18,TargetPB1-11siRNA-PB1-11shRNA-PB1-115,AGAAAGAGGAGTTCGCTGAGA3,5'AGAAAGAGGAGUUCGCUGAGAUU3''UUUCUUUCUCCUCAAGCGACUCU5'microRNA-PB1-11;,AGGCAGUGUAGUUAGCUGAUUGC3'19,TargetPB1-12si'RNA-PB1-12shRNA-PB1-125'TTGAAGAGCTCAGACGGCAAA3'5,UUGAAGAGCUCAGACGGCAAAUU3,3'UUAACUUCUCGAGUCUGCCGUUU5'microRNA-PB1-12'UAAAGUGCUUAUAGUGCAGGUAG3'20,TargetPB2-1siRNA-PB2-1shRNA-PB2-1microRNA-PB2-l:No21,TargetPB2-2siRNA-PB2-2shRNA-PB2-25'CTCCTTTAATGGTGGCATACA3'5'CUCCUUUAAUGGUGGCAUACAUU3,,UUGAGGAAAUUACCACCGUAUGU5'5'TGGAAATGATTCCTGAGAGAA3'5,UGGAAAUGAUUCCUGAGAGAAUU3,,'UUACCUUUACUAAGGACUCUCUU5,microRNA-PB2-2'GUCCAGUUUUCCCAGGAAUCCCUU3'22,TargetPB2-3siRNA-PB2-3shRNA-PB2-35'GAACAGAGAAATTGACGATAA3'5,GAACAGAGAAAUUGACGAUAAUU3'3'UUCUUGUCUCUUUAACUGCUAUU5'microRNA-PB2-3'UCAGUCUUCAAUUCCUCCCAGC3,23,TargetPB24siRNA-PB2-4shRNA-PB2-45'AGCAACAGCTATACTCAGAAA3'5,AGCAACAGCUAUACUCAGAAAUU3';'UUUCGUUGUCGAUAUGAGACUUU5,microRNA-PB24,UAGCACCAUAUAAAUUCAGUAA3'24,TargetPB2-:siRNA-PB2-5shRNA-PB2-5microRNA-PB2-5'CTTTGGCGGATTCACATTTAA3'5'CUUUGGCGGAUUCACAUUUAAUU3,J'UUGAAACCGCCUAAGUGUAAAUU5,5'GUGAAGUGUUUGGGGGAUUCUC3'25,TargetPB2-6siRNA-PB2-6shRNA-PB2-65'TTTGAGCCATTTCAGTCTTTA3'5,UUUGAGCCAUUUCAGUCUUUAUU3'3'UUAAACUCGGUAAAGUCAGAAAU5'microRNA-PB2-6i'UGAUUGAGCCGUGUCAAUAUC3'26,TargetPB2-'siRNA-PB2-7shRNA-PB2-75'ATATCCAATTACAGCAGACAA3'5'AUAUCCAAUUACAGCAGACAAUU3'3,UUUAUAGGUUAAUGACGUCUGUU5'<table>tableseeoriginaldocumentpage22</column></row><table>34,TargetNP-4siRNA-NP-4shRNA-NP"45'CGAACTTAAACTCAGTGATTA3'5'CGAACUUAAACUCAGUGAUUAUU3,3'UUGCUUGAAUUUGAGUCACUAAU5'microRNA-NP4;'CUUAACCCACUUGUGAACAAUG3'35,TargetNP-5siRNA-NP-5shRNA-NP-5microRNA-NF-S'CCAAGCTAATAATGGTGAAGA3,5'CCAAGCUAAUAAUGGUGAAGAUU3'3'UUGGUUCGAUUAUUACCACUUCU5';'AUUCUGCAUUUUUAGCAAGU3'36,TargetNP-6siRNA-NP-6shRNA-NP-65'CAGTCAAAGGAGTTGGAACAA3'5'CAGUCAAAGGAGUUGGAACAAUU3''UUGUCAGUUUCCUCAACCUUGUU5'microRNA-NP-6;'UAUGACACUGAAGCGAGUUGGAAA3'37,TargetNP-7siRNA-NP-7shRNA-NP-75'TTTGACGAGAGGAGGAATAAA3'5'UUUGACGAGAGGAGGAAUAAAUU3,'UUAAACUGCUCUCCUCCUUAUUU5'microRNA-NP-;,GUGGAUAUUCCUUCUAUGGUU3,38,TargetNP-8siRNA響NP-8shRNA-NP-85'ATGAGAGAACTCATCCTTTAT3'5'AUGAGAGAACUCAUCCUUUAUUU3''UUUACUCUCUUGAGUAGGAAAUA5'microRNA-NP-85,GGAGAAAUUAUCCUUGGUGUGU3'39,TargetNP-9siRNA-NP-9shRNA-NP-95,TCTTCGAGCTCTCGGACGAAA3,5,UCUUCGAGCUCUCGGACGAAAUU3'3'UUAGAAGCUCGAGAGCCUGCUUU5,microRNA-NP-9i'UCGGUGGGACUUUCGUCCGUUU3'40,TargetNP-10siRNA-NP-10shRNA-NP-105'GATCTTATTTCTTCGGAGACA3'5'GAUCUUAUUUCUUCGGAGACAUU3,3'UUCUAGAAUAAAGAAGCCUCUGU5'microRNA-NP-105'AUUGCUUCCCAGACGGUGAAGA3'41,TargetNP-11siRNA-NP-llshRNA-NP-115,TAAGGATGATGGAAAGTGCAA3'5'UAAGGAUGAUGGAAAGUGCAAUU3'3,UUAUUCCUACUACCUUUCACGUU5'microRNA-NP-11i'UAUUGCACUUUUCACAGCCCGA3'42,TargetNP-12siRNA-NP-12shRNA-NP-125,GATGGAAAGTGCAAGACCAGA3'5,GAUGGAAAGUGCAAGACCAGAUU3'3'UUCUACCUUUCACGUUCUGGUCU5,microRNA-NP-125'UGACGUGUAAAUUGCGAGACGAAU3'43,TargetM-lsiRNA-M-lshRNA-M-l5,AGGCTCTCATGGAATGGCTAA3'5'AGGCUCUCAUGGAAUGGCUAA腦'3,UUUCCGAGAGUACCUUACCGAUU5'microRNA-M-l;'UGUCAUGGAAUUGCUCUCUUUGU3'44,TargetM-2siRNA-M-2shRNA-M-25'GCATCGGTCTCACAGGCAAAT3'5'GCAUCGGUCUCACAGGCAAAUUU3'3'UUCGUAGCCAGAGUGUCCGUUUA5'microRNA-M-2;'UUUAGGUUUCACAGGAAACUGGU3'45,TargetM-:siRNA-M-3shRNA-M-35'GGCTCTCATGGAATGGCTAAA3'5'GGCUCUCAUGGAAUGGCUAAAUU3'3'UUCCGAGAGUACCUUACCGAUUU5'microRNA-M-3;,AACGGUGCAUGGACUGGCUAGA3'46,TargetsiRNA-M4s麵A-M-4microRNA-M-4:No5'CTCCAGTGCTGGTCTGAAAGA3'5'CUCCAGUGCUGGUCUGAAAGAUU3'3,UUGAGGACACGACCAGACUUUCU5'47,TargetM-5siRNA-M-5shRNA-M-55'TGGAGCAAATGGCTGGATCGA3,5'UGGAGCAAAUGGCUGGAUCGAUU3,3'UUACCUCGUUUACCGACCUAGCU5'microRNA-M-5;'UUGCAUGGAGUCUAUGUCUGGA3'48,TargetM-6;,GTGACAACAACCAATCCACTA3'siRNA-M-6shRNA-M-65'GUGACAACAACCAAUCCACUAUU3'3'UUCACUGUUGUUGGUUAGGUGAU5'microRNA-M-6;,UGGAAGACUAGUGAUUUUGUUGUU3,49,TargetM-7siRNA-M-7shRNA-M-75,TCGAAACGTACGTTCTCTCTA3'5'UCGAAACGUACGUUCUCUCUAUU3',UUAGCUUUGCAUGCAAGAGAGAU5'niicroRNA-M-5,UAAGUGCUCUCUAGUUCGGUUG3'50,TargetM-8siRNA-M-8shRNA-M-85'GCAAATGGCTGGATCGAGTGA3'5,GCAAAUGGCUGGAUCGAGUGAUU3''UUCGUUUACCGACCUAGCUCACU5'microRNA-M-8;'UUGUGCUUGAUCUAACCAUGUG3'51,TargetM-9siRNA-M-9shRNA-M-9'5,CGAAACGTACGTTCTCTCTAT3'5'CGAAACGUACGUUCUCUCUAUUU3''UUGCUUUGCAUGCAAGAGAGAUA5'microRNA-M-9;'CUGUACCCUCUCUCUUCUUC3'52,TargetM-10siRNA-M-10shRNA-M-105'(microRNA-M-105'GAGATCGCGCAGAGACTTGAA3'5'GAGAUCGCGCAGAGACUUGAAUU3''UUCUCUAGCGCGUCUCUGAACUU5'5'UUGAAGUGUUUGGGGGAACUC3'53,TargetM-llsiRNA-M-llshRNA-M-ll5,TTGCTAGTCAGGCTAGGCAAA3'5,UUGCUAGUCAGGCUAGGCAAAUU3,3'UUAACGAUCAGUCCGAUCCGUUU5'microRNA-M-ll;'UGACAAGCCUGACGAGAGCGU3'54,TargetM-12siRNA-M-12shRNA-M-12microRNA-M-125,TGCTAGTCAGGCTAGGCAAAT3'5'UGCUAGUCAGGCUAGGCAAAUUU3'3'UUACGAUCAGUCCGAUCCGUUUA5',UGACAAGCCUGACGAGAGCGU3'55,TargetNS-1siRNA-NS-l5'TGCCTTCTCTTCCAGGACATA3,;'UGCCUUCUCUUCCAGGACAUAUU3'shRNA-NS-l3'UUACGGAAGAGAAGGUCCUCUAU5'microRNA-NS-1;'AGUAUGUUCUUCCAGGACAGAAC3'56,TargetNS-2siRNA-NS-2shRNA-NS-25'AGAATCCGATGAGGCACTTAA3'5'AGAAUCCGAUGAGGCACUUAAUU3',UUUCUUAGGCUACUCCGUGAAUU5'microRNA-NS-2;'AGAAUCCUGAUGAUGCUGCAA3'57,TargetNS-3siRNA-NS-3shRNA-NS-3microRNA-NS-35,GAATCCGATGAGGCACTTAAA3'5'GAAUCCGAUGAGGCACUUAAAUU3'3'UUCUUAGGCUACUCCGUGAAUUU5'5,UAAAGUGCUUAUAGUGCAGGUAG3'58,TargetNS-4siRNA-NS4shRNA-NS45'CAAACGGTTTGCAGACCAAGA3'5'CAAACGGUUUGCAGACCAAGAUU3',UUGUUUGCCAAACGUCUGGUUCU5'microRNA-NS-4;,AUAGUUUCUCUUGUUCUGCAC3'59,TargetNS-5siRNA-NS-5shRNA-NS-55'TCAGAATGGACCAGGCGATCA3'5'UCAGAAUGGACCAGGCGAUCAUU3,'UUAGUCUUACCUGGUCCGCUAGU5'microRNA-NS-5;'ACUUCACCUGGUCCACUAGCCGU3'60,TargetNS-6siRNA-NS-6shRNA-NS-65'GGAGGACTTGAATGGAATGAT3'5'GGAGGACUUGAAUGGAAUGAUUU3,3,UUCCUCCUGAACUUACCUUACUA5'microRNA-NS-6'AGUUUUCCCUUCAAGUCAA3'61,TargetNS-7siRNA-NS-7shRNA-NS-75'ACATCATACTGAAAGCGAACT3'5,ACAUCAUACUGAAAGCGAACUUU3,3,UUUGUAGUAUGACUUUCGCUUGA5'microRNA-NS-7;'UGUAAACAUCCUUGACUGGA3'62,TargetNS-8siRNA-NS-85,CATGGATAAGAACATCATACT3'5,CAUGGAUAAGAACAUCAUACUUU3'3,UUGUACCUAUUCUUGUAGUAUGA5'shRNA-NS-8microRNA-NS-8;'CAGCGAGGUAUAGAGUUCCUACG3'63,TargetNS-9siRNA-NS-9shRNA-NS-95'TGACATGACTCTTGAGGAGAT3'5'UGACAUGACUCUUGAGGAGAUUU3,3,UUACUGUACUGAGAACUCCUCUA5'microRNA-NS-9;,UCACAGGACUUUUGAGCGUUGC3'64,TargetNS-10siRNA-NS-10shRNA-NS-105'ATTCGCTTGGAGAAGCAGTAA3'5'AUUCGCUUGGAGAAGCAGUAAUU3'3,UUUAAGCGAACCUCUUCGUCAUU5'microRNA-NS-105'UGGAGAAGCAGGACACGUGAG3'65,TargetNS-llsiRNA-NS-llshRNA-NS-ll5,CATACTGATGAGGATGTCAAA3'5,CAUACUGAUGAGGAUGUCAAAUU3'3'UUGUAUGACUACUCCUACAGUUU5'microRNA-NS-ll;'UCAUCCUCAUCAUCAUCGUCC3'66,TargetNS-12siRNA-NS-12shRNA-NS-125'GTTCGAGTCTCTGAAACTCTA3'5'GUUCGAGUCUCUGAAACUCUAUU3''UUCAAGCUCAGAGACUUUGAGAU5'microRNA-NS-125,CAAAGUUUAAGAUCCUUGAAGU3,67,TargetNS-13siRNA-NS-13shRNA-NS-135,TTCGCTTGGAGAAGCAGTAAT3'5,UUCGCUUGGAGAAGCAGUAAUUU3,3,UUAAGCGAACCUCUUCGUCAUUA5'microRNA-NS-13;,UGGAGAAGCAGGGUACGUGCA3'权利要求1.一种喷雾剂,其特征在于,含有根据病毒基因组高保守序列设计的小分子干扰核糖核酸。2、如权利要求l所述的喷雾剂,其特征在于所述的病毒为口蹄疫病毒或流感病毒。3、如权利要求l所述的喷雾剂,其特征在于所述的小分子干扰核糖核酸为siRNA,shRNA和microRNA中的一种或多种,且他们的靶序列不同。4、如权利要求3所述的喷雾剂,其特征在于所述的小分子干扰核糖核酸选自表3所示的siRNA、shRNA和microRNA中的一种或多种,且他们的靶序列不同。5、如权利要求14任一项所述的喷雾剂,其特征在于所述小分子干扰核糖核酸被脂质体包裹。6、如权利要求14所述的喷雾剂,其特征在于所述的小分子核糖核酸含量为0.10-0.75mmo1/1。7、如权利要求6所述的喷雾剂,其特征在于所述的小分子核糖核酸含量为0.35-0.60mmol/l。8、如权利要求7所述的喷雾剂,其特征在于所述的小分子核糖核酸含量为0.50mmo1/1。9、如权利要求14所述的喷雾剂,其特征在于还包括溶液基质,所述的溶液基质的组成为3070。/。的PBS和3070。/。的脂质体。10、如权利要求9所述的喷雾剂,其中所述溶液基质的组成为50%的PBS和50y。的脂质体。全文摘要本发明提供了一种含有小分子干扰核糖核酸的喷雾剂。本发明的喷雾剂含有针对经呼吸道传播的病毒基因组的高保守序列设计的小分子干扰核糖核酸。并且本发明还将小分子干扰核糖核酸用脂质体包裹以提高其生物利用率。在病毒感染的窗口期对周边地区感染和怀疑可能感染的群体施用本发明的喷雾剂,能有效阻遏病毒的繁殖,阻断疫情的扩散或阻止其发病。等待其自生免疫抗体的产生。本发明喷雾剂的生物利用率高,副反应低,成本低,使用简单方便。文档编号A61K48/00GK101254171SQ20071011101公开日2008年9月3日申请日期2007年6月13日优先权日2006年6月13日发明者祝加贝申请人:祝加贝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1