造影剂的制作方法

文档序号:1050258阅读:373来源:国知局
专利名称:造影剂的制作方法
技术领域
本发明涉及造影剂,特别涉及经聚电解质包覆的金属氧化物造影剂颗粒,它可用于MR、X-射线、EIT和磁性研究,尤其是该金属氧化物颗粒具有超顺磁性。
已知可将造影剂用于医疗诊断技术中以加强组织间明暗对比或者有利于对体内过程的研究。该方法中造影强度根据不同的成像方式而有所不同,但在磁共振成像中,多数常用的造影剂的造影能力是由它们对组织的选择时间的影响而得到的。
MR成像的一大优点是由组织弛豫时间所表现出的显著的内部组织对比效果。最初的看法是即使不加入造影剂,利用弛豫参数也可以区分出正常组织和病变组织(见Damadian,Science 1711151-1153(1971))。然而根据由Lauterbur(见Nature 242190-191(1973))所得的第一次MR成像发现无法明确分辨出病变组织和正常组织。因此,近来更为关心的是对那些通过影响关键对比参数而增进对比效果的材料的应用。Lauterbur等人首先描述了MR造影剂在动物体中的应用(见Lauterbur等人,Frontiers of Biological Energetics,New Yook,Academic Press 1978;752页)。Carr等人在1984年描述了静脉内使用的造影剂在临床诊断中应用的可能性(见Carr等人,AJR143215-224(1984)),而且在1988年,最初的MR造影剂Gd DTPA被批准用于临床。
目前已证明将Gd DTPA及其类似物质如GdDTPA-BMA,GdHPD03A和GdDOTA用于增进中枢神经系统成像是安全有益的。由于它们的低分子量和亲水特性,这些金属螯合物可在细胞外分布并能很快被肾清除。目前,针对更特殊的器官或疾病分布,正在开发其它具有改进的药物代谢特性的造影剂。
一般说来,改进MR造影剂向靶区域的传送可有两种方法。常用的一种方法是采用顺磁性标记的天然存在或合成的分子或大分子的直接作用,这些分子具有特殊的定位和聚集特性(例如对肝胆和血管部位起作用的造影剂、卟啉)。另一方法是采用强磁性的标记,如超顺磁性颗粒,可以通过颗粒的特性或通过将它们与特殊分子靶向结合而使它们聚集在所需的部位。一般超顺磁性造影剂的诊断用靶区域/背景之比明显高于顺磁性造影剂的该比例,而且超顺磁性造影剂在较低的组织浓度下即可被监测(见Weissleder等人,Magn.Reson.Quart 855-56(1992))。
将经理想配合得到的超顺磁性制剂用作MR造影剂可以影响组织内信号的强度,从而得到较强的对比增强效果并使其具有较高的特定靶向性。颗粒造影剂的靶向可能性多依赖于给药途径和颗粒材料的理化性质,尤其是其粒度和表面特性。两种主要的施用方式是用于胃肠道研究的肠道给药,以及用于对其生理分布的血管部位和/或网状内皮系统和区域(例如肝、脾、骨髓和淋巴结)的研究而进行的非肠道给药。与常用的较大氧化铁颗粒相比,直径约小于30nm的极小氧化铁颗粒具有较长的血管内半衰期。该氧化铁颗粒除一般可使T2缩短之外,该极小颗粒还可使T1缩短从而增强血管中的信号。最近还尝试对受体配体或抗体/抗体片断进行开发。Fahlvik等人提供了应用不同超顺磁性制剂的概述,见JMRI3187-194(1993)。
迄今为止,在超顺磁性造影剂方面所开展的工作的重点主要在于优选其对比效率和生物动力学参数。而很少注意到与各组织有关的药物组合物或该颗粒制剂的安全性。
但对于非肠道给药的颗粒制剂来说,具有足够高的对比效能和生物动力学参数本身是不够的,还需克服某些问题。例如已经临床试验测试的常用的氧化铁-葡聚糖制剂表现出较低的胶体稳定性。该颗粒在使用前必须经再分散和/或稀释及过滤,并且该制剂在给药时需通过一管线过滤器缓慢输入以防止严重的毒性作用。
虽然可对颗粒进行包覆使其具有足够的稳定性,但非经肠道给药的颗粒制剂的表面积很大,并且我们发现,那些被认为是完全无毒的常用包覆材料如可储存型多糖淀粉和葡聚糖及其衍生物本身会对心血管参数、血小板减少、凝血时间和对补体系统均具有有害影响。
但我们发现,通过采用低于常用包覆浓度的某些聚电解质包覆材料如合成聚氨基酸、合成聚合物、特别是结构型多糖,可以避免或减少该颗粒造影剂的这些问题。
因此,本发明的一个方面是提供一种诊断剂,它含有复合颗粒材料,其中的颗粒包含诊断有效的、基本为水不溶性的金属氧化物结晶材料,以及聚离子包覆材料,其中所述的颗粒粒度小于300nm,所述的结晶材料的晶体大小为1-100nm,所述的结晶材料与所述的包覆材料的重量比为1000∶1至11∶1,所述的包覆材料选自天然及合成的结构型多糖、合成多氨基酸、生理上可耐受的合成聚合物及其衍生物。
多糖广泛存在于自然界中,它一般可被分为两类可贮存型多糖(如淀粉、糖元、葡聚糖及其衍生物)以及结构型多糖,如果胶和果胶片断如聚半乳糖醛酸、葡糖氨基聚糖及类肝素(例如肝素、乙酰肝素、角质素、皮肤素、软骨素和透明质酸)、纤维素,和海生多糖如藻酸盐、角叉菜胶和聚氨基葡糖及它们的衍生物。
本发明所涉及的第二类多糖包括天然及合成类型的多糖,并且包含经碎化或化学修饰的这类多糖,例如在连接点键合入金属氧化物晶体。
特别优选的聚离子多糖包覆材料是天然及合成的类肝素多糖,如肝素、软骨素(例如,软骨素-4-硫酸盐),以及海生多糖藻酸盐、角叉菜胶和聚氨基葡糖。
非优选的合成聚离子聚合物例如聚氨基酸、聚丙烯酸酯、和聚苯乙烯磺酸酯(以及在EP-A-580818中述及的其它合成聚合物)也可用作包覆材料。聚氨基酸中优选赖氨酸、谷氨酸和天冬氨酸及其酯类(例如其甲酯和乙酯)的均聚物和共聚物。
包覆材料一般应包含多个离子基,例如胺、羧基、硫酸基、磺酸基、膦酸基或磷酸基,它们彼此间隔地位于聚合物上,从而可在多个位点与金属氧化物晶体表面连接以构成总体具有净电荷(优选是负电荷)、并具有可测的Zeta电势的复合颗粒。多位连接确保得到了稳定的抗压热连接并使其具有贮存稳定性,净电荷则有助于增加该颗粒进入脉管系统以后的生物耐受性。
聚离子包覆材料的分子量一般在500-2,000,000D的范围内,特别是1000至500000、尤其是1500至250000,最优选2000至150000D。
该表面结合包覆材料仅占整个复合颗粒的一小部分,结晶材料与包覆材料的重量比优选在1000∶1至15∶1,特别是500∶1至20∶1、尤其是100∶1至25∶1,对于用肝素或软骨素包覆,最优选该重量比至少为20∶1。
一般经一步或两步包覆法来生产复合颗粒。在一步法中,在包覆材料存在下加入碱,使结晶材料在高pH值(例如高于9,优选高于11)的条件下形成沉淀,在两步法中,则先形成结晶材料再进行包覆。
因此,本发明的另一方面是提供一种生产本发明造影剂的方法,所述方法包括(i)在pH高于9的条件下,对1-100nm的诊断有效的、基本为水不溶性的金属氧化物晶体和包覆材料进行共沉淀。(ii)用包覆材料对1-100nm的诊断有效的、基本水不溶的金属氧化物晶体进行包覆。从而得到粒度低于300nm的复合颗粒,并且晶体与表面包覆材料的重量比为1000∶1至11∶1,所述的包覆材料选自天然或合成的结构类多糖及其衍生物,合成聚氨基酸以及生理可耐受的合成聚合物,总之,优选的包覆材料应是结构类多糖。
共沉淀法或沉淀后包覆法是公知的,并且在文献中已被广泛描述,如在以下文献中有所描述(见例如US-A-4795698和US-A-4452773)。
由于不是全部包覆材料能沉淀出来,因此为达到所需的包覆密度,需要采用1.5至7倍、一般是2倍过量的包覆材料(相对于100%包覆结合的需要量)。
本发明组合物中结晶材料的特性是由所要达到的功能来决定的。本发明一般适于将基本不溶性的晶体材料用于非肠道给药,然后希望其进行特定的靶向释放或者扩散于血管中,特别适于采用金属氧化物诊断造影剂,尤其是具有超顺磁性的金属氧化物。该氧化物可在EIT和磁性试验中、尤其是在MR成像过程中用作诊断造影剂。
已知有大量具有超顺磁性且晶体大小低于单域粒度的金属氧化物,并在例如US-A-4827945(Groman)、EP-A-525199(Meito Sangyo)、和EP-A-580878(BASF)中均有所描述。混合铁氧体含有一种以上的金属物质,例如由BASF出品的晶体颗粒在弛豫期内就特别有效。本发明可采用这些不同的金属氧化物,但特别优选超顺磁性氧化铁晶体,例如式(FeO)nFe2O3的化合物,其中n是0至1、典型的如铁红(γ-Fe2O3)和铁黑(Fe3O4)及其混合物。所采用的这些铁氧化物晶体一般经网状内皮系统吸收代谢,其代谢物不会释放出异常的毒性金属,该铁一般进入体内的铁储备中。
超顺磁性晶体的大小一般在2-50nm的范围内,特别是3-35nm,尤其是4-20nm。晶体/包覆材料复合颗粒可以仅含晶体,若需要,可为复合簇状晶体。在后一种情况下,复合颗粒的簇状体“核”的粒度应小于100nm。
可采用标准技术如电子显微镜、激光散射或流体色谱法,例如在下文中实施例以前的部分所讨论的方法可容易地测定出晶体、簇状体和复合颗粒的粒度。
可采用元素分析法如感应耦合等离子体分析法、例如将金属氧化物中金属的信号同与包覆材料相连的硫酸盐中的硫元素的信号相比较(或者,若不是硫酸盐,则与包覆材料中其它相似的特征分子或基团相比较)可容易地测定出金属氧化物晶体与包覆材料的重量比。相似地,也可采用重量分析法测定该比例。
包覆化合物的多离子特性可以使每个聚合物分子与晶体表面的多个位点相连。这样可以使包覆材料与晶体之间形成牢固的结合,从而可以经受对诊断剂的常规热压条件(121℃下15分钟),并且所得产品(如上所述的葡聚糖氧化铁产品)不会具有较差的胶体稳定性。
由于包覆材料的多离子特性使该复合颗粒具有净电荷,从而具有可测的非零Zeta电势。尤其当包覆材料浓度较低时,包覆材料上的净电荷会中和掉金属氧化物晶体上的电荷,还发现在等电点时,颗粒的稳定性较差,并且颗粒粒度超过1000nm时会发生聚集现象。该现象是我们所不希望的,但由于包覆水平对颗粒粒度的影响易于监测,所以可避免发生聚集现象。Zeta电势的绝对值一般至少为10mV(即≤-10mV或≥+10mV),特别优选20-100mV,尤其是30-70mV。
因此在本发明造影剂的优选实施方案中包含铁氧化物核,并且它经聚离子多糖或聚氨基酸包覆和稳定化。经包覆的铁氧化物颗粒在高温、经稀释及长时间贮存的条件下表现出良好的稳定性。与经贮存型多糖葡聚糖(或其衍生物)和淀粉包覆和稳定化的常规铁氧化物制剂相比,新造影剂具有较低的毒性和较高的生物适应性。
要制得具有特殊化学组成和结构的铁氧化物制剂,需要仔细控制制备条件。在现有技术中记述了铁氧化物胶体悬浮液(亚铁溶液)的多种工业用途,如用作染料和涂料成分及用于机电装置中。存在多种合成工业用铁氧化物及使其稳定的方法,但它们均不适于用作药用铁氧化物,主要是因为它们的非水特性和/或由于其中所使用的包覆材料和表面活性剂的毒性造成的。
用于标记和区分生物分子和细胞的超顺磁性铁氧化物造影剂的最常用合成方法,最初由Molday描述(见Molday和Mackinzie,J.Immunol.Meth52353-367(1982)和US-A-4452773(Molday))。这种被称作Molday法或一步共沉淀法的方法是根据铁氧化物在含有水溶性多糖(优选葡聚糖)的碱溶液中会发生沉淀作用的原理而产生的。该胶体粒度的复合颗粒含有一种或多种包在葡聚糖中的或用葡聚糖包覆的铁氧化物晶体。晶体一般为铁黑或铁黑/铁红结构,粒度为3-30nm。而整个颗粒的直径可由低至约10nm到高为数百nm。经Molday法制备的铁氧化物制剂一般是非均匀的,并且在这些制剂中会发现多种粒度的颗粒部分。可采用离心、过滤或胶体或滤方法以将颗粒分离到更均一的粒度范围内(见Weissleder等人,Radiology 175489-493(1990))。
经实验测定,常用于肝脾造影剂的包覆铁氧化物颗粒的直径一般为50-1000nm。分离的较小颗粒在血液中的半衰期增长并且通过毛细血管壁的能力增加。这些制剂的用途很多,如用于淋巴结和骨髓的成像、用于心脏/血管部位的成像和自动靶向传递。含葡聚糖的制剂较不稳定,从而具有明显的不利作用。例如,不能将目前正用于临床试验的制剂配制成备用产品。在使用前才对剂量单元进行稀释,并经管线内过滤器缓慢注入以减轻不利作用(如血压抑制、下背疼痛和血液变化)的发生频率和严重程度。
我们发现,与常规颗粒相比,本发明中的颗粒具有改进的稳定性和毒性。可采用例如普通的两步法合成本发明中所采用的颗粒,其中第1步是金属氧化物颗粒从碱溶液中沉淀出来,第2步是采用具有聚电解质特性的聚合物对晶体包覆,或者也可通过金属氧化物晶体和聚电解质包覆聚合物的共沉淀作用合成该颗粒。
当向含可溶性金属盐的水溶液中加入碱时,金属氧化物一般会从该溶液中沉淀出来。向含铁盐混合物的水溶液中快速加入碱至pH值10以上,同时经剧烈搅拌或经超声波振荡,则超顺磁性铁氧化物晶体会从该水溶液中沉淀出来。可采用多种铁盐如FeCl2·nH2O、FeCl3·nH2O、柠檬酸铁(III)、葡糖酸铁(II)、FeSO4·nH2O、Fe2(SO4)3、草酸铁(II)、Fe(NO3)3、乙酰丙酮铁(II)、乙二胺硫酸铁(II)、反丁烯二酸铁(II)、磷酸铁(III)、焦磷酸铁(III)、柠檬酸铁(III)铵、硫酸铁(II)铵、硫酸铁(III)铵和草酸铁(II)铵。二价铁和三价铁之比优选在1∶5至5∶1。所沉淀出的铁氧化物晶体可由下式表示(FeO)x·Fe2O3其中x为0≤x≤1,x值较低时代表铁红γ-Fe2O3,x值较高时代表铁黑Fe3O4。
所采用的碱选自多种无机或有机强碱,如NaOH、NH4OH、LiOH、KOH、三乙胺和胍。金属和碱的反离子一般应是生理可接受的,从而可以将由需被清除的沉淀晶体所产生的毒副作用减至最小。
可以在水、水和有机溶剂混合物中或在粘性介质中进行铁氧化物的沉淀或铁氧化物和聚合物的共沉淀。例如,可采用的有机溶剂有甲醇、乙醇、丙酮、醚和己烷。粘性介质中可含有多糖或多胺的水凝胶、三碘化芳香化合物、甘油或聚乙二醇、和聚丙二醇。优选在不含非生理可接受盐混溶剂的水溶液中重复进行沉淀,从而可使后生产中的纯化过程减少。
基于对稳定性和毒性方面的观点,作为新的铁氧化物制剂的组分之一的包覆材料具有多电解质结构是有利的。聚电解质包括那些可通过多个连接点与铁氧化物表面牢固结合的聚阴离子及聚阳离子化合物或其混合物。
包覆材料可按它们所带电荷和所包含的官能团来分类,如带负电荷并具有含有三价磷原子或硫原子或羟基官能团的聚合物,和带正电荷并具有含有氮原子官能团的聚合物。带负电荷的聚合物的实例包括某些改性羟基纤维素、藻酸盐、角叉菜胶、聚半乳糖醛酸盐、肝素和类肝素化合物如软骨素-4-硫酸盐、硫酸皮肤素、硫酸角质素和透明质酸盐,合成聚合物如聚苯乙烯磺酸酯以及聚氨基酸如聚谷氨酸和聚天冬氨酸。带正电荷的聚合物包括聚氨基葡糖和多熔素。
如上所述,当主要考虑颗粒的毒性和稳定性时,该聚电解质聚合物的取代程度和电荷密度不应过低。因此该聚合物应含有多个(一个以上)官能团以确保与金属氧化物之间存在多个连接点,从而使颗粒表面带电。
超顺磁性铁氧化物核的直径一般为约4nm至约100nm。较小的核仅含有一个子域的超顺磁性晶体,而较大的核会含有簇状晶体。可采用少量低分子量或高分子量的聚合物对小直径的单晶体核进行稳定化,而对于簇状晶体,由于其密度和每个颗粒所带的高磁性,需要采用大量聚合物对其包覆和稳定化。根据制备条件和聚合物的分子量、结构和数量,复合颗粒的直径(包括铁氧化物核和聚合物包覆层)一般应为约5nm至300nm。
含超顺磁性铁氧化物晶体的颗粒的弛豫性将随核和包覆颗粒的尺寸和组分而有所不同。在0.5T下,T1弛豫性(r1)可低至5,高至200,T2弛豫性(r2)可为5至500(所给的弛豫性为S-1mM-1Fe)。r2/r1之比可为1至100,优选2至10。小单晶体颗粒的r2/r1之比较低,而大颗粒和多晶颗粒的该比例较高。铁氧化物晶体具有超顺磁性时,颗粒的磁化强度基本与颗粒本身和晶体大小无关。在1T下,磁化强度约为20-100,优选30-90emu/g铁氧化物。
另一方面,本发明提供了诊断用的组合物,它含有本发明的诊断剂和至少一种生理上可接受的载体或赋形剂,例如,注射用水。
本发明的组合物可为任何常规的药物剂型,如混悬剂、分散剂、粉剂等,并且可含有水载体(如注射用水)和/或调节渗透性、pH、粘度和稳定性的组分。该组合物最好是混悬剂,该混悬剂应与血液是等渗的和等氢离子的。例如,可通过加入氯化钠、低分子量糖如葡萄糖(右旋糖)、乳糖、麦芽糖,或甘露醇或聚合物包覆材料片可溶性部分或它们的混合物来制备等渗混悬剂。可通过加入酸如盐酸来得到等氢离子混悬剂,如还要轻度调节pH,则可加入碱如氢氧化钠。也可使用缓冲剂,如磷酸盐、柠檬酸盐、乙酸盐、硼酸盐、酒石酸盐和葡糖酸盐缓冲剂。可通过加入抗氧剂如抗坏血酸或焦硫酸盐以及螯合剂如柠檬酸、EDTA钠盐和EDTA钙盐钠盐来改善颗粒混悬剂的化学稳定性。也可加入赋形剂来改善制剂的物理稳定性。非肠道用混悬剂中最常用的赋形剂是表面活性剂如聚山梨酸酯、卵磷脂或脱水山梨醇酯,粘度改进剂如甘油、丙二醇和聚乙二醇(macrogols),或者浊点改进剂,优选非离子表面活性剂。
本发明的组合物适宜含有诊断有效金属浓度的金属氧化物,该浓度一般为0.1至250 mg Fe/ml,优选1至100mg Fe/ml,特别优选5至75mg Fe/ml。
本发明还提供了一种可增强对人体或非人类躯体(优选是哺乳动物)成像效果的方法,所述方法包括给予所述躯体以本发明的造影剂混悬液,优选经非肠道给药,特别优选经静脉内给药,从而可在该造影剂所分散的躯体内的至少一部分经例如MR、ET或磁性测定成像。
本发明方法中所采用的剂量应为成像方式所需采用的造影有效剂量。一般该剂量为1至500μmol Fe/kg,优选2至250μmol Fe/kg,且特别优选5至50μmol Fe/kg。
可采用本领域中常用的剂量和浓度。
已知许多按照现有技术制备的铁氧化物制剂在静脉注射时都会产生显著的有害作用。最常见的是全身血压抑制和急性血小板减少。我们发现,这些副作用是对由颗粒诱发的补体系统活化的生理和血液反应。常用的铁氧化物颗粒会强力活化补体级联,这时本发明的复合颗粒对循环血小板的数目不产生影响或影响很小,同时常用制剂会造成急性显著的和暂时性的血小板减少症。碳水化合物类(如未改性葡聚糖和某些改性的葡聚糖)的外表面是类似于许多革兰氏阳性菌和革兰氏阴性菌菌株的有效的补体活化剂。由于亲核表面基团(如OH)可以与C36补体蛋白形成共价键,所以这类外表面可以活化其它旁路(见Immunology(第二版),Gower Medical出版,New York,1989;13.3)。在发生脓毒症的情况下,补体系统的活化是有益的,因为补体系统是人体对损伤(如感染物质侵入)所作出的反应的重要部分。但在注射了颗粒造影剂后,补体的活化是有害的而不是有益的。
意想不到的是,本发明中的包覆颗粒对补体系统或与补体系统有关的参数(如血压和血小板数)不起作用。所选择的包覆材料在与常用颗粒相同条件下不会使颗粒表面引发补体活化。同样,与常规颗粒相比,用于稳定该颗粒的少量聚电解质聚合物也具有抑制补体活化的作用,这是由于调节素作用的变化(调节素程度和类型的变化)引起的。
将参考以下非限定性的实施例进一步说明本发明。
在以下实施例中,铁氧化物颗粒被消化后,经ICP分析测定出铁浓度。采用装配有Orion Sureflow Ross pH电极的Beckmanφ10 pH测试仪测定pH值。可采用流体色谱法(HDC)(见Small and Langhorst,Analytical Chem.54892A-898A(1982))或采用Malvern Zetasizer 4经激光散射法(PCS)测定粒度分布。也可通过Malvern Zetasizer 4来测定颗粒表面电荷,通过Zeta-电势和电泳淌度来表示。在37℃和0.47T(Minispec PC-20)条件下,采用含水样品测定T1和T2的弛豫性r1和r2。T1采用IR脉冲结果,T2采用CPMG结果(TE=4ms)。室温下,在磁场为+1至-1T条件下,采用振动样品磁性仪(Molspin)得到磁化强度曲线。参考实施例1将平均分子量为9000D的葡聚糖(5g,Sigma出品)溶于水(10ml)中。在60℃温度下,将FeCl3·6H2O(1.35g)和FeCl2·4H2O(0.81g)溶于该糖溶液中,然后在超声波振荡下将该混合物在0.18MNaOH(100ml)中缓慢沉淀。继续经10分钟超声波振荡,然后在4000rpm转速下离心5分钟。收集上清液,并用0.9%NaCl(5×1L)进行部分渗析。经HDC测定,葡聚糖颗粒具有多种粒度分布,有小于12nm的部分,也有大于300nm的部分。参考实施例2(根据US-A-5314679的实施例7.3)向FeCl3·6H2O(1.17g)和FeCl2·4H2O(0.53g)的水溶液(8.5ml)中加入1M碳酸钠,使pH值达到2.3,然后加入平均分子量为9000D(5.00g)的葡聚糖。将溶液加热至60-70℃,然后冷却到约40℃。加入7.5%NH4OH至pH值约为9.5,然后将混悬液加热至95℃15分钟。用水(5×1L)对该分散液进行渗析(截止到15000道尔顿)。参考实施例3(根据US-A-54770183的实施例6.1)经3分钟向50ml 7.5%NH4OH中加入50ml含0.28M FeCl3、0.16M FeCl2和6.25g平均分子量为70000D(Pharmacia,Uppsala,Sweden)的溶液。搅拌该混悬液5分钟,然后在700℃下加热30分钟。在5000rpm转速下离心15分钟,上清液用水(5×1L)渗析。参考实施例4将平均分子量为70000D的淀粉(3g,Reppe Glucose,Sweden)溶于水(10ml)中。在60℃下,将FeCl3·6H2O(2.7g)和FeCl2·4H2O(4.5g)溶于该糖溶液中,然后在60℃、超声波振荡下将该混合物在1.2M NaOH(50ml)中缓慢沉淀。继续经10分钟超声波振荡,然后在5000rpm转速下离心5分钟。收集上清液,并用0.9%NaCl水溶液渗析。由磁化强度曲线可知该淀粉颗粒为超顺磁性颗粒。经PCS测定粒度为450nm。测定出铁黑晶体大小约为10nm。参考实施例5a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(30ml)的平均分子量为65000D的羧基葡聚糖(30mg,Pharmacia Ab,Uppsala,Sweden)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测定出羧基葡聚糖颗粒的平均直径为88nm。测出的Zeta电势为-26mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量为65000D的羧基葡聚糖(50mg,Pharmacia Ab,Uppsala,Sweden)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测定出羧基葡聚糖颗粒的平均直径为74nm。测出的Zeta电势为-32mV。r1为35.2(mM.秒)-1,r2为358(mM.秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的分子量为3000-4000的羧基葡聚糖(15mg)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液。参考实施例6a)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(85ml)稀释,将溶于水(5ml)的平均分子量为74000D的磷酸葡聚糖(50mg,Phamacia Ab,Uppsala,Sweden)加入该分散体中。将该分散体经超声波振荡,离心并滤出上清液(0.22μm过滤器)。磁化强度曲线表明,该磷酸葡聚糖颗粒为超顺磁性颗粒。经PCS测定其粒度为74nm。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量为71800D的磷酸葡聚糖(50mg,TdB Consultancy AS,Uppsala,Sweden)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测定出该磷酸葡聚糖颗粒的平均直径为48nm。测定出的Zeta电势为-51mV。r1为37(mM.秒)-1,r2为342(mM.秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量为71800D的磷酸葡聚糖(15mg,TdB Consultancy AB,Uppsala,Sweden)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测定出该磷酸葡聚糖颗粒的平均直径为48nm。测定出的Zeta电势为-36mV。参考实施例7将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水的平均分子量为500000D的硫酸葡聚糖(30mg,Sigma,D-6001)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明硫酸葡聚糖颗粒为超顺磁性颗粒,经HDC测定出其平均直径为42nm。测定出的Zeta电势为-57mV。56%硫酸葡聚糖被颗粒表面吸附。r1弛豫性为37.7(mM·秒)-1,r2为307(mM·秒)-1。实施例1a)在剧烈搅拌条件下,迅速将NH4OH(28-30%,72ml)加入FeCl2·4H2O(12.50g,6.29×10-2mol)和FeCl3·6H2O(33.99g,1.26×10-1mol)的水溶液(500ml)中至pH达10,铁黑颗粒从其中沉淀下来。在磁场作用下收集该颗粒,用水洗涤至pH6-7。将这些颗粒分散于约200ml水中。除滗析和再分散外,该反应混合物应在氮气条件下保存。用HCl(pH 3.5)稳定裸露的铁黑颗粒,其平均流体力学直径为97nm。测定出的Zeta电势为+36mV。r1为27.8(mM·秒)-1,r2为324(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(70ml)稀释,向其中加入肝素(2ml,Heparin 5000 1U/ml,Prod.noF1 NA,Nycomed Pharma,Oslo,Norway)。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明肝素颗粒为超顺磁性颗粒,且经HDC测定出其平均直径为48nm。经电子显微镜测定出铁黑晶体的大小约为10nm。测定出的Zeta电势为-61mV。54%的肝素被颗粒表面吸附。相当于10μg硫/mg铁。r1为40.5(mM·秒)-1,r2为304(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(90ml)稀释,向其中加入分子量为4000-6000D的低分子量肝素(0.8ml Fragmin 10000 1U/ml,Kabi Pharmacia AB,Sweden)。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,并滤出上清液(0.22μm过滤器)。磁化强度曲线表明肝素颗粒为超顺磁性颗粒。测定出饱和磁化强度为78emu/g铁氧化物。经PCS测出粒度为85nm。测出的Zeta电势为-40mV。16%所加入的聚电解质被颗粒表面吸附。d)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(70ml)稀释,向其中加入肝素(1ml,Heparin 5000 IU/ml,Prod.no.F1 NA,Nycomed Pharma,Oslo,Norway)。将该分散体经超声波振荡,在4000rpm的转速下离心13分钟并滤出上清液(0.22μm过滤器)。磁化强度曲线表明该肝素颗粒为超顺磁性颗粒,经PCS测出其平均直径为64nm。69%的肝素被颗粒表面吸附,相当于7μg硫/mg铁。r1为38(mM·秒)-1,r2为273(mM·秒)-1。实施例2将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(5ml)的硫酸皮肤素(36mg,Sigma C-2413)。将该分散体经超声波振荡,在5000rpm转速下离心13分钟并滤出上清液(0.22μm过滤器)。经HDC测出硫酸皮肤素的直径为49nm。40%的硫酸皮肤素被颗粒表面吸附。测出的Zeta电势为-58mV。实施例3将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(6ml)的透明质酸(60mg,Sigma H-4015)。将该分散体经超声波振荡,在5000rpm转速下离心13分钟并滤出上清液(0.22μm过滤器)。磁化强度曲线表明透明质酸颗粒为超顺磁性颗粒,经HDC测出其平均直径为123nm。测出的Zeta电势为-55mV。r1为33.7(mM·秒)-1,r2为318(mM·秒)-1。
实施例4将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(5ml)的软骨素-4-硫酸盐(60mg,Sigma C-8529)。将该分散体经超声波振荡,在5000rpm转速下离心13分钟并滤出上清液(0.22μm过滤器)。磁化强度曲线表明软骨素-4-硫酸盐颗粒为超顺磁性颗粒,经HDC测出其平均直径为54nm。测出的Zeta电势为-52mV。29%的软骨素-4-硫酸盐被颗粒表面吸附。r1为40.4(mM·秒)-1,r2为314(mM·秒)-1。实施例5在试管中用人体血浆培养参考实施例7(硫酸葡聚糖铁氧化物)和实施例1b和d(肝素铁氧化物)的铁氧化物组合物,其浓度相当于1mgFe/kg的剂量,并采用CephotestTM(Nycomed Pharma AS)来研究它们对凝聚参数-凝血因子III部分活化时间(APTT)的作用。实施例1b和d的肝素铁氧化物组合物分别以4.5和2.5的系数以肝素剂量依赖方式延长了APTT。这清楚地表明将所采用的包覆密度减至最低的客观需要。参考实施例7的组合物以2.7为系数延长了APTT。实施例6给鼠(n=3)静脉注射剂量为1mg Fe/kg(只对实施例1b)和2mgFe/kg的实施例1b和d的铁氧化物组合物(肝素铁氧化物),并在注射前和注射后10、30和60分钟时抽取血样。采用ChepotestTM(NycomedPharma AS)体外研究该组合物对凝聚参数-凝血因子III部分活化时间(APTT)的作用。该组合物以剂量依赖方式和时间依赖方式延长了APTT。在注射过后10分钟和30分钟,2mg Fe/kg的实施例1b和d的组合物在凝血因子分别以4和1.5的系数延长了APTT。在注射后10分钟,1mg Fe/kg的实施例1b的组合物以1.3的系数延长了APTT。实施例7将实施例1a中制备的铁黑颗粒分散体(相当于0.1g铁黑颗粒)用水(15ml)稀释,向其中加入溶于水的硫酸类肝素(20mg,Sigma H-7641)。将该分散体经超声波振荡和离心。收集上清液。实施例8将实施例1a中制备的铁黑颗粒分散体(相当于0.1g铁黑颗粒)用水(15ml)稀释,向其中加入溶于水的硫酸角质素(15mg,Sigma K-3001)。将该分散体经超声波振荡和离心。收集上清液。实施例9a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(3ml)的λ-角叉菜胶(30mg,Sigma C-3889)。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,并过滤(0.22μm过滤器)。经HDC测出该λ-角叉菜胶颗粒的平均直径为53nm。测出的Zeta电势为-56mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(5ml)的λ-角叉菜胶(50mg,Sigma C-3889)。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,并过滤(0.22μm过滤器)。经HDC测出该λ-角叉菜胶颗粒的平均直径为61nm。测出的Zeta电势为-61mV。r1为38.6(mM·秒)-1,r2为309(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(1.5ml)的λ-角叉菜胶(15mg,Sigma C-3889)。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,并过滤(0.22μm过滤器)。经HDC测出该λ-角叉菜胶颗粒的平均直径为52nm。测出的Zeta电势为-50mV。实施例10a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(3ml)的ι(iota)-角叉菜胶(30mg,Fluka Prod 22045)。将该分散体经超声波振荡,在5000rpm下离心13分钟,并过滤(0.22μm过滤器)。经HDC测定出该ι-角叉菜胶颗粒的平均直径为63nm。测出的Zeta电势为-47mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(1.5ml)的ι-角叉菜胶(15mg,Fluka 22045)。将该分散体经超声波振荡,在5000rpm下离心13分钟,并过滤(0.22μm过滤器)。经HDC测定出该ι-角叉菜胶颗粒的平均直径为54nm。测出的Zeta电势为-39mV。实施例11a)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(80ml)稀释,将溶于水(10ml)的平均分子量约为180000D的藻酸盐Protanal LF 10/60(50mg,Pronova,Drammen Norway)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该藻酸盐颗粒的平均直径为57nm。测出的Zeta电势为-63mV。r1为39.9(mM·秒)-1,r2为305(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(80ml)稀释,将溶于水(10ml)的平均分子量约为325000D的藻酸盐Protanal LF 60(25mg,Pronova,Drammen Norway)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该藻酸盐颗粒的平均直径为67nm。测出的Zeta电势为-58mV。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.5g铁黑颗粒)用水(50ml)稀释,将溶于水(15ml)的平均分子量约为380000D的藻酸盐Protanal LFR 5/60(15mg,Pronova,Drammen Norway)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出的该藻酸盐颗粒的平均直径为62nm。测出的Zeta电势为-53mV。实施例12a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(3ml)的羧基纤维素钠(30mg),将该分散体经超声波振荡,在5000rpm转速下离心13分钟,并滤出上清液(0.22μm过滤器)。经HDC测出该羧基纤维素钠颗粒的平均直径为56nm。测出的Zeta电势为-57mV。r1为40.1(mV·秒)-1,r2为303(mV·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,向其中加入溶于水(1.5ml)的羧基纤维素钠(15mg),将该分散体经超声波振荡,在5000rpm转速下离心13分钟,并滤出上清液(0.22μm过滤器)。经HDC测出该羧基纤维素钠颗粒的平均直径为65nm。测出的Zeta电势为-53mV。实施例13a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(4.5ml)的平均分子量约为2000000D的聚氨基葡糖(30mg,Fluka 22743)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,并滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为64nm。测出的Zeta电势为+48mV。r1为35.1(mM·秒)-1,r2为281(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(7.5ml)的平均分子量约为2000000D的聚氨基葡糖(50mg,Fluka 22743)加入该分散体中。将该分散体经超声波振荡,在5000rpm下离心13分钟并滤出清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为64nm。测出的Zeta电势为+47mV。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(7.5ml)的平均分子量约为2000000D的聚氨基葡糖(15mg,Fluka 22743)加入该分散体中。将该分散体经超声波振荡,在5000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。磁化曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为64nm。测出的Zeta电势为+47mV。实施例14a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(7.5ml)的平均分子量约为750000D的聚氨基葡糖(50mg,Fluka 22742)加入该分散体中。将该分散体经超声波振荡,在5000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为62nm。测出的Zeta电势为+48mV。r1为33.4(mM·秒)-1,r2为279(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(7.5ml)的平均分子量约为750000D的聚氨基葡糖(15mg,Fluka 22742)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,并滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖为超顺磁性颗粒。经PCS测出其粒度为64nm。测出的Zeta电势为+49mV。实施例15a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(4.5ml)的平均分子量约为70000D的聚氨基葡糖(30mg,Fluka 22742)加入该分散体中。将该分散体经超声波振荡,在5000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为62nm。测出的Zeta电势为+49mV。r1为34.3(mM·秒)-1,r2为327(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于1%乙酸(2.25ml)的平均分子量约为70000D的聚氨基葡糖(15mg,Fluka 22742)加入该分散体中。将该分散体经超声波振荡,在5000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚氨基葡糖颗粒为超顺磁性颗粒。经PCS测出其粒度为64nm。测出的Zeta电势为+48mV。实施例16a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的聚(苯乙烯-4-磺酸钠)(30mg,Janssen 22.227.14)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚(苯乙烯-4-磺酸钠)颗粒的平均直径为43nm。测出的Zeta电势为-53mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的聚(苯乙烯-4-磺酸钠)(15mg,Janssen 22.227.14)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚(苯乙烯-4-磺酸钠)颗粒的平均直径为36nm。测出的Zeta电势为-49mV。实施例17a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为2000-15000D的聚L-谷氨酸(30mg,Sigma,p-4636)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚-L-谷氨酸颗粒为超顺磁颗粒并经HDC测出其颗粒的平均直径为37nm。测出的Zeta电势为-68mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为2000-15000D的聚L-谷氨酸(50mg,Sigma,P-4636)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为38nm。测出的Zeta电势为-66mV。r1为40.4(mM·秒)-1,r2为281(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为2000-15000D的聚-L-谷氨酸(15mg,Sigma,P-4636)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为38nm。测出的Zeta电势为-65mV。实施例18a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(30mg,Sigma,P-4761)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为37nm。测出的Zeta电势为-66mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(50mg,Sigma,P4761)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为36nm。测出的Zeta电势为-66mV。r1为41.7(mM·秒)-1,r2为286(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(15mg,Sigma,P4761)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为36nm。测出的Zeta电势为-63mV。实施例19a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为50000-100000D的聚-L-谷氨酸(30mg,Sigma,P-4886)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚-L-谷氨酸颗粒为超顺磁性颗粒。经HDC测出其平均直径为40nm。测出的Zeta电势为-70mV。r1为39.6(mM·秒)-1,r2为289(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为50000-100000D的聚-L-谷氨酸(15mg,Sigma,P-4886)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为39nm。测出的Zeta电势为-66mV。实施例20a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(30mg,Sigma,P-6762)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为42nm。测出的Zeta电势为-65mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(50mg,Sigma,P6762)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为40nm。测出的Zeta电势为-67mV。r1为40.8(mM·秒)-1,r2为332(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为15000-50000D的聚-L-谷氨酸(15mg,Sigma,P-6762)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-谷氨酸颗粒的平均直径为44nm。测出的Zeta电势为-66mV。实施例21a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为5000-15000D的聚-L-天冬氨酸(30mg,Sigma,P5387)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-天冬氨酸颗粒的平均直径为38nm。测出的Zeta电势为-67mV。r1为41.1(mM·秒)-1,r2为303(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为5000-15000D的聚-L-天冬氨酸(50mg,Sigma,P5387)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,并过滤(0.22μm过滤器)。经HDC测出该聚-L-天冬氨酸颗粒的平均直径为37nm。测出的Zeta电势为-70mV。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为5000-15000D的聚-L-天冬氨酸(15mg,Sigma,P5387)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚-L-天冬氨酸颗粒的平均直径为37nm。测出的Zeta电势为-65mV。实施例22a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为2000D的聚丙烯酸(30mg,Aldrich 32,366-7)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚丙烯酸颗粒的平均直径为50nm。测出的Zeta电势为-36mV。r1为29.1(mM·秒)-1,r2为323(mM·秒)-1b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为2000D的聚丙烯酸(50mg,Aldrich 32,366-7)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚丙烯酸颗粒的平均直径为57nm。测出的Zeta电势为-29mV。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为90000D的聚丙烯酸(30mg,Aldrich 19,205-8)加入该分散体中,将该分散体经超声波振荡,离心并滤出上清液。实施例23a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为25000-50000D的聚半乳糖醛酸(30mg,Fluka 8 1325)加入该分散体中,并滴加入1M NaOH。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.45μm过滤器)。经HDC测出该聚半乳糖醛酸颗粒的平均直径为55nm。测出的Zeta电势为-60mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于加有几滴1M NaOH的水(1.5ml)的平均分子量约为25000-50000D的聚半乳糖醛酸(15mg,Fluka 81325)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.45μm过滤器)。经HDC测出该聚半乳糖醛酸颗粒的平均直径为61nm。测出的Zeta电势为-55mV。实施例24a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为1000-4000D的聚-L-赖氨酸(30mg,Sigma P-0879)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.45μm过滤器)。经PCS测出该聚-L-赖氨酸颗粒的平均直径为102nm。测出的Zeta电势为+47mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为1000-4000D的聚-L-赖氨酸(15mg,Sigma P-0879)加入该分散体中。将该分散体经超声波振荡,在4000rpm下离心13分钟,滤出上清液(0.45μm过滤器)。经PCS测出该聚-L-赖氨酸颗粒的平均直径为108nm。测出的Zeta电势为+46mV。实施例25a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为15000-30000的聚-L-赖氨酸(50mg,Sigma P-7890)加入该分散体中。将该分散体经超声波振荡,在4000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚-L-赖氨酸颗粒为超顺磁性颗粒。经PCS测出温水粒度为78nm。测出的Zeta电势为+56mV。r1为38.3(mM·秒)-1,r2为295(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为15000-30000的聚-L-赖氨酸(15mg,Sigma P-7890)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经PCS测出该聚-L-赖氨酸颗粒的平均直径为89nm。测出的Zeta电势为+57mV。实施例26a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为70000-150000D的聚-L-赖氨酸(30mg,Sigma P-1274)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经PCS测出该藻酸盐颗粒的平均直径为94nm。测出的Zeta电势为+57mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5ml)的平均分子量约为70000-150000D的聚-L-赖氨酸(50mg,Sigma P-1274)加入该分散体中。将该分散体经超声波振荡,在4000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经PCS测出该藻酸盐颗粒的平均直径为86nm。测出的Zeta电势为+62mV。r1为36.9(mM·秒)-1,r2为294(mM·秒)-1。c)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为70000-150000D的聚-L-赖氨酸(15mg,Sigma P1274)加入该分散体中。将该分散体经超声波振荡,在4000rpm下离心13分钟,滤出上清液(0.22μm过滤器)。经PCS测出其粒度为96nm。测出的Zeta电势为+61mV。实施例27a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(3ml)的平均分子量约为5000-15000D的1∶1聚(天冬氨酸钠、谷氨酸钠)(30mg,Sigma P1408)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。磁化强度曲线表明该聚(天冬氨酸钠、谷氨酸钠)颗粒为超顺磁性颗粒。经HDC测出其粒度为38nm。测出的Zeta电势为-58mV。r1为40.4(mM·秒)-1,r2为277(mM·秒)-1。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(1.5ml)的平均分子量约为5000-15000D的1∶1聚(天冬氨酸钠、谷氨酸钠)(15mg,Sigma P1408)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚(天冬氨酸钠、谷氨酸钠)颗粒的平均直径为40nm。测出的Zeta电势为-60mV。实施例28a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于乙醇(3ml)的平均分子量为70000-150000D的4∶1聚(谷氨酸、谷氨酸乙酯)(30mg,Sigma P4910)加入该分散体中,并滴加几滴HCl。将该分散体经超声波振荡和离心,并收集上清液。实施例29a)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(5.7ml)的平均分子量约为150000-300000D的1∶4聚(谷氨酸、赖氨酸)(30mg,Sigma P0650)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚(谷氨酸、赖氨酸)颗粒的平均直径为79nm。测出的Zeta电势为+65mV。b)将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水(9.5ml)的平均分子量约为150000-300000D的1∶4聚(谷氨酸、赖氨酸)(50mg,Sigma P0650)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟,滤出上清液(0.22μm过滤器)。经HDC测出该聚(谷氨酸、赖氨酸)颗粒的平均直径为77nm。测出的Zeta电势为+63mV。r1为35.5(mM·秒)-1,r2为255(mM·秒)-1。实施例30将实施例1a中制备的铁黑颗粒分散体(相当于0.3g铁黑颗粒)用水(50ml)稀释,将溶于水的dendrimer(根据US-A-4507466(The DowChemical Corporation)制备)(30mg)加入该分散体中。将该分散体经超声波振荡,在5000rpm转速下离心13分钟并滤出上清液。稳定性实施例31通过在121℃下热压15分钟来测定下列铁氧化物组合物的稳定性参考实施例5b和6b、实施例1a、1b、2、3、4、9a、10a、11a、b和c、12a、13a、b和c、14b、15a、16a、17a和b、18b、19a、20a、21b、22a、23a、25a、26a、27b和29a。
实施例1a的未包覆铁氧化物颗粒在实验前应用HCl分散。其它组合物则不必处理。在热压前后都应对该组合物进行密切观测,之后一天和一周后也应进行观测。经热压后,实施例1a的样品完全离析。其它组合物则不被过热条件影响,并且在热压前和热压后的全部观测时间点均呈均一粒度分布。实施例32对本发明的聚电解质的典型实施例-聚(苯乙烯-4-磺酸钠)(PSSNa)的吸收情况进行了研究。测定吸收等温线、电泳淌度和粒度,对聚合物浓度作函数曲线。如实施例16所述,采用PSSNa对实施例1的未包覆铁氧化物颗粒进行包覆,但分散过程未经超声波振荡。PSSNa和铁氧化物的用量之比为9×10-3/2.5。

图1所示为PSSNa在铁氧化物晶体上的吸收等温线。
经PCS测定出来包覆的铁氧化物颗粒的粒度为130±5nm。采用5.2g/l的颗粒密度,可通过下式估算出颗粒的表面积表面积(m2/ml)=m.A/ρ.V其中m是每毫升颗粒质量,ρ是颗粒密度,A和V分别是单个颗粒的面积和体积。估算出的悬浮液中的表面积是9.5×10-3m2/ml。最大吸收量为26mg/m2,指的是被吸收的聚合物形成的多层,或者是在表面形成的聚合物包线/包环。
图2和图3所示的是颗粒电泳淌度和其流体力学直径对聚合物浓度所作的函数曲线。发现未包覆的铁氧化物的电泳淌度为4.2±0.6μm.cm/v.s,并且随聚合物浓度的增高而迅速降低。经PCS测定,在高聚合物浓度时,电泳淌度为-4μm.cm/v.s,粒度稳定在230±20nm。在下表1中对图1-3的结果进行说明。
图4所示的为未包覆的铁氧化物颗粒和PSSNa包覆颗粒的电泳淌度测定结果对该混悬液pH所作的函数曲线。未包覆的铁氧化物表面具有典型的两性特性,在低pH时具有高电泳淌度正值,在pH较高时就变为不断增大的电泳淌度负值。等电点位于pH为7处。当用PSSNa包覆时,颗粒表面的特性彻底变为恒定酸性。该表面即使在低pH时也具有较高的电泳淌度负值,在高pH时,表面会具有更高的负值。图4的结果与图1至3的结果相结合表明在该聚合物浓度下,采用酸性聚合物分子可以完全包覆未包覆氧化物的表面。表1不同的PSSNa浓度对铁氧化物胶体混悬液的影响聚合物浓度 观测结果<0.01mg/ml 高电泳淌度正值,混悬液稳定,0-0.5mg聚合物/m20.03-0.10mg/ml 淌度接近0,混悬液不稳定,1-5mg聚合物/m20.3mg/ml以上 高电泳淌度负值,混悬液稳定10-20mg聚合物/m2图1胶体铁氧化物对PSSNa的吸收情况。吸收量(mg/ml)为PSSNa浓度(mg/ml)的函数曲线。■和◆是经离心的部分,▲是经过滤的部分。图2胶体铁氧化物的电泳淌度(μm.cm/V.s)对PSSNa浓度(mg/ml)所作的函数曲线。图3胶体铁氧化物的粒度(nm)对PSSNa浓度(mg/ml)所作的函数曲线。图4纯胶体铁氧化物(X)的电泳淌度(μm.cm/V.s)和经PSSNa包覆的胶体铁氧化物(X)的电泳淌度(μm.cm/V.s)对pH所作的函数曲线。实施例33研究了铁氧化物颗粒对典型的聚电解质-肝素的吸收情况。测定铁氧化物的电泳淌度和粒度,对肝素浓度作函数曲线。用HCl稳定实施例1a的裸露颗粒,如实施例1b所示用肝素包覆,但采用旋转搅拌30秒钟而不是超声波振荡。图5和6所示的为电泳淌度和粒度对肝素浓度所作的曲线。
电泳淌度和粒度对肝素用量所作的曲线表明颗粒表面对聚合物的吸收情况。在带正电荷的铁氧化物表面上不断增加的带负电荷分子会先使颗粒的电泳淌度下降,然后变为相反电性。接近等电点时,该混悬液不稳定。图5电泳淌度(μm.cm/V.s)对所加入肝素的浓度(μl/ml)所作的曲线。图6粒度(μm)对所加入肝素的浓度(μl/ml)所作的曲线。安全性实施例34将参考实施例4(淀粉铁氧化物)和实施例1b(肝素铁氧化物)的铁氧化物组合物以浓缩团块形式迅速静脉注射给于家兔(n4-5)。注射1、2.5和10mg Fe/kg的剂量,注射后记录60分钟内平均全身动脉压(SAP)和平均肺动脉压(PAP)。参考实施例4的组合物对PAP具有剂量依赖作用。在1mg Fe/kg剂量时未发现任何变化,在2.5mgFe/kg剂量时记录下微小变化,从20±1mm Hg到23±1mm Hg。在10mgFe/kg剂量时,平均PAP从22±3mm Hg变为33±6mm Hg。较高剂量会使平均SAP从129±10mm Hg缓慢降至117±8mm Hg。在注射后3-4分钟时记录到对PAP和SAP的最大作用,且反应时间短(10分钟内)。实施例1b的组合物对记录到的流体力学参数不起作用。实施例35将参考实施例1(葡聚糖铁氧化物)、4(淀粉铁氧化物)5b(羧基葡聚糖铁氧化物),和6b(磷酸葡聚糖铁氧化物)以及实施例1b(肝素铁氧化物)、4(软骨素-4-硫酸盐铁氧化物)和25a(聚-L-赖氨酸铁氧化物)的铁氧化物制剂经静脉注射给予鼠(n=2-3),剂量为1mg Fe/kg。注射后3、5、10和15分钟记录循环血小板数。参考实施例1和4的组合物使血小板数在注射后3分钟和5分钟时显著降至注射前数值的10-17%。参考实施例5b和6b的组合物在注射后3分钟和5分钟也会造成血小板数的显著减少,相当于对照值的50-60%。所有鼠的该反应都会迅速恢复,血小板数在15分钟内会重新达到对照值的75-100%。实施例1b、4和25a的组合物对循环血小板数不起作用或作用很小。实施例36在37℃下将参考实施例1(葡聚糖铁氧化物)、4(淀粉铁氧化物)、5b(羧基葡聚糖铁氧化物)和6b(磷酸葡聚糖铁氧化物),以及实施例1b、3a(肝素铁氧化物)、4(软骨素-4-硫酸盐铁氧化物)、11a(藻酸盐铁氧化物)、13a(聚氨基葡糖铁氧化物)、17a(聚-L-谷氨酸铁氧化物)和25a(聚-L-赖氨酸铁氧化物)在试管中用人体血清培养60分钟,其浓度相当于1mg Fe/kg(全部物质)的剂量和10mg Fe/kg(参考实施例4和5b)的剂量。全部组合物经自动热压灭菌,且不含内毒素。采用酶免疫测试来测定人体SC5b-a补体复合体(TCC)(Bering),以用来研究补体的活化情况。采用酵母聚糖A(Sigma)作为阳性对照物,将右旋糖(5%)或水作为阴性对照物。参考实施例的组合物均使TCC水平显著升高。参考实施例5b的样品作用最明显,与阴性对照物相比,即使在较低剂量1mg Fe/kg时也会使TCC增高至6倍。发现参考实施例1和4的组合物对TCC具有剂量依赖作用。测定出在低剂量对TCC增至2倍,在高剂量时TCC增至6倍。参考实施例6b的组合物在低剂量1mg Fe/kg时使TCC增至3倍。与阴性对照物相比,其它被测组合物对TCC不起作用或作用很小。
权利要求
1.一种诊断剂,它含有复合颗粒材料,其中的颗粒包含诊断有效的、基本为水不溶性的金属氧化物结晶材料,以及聚离子包覆材料,其中所述的颗粒大小小于300nm,所述的结晶材料的晶体大小为1-100nm,所述结晶材料与所述包覆材料的重量比为1000∶1至11∶1,所述的包覆材料选自天然及合成的结构型多糖、合成多氨基酸、生理上可耐受的合成聚合物及其衍生物。
2.权利要求1的诊断剂,其中所述的包覆材料是天然或合成的结构型多糖,它选自果胶、聚半乳糖醛酸、葡糖氨基聚糖、类肝素、纤维素,以及海生多糖。
3.权利要求2的诊断剂,其中所述的包覆材料选自皮肤素、肝素、乙酰肝素、角质素、透明质酸、角叉菜胶和聚氨基葡糖。
4.权利要求2的诊断剂,其中所述的包覆材料是软骨素。
5.权利要求1的诊断剂,其中所述的包覆材料是天冬氨酸、谷氨酸或赖氨酸的均聚物或共聚物。
6.权利要求1至5的任一诊断剂,其中所述包覆材料的分子量为500至2,000,000D。
7.权利要求1至6的任一诊断剂,其中所述的金属氧化物晶体与同表面相结合的包覆材料的重量比至少为15∶1。
8.权利要求1至6的任一诊断剂,其中所述的金属氧化物晶体与同表面相结合的包覆材料的重量比为500∶1至20∶1。
9.权利要求1至6的任一诊断剂,其中所述的金属氧化物晶体与同表面相结合的包覆材料的重量比为100∶1至25∶1。
10.权利要求1至9的任一诊断剂,其中所述的金属氧化物晶体为超顺磁性的。
11.权利要求10的诊断剂,其中所述的超顺磁性晶体为铁氧化物晶体。
12.权利要求1至11的任一诊断剂,其中所述的颗粒具有低于-10mV或高于+10mV的Zeta电势。
13.一种诊断剂组合物,它包含权利要求1至12的任一诊断剂和至少一种生理上可接受的载体或赋形剂。
14.一种生产权利要求1的诊断剂的方法,所述方法包括(i)在pH高于9的条件下,对1-100nm的诊断有效的、基本为水不溶性的金属氧化物晶体和包覆材料进行共沉淀或(ii)采用包覆材料对1-100nm的诊断有效的、基本为不溶于水的诊断剂进行包覆,从而得到粒度低于300nm的复合颗粒,并且晶体与表面结合包覆材料的重量比为1000∶1至11∶1,所述的包覆材料选自天然或合成的结构型多糖及其衍生物,合成聚氨基酸和生理可耐受的合成聚合物。
15.一种可增强人体和非人体对比成像效果的方法,所述方法包括向所述躯体内施用权利要求1至13的任一造影剂的混悬液,从而可在该造影剂所分布的躯体内的至少一部分成像。
全文摘要
本发明涉及颗粒造影剂,特别是用于MR成像的造影剂,它包含金属氧化物核,优选是超顺磁性铁氧化物核,采用低包覆密度的聚电解质包覆材料对核进行包覆,包覆材料选自结构型多糖和合成聚合物,特别是聚氨基酸。与常用的包覆颗粒不同的是,新颗粒减小对心血管参数、血小板减少、补体活化和凝血的作用或对其不起作用。
文档编号A61K49/06GK1174510SQ9419520
公开日1998年2月25日 申请日期1994年9月27日 优先权日1994年9月27日
发明者A·K·法尔维克, A·内维斯塔, H·甘德森, P·斯特兰德, J·克拉芬尼斯, A·杰科森 申请人:尼科梅德成像有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1