一种生物体内外磁目标定位装置及方法

文档序号:9294205阅读:419来源:国知局
一种生物体内外磁目标定位装置及方法
【技术领域】
[0001] 本发明涉及磁定位、医学领域,是一种基于磁定位技术的全新定位方法,及可使用 于生物体内外磁目标定位的装置。如:胶囊内镜定位,生物体内插入导管的检测,人体步态 分析,磁性药物示踪等。
【背景技术】
[0002] 现阶段,医学上常用的定位方法主要有:超声定位、核医学图像定位、射频信号定 位、交流激磁定位、磁标记定位。核医学定位的缺点是:高辐射性(对定位生物体产生伤 害);超声、射频信号、交流激磁定位的缺点是:定位精度低并且实现模型复杂。由于人体的 磁导率与空气,水或者其它非铁磁性物质的磁导率很接近,而非铁磁性物质对于静磁场几 乎没有影响,因此磁定位方法的定位精度会很高,而且对人体没有辐射性,实现成本低。
[0003] 中国专利申请201310715156. 3提出了"一种磁定位装置、具有该磁定位装置的车 模及其定位方法",该方案虽然能够运用磁感应元件在磁场下生成电流信号,以识别车模位 置,具有成本较低、操作简单等优点,但还存在以下明显不足:一是使用多个磁感应元件在 不同的道路板上进行检测,增加了成本和定位的复杂度;二是磁感应元件相对道路板保持 不动,位置取决于道路板,容易受到车辆挤压影响,增加了定位难度。
[0004] 中国专利申请201210404303. 0提出了 "一种基于三轴矢量磁传感器阵的磁性目 标定位方法",该方案利用由五个三轴磁传感器组成磁梯度张量测量阵列来对磁性目标进 行定位,该方案虽然具有受地磁场倾角、偏角影响小等优点,但还存在以下明显不足:一是 需要使用五个磁传感器来组成传感阵,成本较高;二是布置磁梯度张量测量阵列时需要保 证所有三轴矢量传感器对应的三个敏感轴均相互平行,导致操作复杂。
[0005] 中国专利申请201210227393. 0提出了 "一种磁传感器定位方法",该方案用于水 下定位,定位精度可达0. 2m,该方案虽然具有抗干扰能力强、环境适应性强等优点,但是还 存在以下明显不足:一是该方案用于水下大范围定位,相对于医学定位精度仍然不够;二 是磁传感器位置固定不动,操作相对复杂。
[0006] 综上所述,磁定位方法在不同领域内已经有了一定的研究,但是尚未有成熟的产 品出现,现有产品的缺点集中表现在磁传感器位置固定,数量多,定位算法复杂,操作困难 以及成本较高。如何克服现有技术以上的不足,并将磁定位技术应用到医学检测领域是一 个亟待解决的问题。

【发明内容】

[0007] 针对现有技术存在的不足本发明提供了一种结构简单,成本低,操作简单,可准确 快速定位磁目标的生物体内外磁目标定位装置及方法。本发明可使用于生物体内外磁目标 定位的装置,目的在于协助解决现有医学检查中的一些不足,并且通过定位,为医学诊断提 供更多的信息参考。
[0008] 为了解决以上问题本发明提供了一种生物体内外磁目标定位装置,其特征在于: 包括下位机,上位机。
[0009] 所述的下位机包括生物体磁目标,磁传感器,固定支架,中央控制器,数据存储单 元;
[0010] 生物体磁目标位于待测的生物体内部,需要赋予较弱的磁性,作为本发明的一种 优选方案,可以是赋予小磁体的胶囊内镜;
[0011] 固定支架上设有η个旋转轨道,n ^ 1,每个旋转轨道上设有m个磁传感器,m ^ 1, 磁传感器可在旋转轨道内旋转;作为本发明的一种优选方案,采用2个旋转轨道,分别旋转 于人体的两组水平面上;固定支架在定位检测时,为检测提供参考平面;
[0012] 中央控制器用于控制磁传感器检测数据,控制定时检测,并将数据发送到数据存 储单元进行存储。
[0013] 所述的上位机包括空间数学模型建立,定位数据重建;作为本发明的一种优选方 案,可以使用与胶囊运动轨迹显示,胶囊式检测数据与空间位置对应组成;
[0014] 空间数学模型建立:运用固定支架,每次检测建立空间模型;
[0015] 定位数据重构:运用建立完成的空间模型,以及数据存储单元记录的数据计算出 每次测定的磁目标位置信息。
[0016] 所述的空间数学模型建立为:磁传感器把根据固定支架提供的参考平面建立X, y,z坐标系,设生物体磁目标的位置位于Q点,并将磁传感器磁感应强度B转换成模拟信号 电压U,信号调理后,将模拟信号转换成数字信号;
[0017] 所述的定位数据重建为:I.当生物体磁目标处于磁传感器在旋转轨道内旋转的 平面时,磁传感器在旋转一周后检测到,由磁感应强度B转换成模拟信号电压U的最大 "max"及最小"min"值,并在坐标系内连接两点,此时生物体磁目标的位置Q点在坐标系内 该连接线上,并与最大值点距离更近;
[0018] II.在旋转轨道上随机的位置,再取两点,记录其电压Ul、U2值,并计算其读取电 压值时的测量角度α和β ;
[0019] III.利用已知坐标系及II测量的角度及电压值,即可计算出磁目标Q位于旋转一 周后测得电压U的最大最小值连接线的位置;
[0020] 将生物体磁目标看做磁偶极子,得到生物体磁目标的磁场分布的大小与距离的三 次方成反比,因此通过上述采集数据的运算即可得到磁目标Q的位置:
[0021]
[0022] 其中,q为生物磁目标Q在旋转一周后测得电压U的最大最小值连接线上同圆心 间距离和半径r的比值办和U 2分别是当磁传感器在旋转轨道上取随机α和β角位置时 测得的电压值。
[0023] -种生物体内外磁目标定位方法,其特征在于:包括以下步骤:
[0024] 步骤一:穿戴上述的生物体内外磁目标定位装置,服用生物体磁目标;
[0025] 步骤二:磁传感器把根据固定支架提供的参考平面建立x,y,z坐标系,该坐标系 基于传感器旋转轨道的平面,设生物体磁目标的位置位于Q点,并将磁传感器磁感应强度B 转换成模拟信号电压U,信号调理后,将模拟信号转换成数字信号;
[0026] 步骤三:当生物体磁目标处于磁传感器在旋转轨道内旋转的平面时,磁传感器在 旋转一周后检测到,由磁感应强度B转换成模拟信号电压U的最大"max"及最小"min"值, 并在坐标系内连接两点,此时生物体磁目标的位置Q点在坐标系内该连接线上,并与最大 值点距离更近;
[0027] 步骤四:在旋转轨道上随机的位置,再取两点,记录其电压Ul、U2值,并计算其读 取电压值时的测量角度α和β ;
[0028] 步骤五:利用已知坐标系及II测量的角度及电压值,即可计算出磁目标Q位于旋 转一周后测得电压U的最大最小值连接线的位置;
[0029] 将生物体磁目标看做磁偶极子,得到生物体磁目标的磁场分布的大小与距离的三 次方成反比,因此通过上述采集数据的运算即可得到磁目标Q的位置:
[0030]
[0031] 其中,q为生物磁目标Q在传感器旋转一周后测得电压U的最大最小值连接线上 同圆心间距离和半径r的比值;仏和U 2分别是当磁传感器在旋转轨道3上取随机α和β 角位置时测得的电压值;
[0032] 重复上述步骤,直至生物体磁目标排出体外。
[0033] 作为本发明的一种优选方案,当所述步骤四:在旋转轨道3取两个测量角度为
J点,其两点对应的电压值为UI、U2 ;
[0034] 所述步骤5 4 ]这样可是更快速的定位生物体磁目标。
[0035] 本发明可准确计算出生物体磁目标。当系统工作时,在非睡眠模式下,中央控制器 每0. 5小时提示需要检测,患者凭借固定支架保持相对静止,启动装置开始测定体内胶囊 内镜的位置,由数据存储单元存储,一次检测完成。在睡眠模式下,患者平躺,中央控制器不 会向使用者提示需要检测,直接测定体内胶囊内镜的位置,由数据存储单元存储,一次检测 完成。重复上述步骤,直至胶囊内镜排出体外。运用建立完成的空间模型,以及数据存储单 元的记录的数据计算出每次测定的磁目标位置信息。本发明结构简单,成本低,可准确快速 的定位生物体磁目标。
【附图说明】
[0036] 图1 :本发明装置的结构示意图。
[0037] 图2 :本发明装置的原理框图。
[0038] 图3 :本发明定位方法示意图。
【具体实施方式】
[0039] 下面结合附图对本发明作进一步的描述。
[0040] 如图1至3所示,本发明提供了一种生物体内外磁目标定位装置,包括下位机,上 位机。
[0041] 所述的下位机包括生物体磁目标,磁传感器1,固定支架2,中央控制器,数据存储 单元;生物体磁目标位于待测的生物体内部;固定支架2上设有2个旋转轨道3,每个旋转 轨道3上设有3个磁传感器1,磁
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1